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We analyze the implications of having a divergent speed of sound in k-essence cosmological models.
We first study a known theory of that kind, for which the Lagrangian density depends linearly on the time
derivative of the k-field. We show that when k-essence is the only source consistency requires that the
potential of the k-field be of the inverse square form. Then, we review the known result that the
corresponding power-law solutions can be mapped to power-law solutions of theories with no divergence
in the speed of sound. After that, we argue that the requirement of a divergent sound speed at some point
fixes uniquely the form of the Lagrangian to be exactly the one considered earlier and prove the
asymptotic stability of the most interesting solutions belonging to the divergent theory. Then, we discuss
the implications of having not just k-essence but also matter. This is interesting because introducing
another component breaks the rigidity of the theory, and the form of the potential ceases to be unique as
happened in the pure k-essence case. Finally, we show the finiteness of the effective sound speed under an
appropiate definition.
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I. INTRODUCTION

Mainstream models of accelerated expansion in the
universe assume it is due to the dynamics of scalar fields
evolving in a self-interaction potential. In general, the
Lagrangians of the effective theories describing those
fields include noncanonical kinetic terms, which might
be responsible for crucial cosmological consequences
like the occurrence of inflation even without a potential
(purely kinetic acceleration or k-acceleration) [1–3]. In
these models, inflation is polelike, that is, the scale factor
evolves like a negative power of time. An earlier theoreti-
cal framework in which (polelike) k-acceleration arises
naturally is the prebig bang model of string cosmology
[4]. In this setup, acceleration is just due to a scalar field
called the dilaton, and it will only manifest itself in the
string conformal frame. Finally, for other ideas on kinetic
inflation one may have a look at [5], where acceleration
was put down to a dynamical Planck mass.

Coming back to k-essence, the noncanonical terms con-
sidered in the Lagrangian will only be combinations of the
square of the gradient of the scalar field (hereafter k-field),
because the equations of motion in classical theories seem
to be of second order. Moreover, since k-fields can be used
for constructing dark energy models it is common place to
interpret them as some kind of matter called k-essence
[2,6,7]. Nevertheless, originally k-fields were not intro-
duced for the description of late time acceleration, but
rather they were suggested as possible inflation driving
agents [1,8]. Lately, efforts in the framework of
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k-essence have been directed toward model building using
power-law solutions which preserve [3,9,10] or violate the
weak-energy condition [11].

In this paper, we revisit k-essence cosmologies with an
infinite sound speed [12], and throw in more light on their
implications. In Sec. II we discuss the main features of the
models and prove that for consistency the potential must be
of inverse square form. In Sec. III we construct models
with a divergent speed of sound and we show that the form
of the Lagrangian giving rise to an infinite speed of sound
is uniquely determined. We also provide an alternative
view on the origin of such models which relies on how
the Hubble factor depends on the k-field and its derivative.
At the end of this section the asymptotic stability of the
most appealing solutions within that framework is inves-
tigated. In Sec. IV we consider a more general model to
include matter together with the k-essence, we study the
implications of this generalization, and then we perturb the
background geometry and find the effective sound speed
ceff . Then, for illustration we calculate it for a simple ad
hoc example in which the effective sound speed is just
equal to the barotropic index so that c2eff < 1 follows from
the condition for inflation. Finally, in Sec. V we draw our
main conclusions.
II. MAIN FEATURES OF THE MODELS

In usual practice, k-essence is defined as a scalar field �
with noncanonical kinetic energy associated with a factor-
izable Lagrangian of the form

L � V���F�x�; (1)

where x � r	�r	� and F�x� is a function of the kinetic
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energy x. This form of the Lagrangian is suggested by the
Born-Infeld one

L � �V���
������������
1� x

p
; (2)

which was associated with the tachyon by computations in
boundary string field theory [13]. Such Lagrangian also
arises in open bosonic string theory [14] and is a key
ingredient in the effective theory of D-branes [15].

Using the perfect fluid analogy, the energy density and
the pressure are given by

�� � V�F� 2xFx�; (3)

p� � �VF: (4)

We assume from now on a flat Friedmann-Robertson-
Walker (FRW) spacetime with line-element

ds2 � �dt2 � a2�t��dx21 � dx22 � dx23�; (5)

where a�t� is the scale factor and� is homogeneous so that
x � � _�2. Let H � _a=a be the Hubble factor, then the
Einstein equations reduce to

3H2 � ��; (6)

_H � xVFx; (7)

where we have taken units such that 8�G � 1. A conse-
quence of the latter is the conservation equation

�Fx � 2xFxx� ��� 3HFx _��
V 0

2V
�F� 2xFx� � 0: (8)

Furthermore, if we write the equation of state in the form
p� � ��� � 1���, the barotropic index �� will read

�� � �
2 _H

3H2 � �
2xFx

F� 2xFx
: (9)

In [10] different classes of FRW k-essence cosmologies
were investigated. Among them, those which lead to
power-law solutions with an inverse square potential and
scalar field evolving linearly with time were analyzed, and
they were shown to be related by a one-to-one map (see
next section) to power-law solutions arising from a theory
with

F � �� �
�������
�x

p
; (10)

where � and � are arbitrary constants. Interestingly, the
latter is a particular case of the F associated with the
extended tachyon models considered in [3]. There solu-
tions were found with the a priori assumption that the
potential should be of inverse square type. In contrast, we
will demonstrate below that, in fact, there is no other
possibility.

Now, the cosmological models one obtains from (10)
can be viewed as having an infinite sound speed if the
familiar definition
023505
c2s �
p�x
��x

�
Fx

Fx � 2xFxx
(11)

is used. For that reason, we will refer here to the theory
arising from (10) as the divergent theory, and, by opposi-
tion, any other theory for which cs � 1 will be labeled as
nondivergent.

As we will show immediately, another peculiarity of the
theory is that compatibility requires the potential be of the
inverse square form. For our choice of F the k-field Eq. (8)
becomes

3HFx _��
V 0

2V
�F� 2xFx� � 0: (12)

Now, using the definitions of x and �� once and twice,
respectively, one arrives at

_V
V

�
2 _H
H
; (13)

which gives V / H2. On the other hand, inserting (10) in
(9), one gets

�� � �
�
�

_�; (14)

which after integration leads to

H� �
1


0
; (15)

with 
0 � �3�=2�, so that we can finally write

V �
V0

�2 ; (16)

where V0 � 4�=3�2 is a constant. Note also that we have
set the origin of the potential at � � 0. Summarizing, one
can view the result as if the simultaneous requirement that
H� � constant and that V be of the inverse square form
characterized the solutions to the k-field Eq. (12) for an F
like (10).

At this stage, we can insert (10) into the Einstein equa-
tions and use (15) and (16). The information we extract is
that, necessarily,

F �
3H2�2

V0
�

2H�
V0

�������
�x

p
; (17)

where one should keep in mind that H� must be replaced
by 
�1

0 .
Remarkably, since there is no evolution equation for �

in this theory, the time dependence of � or H are not fixed
by the form of the potential, and solutions belonging to this
theory exist for absolutely any evolution one can imagine.
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III. MODELS WITH DIVERGENT SPEED
OF SOUND

Consider now theories with F functions different from
(10) and their power-law solutions, which are obtained
under the hypotheses

V �
V0

�2 ; (18)

� � �0t; (19)

which clearly imply F is constant. Although these particu-
lar models arise from nondivergent theories, they share the
property H� � constant with all the models derived from
the divergent theory, and, in particular, with the power-law
ones. Thus, convenient choices of the free parameters will
allow for one-to-one maps between power-law solutions of
the divergent and nondivergent theories.

Specifically, if for the cosmologies arising from the
nondivergent theories we set a � a0tn with a0 a constant,
we will have H� � n�0, and the isomorphism will follow
from the requirement n�0 � 
�1

0 , which trough the k-field
Eq. (12) enforces

� �
3n2�2

0

V0
; (20)

� � �
2n�0

V0
: (21)

Nevertheless, despite this equivalence argumentation,
the models arising from the divergent and nondivergent
theories are not completely interchangeable in all respects.
Before we go deeper into this matter, it is convenient to
introduce the parameters f and f0, which, respectively,
stand for the function F and its first derivative evaluated
at x � x0 � ��2

0, that is,

f � F���2
0�; (22)

f0 � Fx���2
0�: (23)

If we substitute the latter into the Friedmann and k-field
Eqs. (6) and (8) we find that the index n and the slope of the
potential V0 are given by

n �
f� 2�2

0f
0

3�2
0f

0
(24)

V0 �
n
f0
: (25)

Now, inhomogeneous perturbations to the background
FRW geometry would involve the speed of sound cs, or
equivalently the second order derivative of F, through
Eq. (11). Thus, a measure of those perturbations would
provide information on cs, which could break the degen-
eracy of the divergent theory and be used to restrict the set
023505
of admissible F functions. This provides an adequate
framework where the effective sound speed can be intro-
duced, as it will be seen in Sec. IV.

Interestingly, there is a consistency argument that sup-
ports the validity of the above result. In [3] the first integral
of the k-field Eq. (8) for any F expression was found
provided the coefficient of �� does not vanish; it reads

��
_�

�
1

�

�
2

3H
�

c

a3H2

�
; (26)

with c an arbitrary integration constant. Consistency,
nevertheless, would require that (26) admitted as a particu-
lar result H� � constant, which must otherwise hold in
the limit in which the coefficient of �� in the k-field
equation vanishes. Recalling that in such case one must
have �� � 2
0

_�=3, the condition H� � 
�1
0 follows for

c � 0.
A. Obtaining the divergent theory

Let us now try to deepen the understanding of the
implications of an infinite sound speed. It is clear that an
F like (10) (or (17)) is associated with a divergent sound
speed, but the question that comes to mind is whether such
divergence could occur for a different form of F. In order
to find the answer, we are going to consider that the
function F is not a priori of the form (10), but rather just
assume that the speed of sound diverges at the point x �
x0, which means �F0 � 2xF00�x�x0 � 0 and _� � _�0. Using
the k-field equation for the inverse square potential V �
V0=�2 recursively, we calculate below the values of F and
its derivatives at that point, i.e., F��x0� � F�� _�2

0� �
F0; F

0��x0� � F0
0, and so on. Hence, at x � x0, Eqs. (6)

and (8) become

3H2 � V�F0 � 2x0F
0
0�; (27)

3HF0
0
_�0 �

F0 � 2x0F
0
0

�
� 0: (28)

Combining these equations with Eq. (7), we arrive at

H�0 � _H� � 0; (29)

and

F0
0 �

H�
V0

���������
�x0

p ; (30)

with H� � constant, as can be seen from Eq. (27).
Besides, from the vanishing of �F0 � 2xF00�x�x0 � 0, we
get

F00
0 �

H�

2V0��x0�
3=2
: (31)

Differentiating the k-field Eq. (8) recursively and using
the above results we obtain the remaining derivatives of the
-3
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function F,

F000
0 �

3H�

4V0��x0�
5=2

(32)

and so on. Precisely, these values of F0, F0
0 , . . . , coincide

with those obtained from the function (17) and its deriva-
tives evaluated at x � x0. This shows that the form of F
associated with an infinite speed of sound is unique, and it
is necessarily given by (10). In consequence, if the speed of
sound is infinite for some value of x0, it will be so for every
other value.

Although the result we just gave is quite strong, we wish
to present yet one more argument to shed some more light
on the origin of the divergent theory. In principle, the
Hubble factor H might depend on the field � and its first
derivative _� (no dependence on higher order derivatives is
required because the k-field equation makes them all de-
pend in turn on � and _�). Now, let us assume for the time
being that there is only dependence on �, i.e.,

H � h���: (33)

We can then calculate the barotropic index

�� � �
2h0 _�

3h2
; (34)

which by definition (see Eq. (9)) cannot depend on �, so
that

h0 / h2; (35)

is required. From the latter it may be concluded that h /

��1. Therefore, �� / _� and H2 / ��2. This just means
that

F� 2xFx � constant; (36)

which remarkably solves to give the function F � ��
�

�������
�x

p
with arbitrary � and �.

Summarizing, just by making the hypothesis that H
depends on � only, it is possible to obtain the divergent
theory without having to use the conservation equation. We
feel this clarifies why the divergent theory is atypical; it
looks as if all k-essence theories would split into two
classes: the divergent class which is determined by the
latter F, and the class of the theories generated by all the
remaining F functions.

B. Stability of the solutions

Now, in order to go a fit further, we are going to study the
stability of the solution belonging to the divergent theory
against changes in the initial conditions. Since it corre-
sponds to ��= _� � constant we introduce a new variable


 �
3��
2 _�

; (37)

so that the unperturbed solution is represented by 
 � 
0,
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with 
0 a constant. Let us write now the k-field equation in
terms of 
 [3]:

_
� 3
�
H
�

V 0

2V

�
�1� ��� � 0: (38)

A constant solution 
 � 
0 to the last equation exists when
the condition

H
0 �
V 0

2V
� 0; (39)

holds, so that (38) can be cast as
_
� 3H
�
� 
0��1� ��� � 0: (40)

In addition, integrating the condition (39), we get the
inverse square potential (16) and the general solution of
Eq. (38) is given by


 � 
0 �
m

a3H2 ; (41)

wherem is an arbitrary integration constant. Therefore, the
�� < 1 solutions (and, in particular, all the accelerated
ones) evolve asymptotically toward 
 � 
0.

A more subtle distinction between the models, which
would remove the degeneracy, could be established by
perturbing these solutions. This, however, is beyond the
scope of the present paper.
IV. MATTER CONTRIBUTION

We consider now a model with matter interacting with
k-essence generated by the kinetic function (10). In addi-
tion, we assume the interaction happens through the ge-
ometry only, that is, the components are conserved
separately. In this case the Einstein equations are given by

3H2 � �V � �m; (42)

�3�H� �
V 0

V
� 0; (43)

_�m � 3H��m � pm� � 0; (44)

where Eqs. (43) and (44) express the conservation of
k-essence and matter, respectively, (Eqs. (42) and (43)
follow from assuming Eq. (10)). Furthermore, if we write
the equation of state of the matter in the form pm � ��m �
1��m, then integrating the matter conservation Eq. (44), we
get �m � �0=a3�m . On the other hand, unlike in the case
without matter, Eq. (43) cannot be integrated, so the pro-
portionality rule V / H2 found in Sec. II (See Eq. (13))
does not apply now. This is a consequence of the fact that
�� � �2 _H=3H2 is no longer valid, that relation is rather
satisfied by the overall barotropic index defined by

� �
���� � �m�m
�� � �m

� �
2 _H

3H2 : (45)
-4
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This shows the potential is no longer fixed by the theory,
and it represents a crucial difference between the situation
in which the universe is filled with k-essence only, or with
such fluid together with matter of some other kind.
Somehow matter modifies the results found in Sec. II,
thus allowing for a more realistic model, because the
theory is not rigid anymore as when only k-essence is
present, thus matter and k-essence with an arbitrary poten-
tial jointly rule the cosmic dynamics. Constructing a model
matching the observations and close enough to a
Cosmological Constant should be quite easy by getting
the potential sufficiently flat, and beta sufficiently small
in Eq. (43).

A. The effective sound speed

A realistic model should explain recent observations,
which suggest that most of the energy density of the
universe consists of a dark energy component with nega-
tive pressure in addition to other ordinary components as
matter and/or radiation. The most accepted candidate to
describe this dark energy component is a scalar field with a
negative effective pressure. We can differentiate two kinds
of models, the usual of quintessence and that of k-essence
with noncanonical kinetic term. These models are different
in several aspects, for instance, in the dynamics of the
equation of state and in the behavior of the sound speed.
Precisely, we concentrate our investigations in this last
issue. In quintessence models the scalar field obeys a
nearly constant equation of state with a barotropic index
�� < 2=3, so that c2s� < 0, but as shown in [16] this does
not go against the stability of the perturbations, because
what really matters is c2eff . In contrast, if the dark energy
component is described by k-essence the sound speed (11)
could be c2s > 1, even c2s � 1 is possible as it was seen in
previous sections. This means that perturbations of the
background k-field can travel faster than light as measured
in the preferred frame where the background field is ho-
mogeneous. This problem should not come as a surprise,
because if we calculate the adiabatic sound speed we find

c2s� �
_p�
_��

� �1�
�
�

_��
��

3H _�
(46)

we find it is not defined. This happens because in the field
Eq. (8), the term ��=c2s vanishes (due to the fact that the
speed of sound c2s , as usually defined in the framework of
k-essence, is divergent as can be seen from (11)). In con-
sequence, _� and �� are not controlled by any field equation.
In other words, the divergent theory enforces the inverse
square potential but the behavior field will come from
additional ad hoc assumptions. This makes it evident that
for this particular theory, which is generated by the func-
tion (10), the value of the speed depends strongly on the
definition we use to calculate it. In fact, if we had used the
definition given by Eq. (46) then the speed of sound would,
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in principle, not have been divergent an the field Eq. (8)
would have been the same as before, and the results
obtained in the previous sections would have remained
valid. However, things change radically when a matter
component is introduced, like in the example discussed
before with the help of Eqs. (42)–(44). In this case the
potential is not fixed by the field Eq. (8) because �� �

�2 _H=3H2 is no longer valid. In this case, the potential has
to be assumed independently, and the dynamical equations
will fix the field and its derivatives so that the adiabatic
sound speed (46) will be perfectly defined. In this case,
then, it will be the effective c2eff what we will have to
calculate. To that end we follow the steps of [16,17].

In generalized dark matter [16] it was introduced the
effective sound speed c2eff defined in the rest frame of the
generalized dark matter component, where �T0

j� � 0. The
effective sound speed can be interpreted as a rest frame
sound speed, allowing us to define a stabilization scale for
a perturbation, given by the corresponding effective sound
horizon. So, it was possible to show that density perturba-
tions in the ordinary quintessence scenario are damped out
below the horizon and the effective sound speed of quin-
tessence recovers its relativistic behavior c2eff � 1 [16]. In
Ref. [17] it was shown that in extended quintessence
scenarios things can be different, because the effective
sound speed may be strongly affected by the nonminimally
coupled scalar field.

The effect of the speed of sound on the CMB perturba-
tion equations is such that for an effective sound speed
c2eff � 1 [18], k-essence energy density perturbations are
enhanced by perturbations in the cold dark matter. The
perturbed FRW line-element is

ds2 � a2� �d 2 � ��ij � hij�dx
idxj�; (47)

where �ij is the background spatial metric, hij � 1 is the
metric perturbation (we consider only linear metric cos-
mological perturbations), h represents the trace of the
spatial metric perturbation. We investigate the effects due
to adiabatic perturbations to the k-essence stress-energy in
the synchronous gauge for a mode with wave number k.
Besides, we omit the argument k in the amplitude of the
perturbation quantities in the Fourier space. For a generic
component in the model investigated above, it is conve-
nient to separate out the nonadiabatic entropy contribu-
tions. Hence, for the k-field we have

p�
� � �p� � c2s����; (48)

where c2s� is the adiabatic sound speed (46) Following
Ref. [16], we can write the gauge-invariant entropy term as

�1� ���
� � �c2eff � c2s��
��rest���
��

: (49)
-5
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The gauge transformation into an arbitrary frame gives the
density contrast in the dark energy rest frame [16]

��rest���
��

�
���
��

� 3H��
v� � B

k
; (50)

yielding a manifestly gauge-invariant form for the non-
adiabatic entropy contribution [19,20]. Here B represents
the time-space component of metric fluctuations. In this
equation H � _a=a, where the overdot represents (in this
expression only) differentiation with respect to the confor-
mal time  �

R
dt=a.

Combining Eqs. (48)–(50) with the equation of state for
the k-field p� � ��1� � _�=���, we obtain

c2eff �
�p� � 3�HV _�c2s��v� � B�=k

��� � 3�HV _�c2s��v� � B�=k
: (51)

Since we are using the synchronous gauge B actually
vanishes. From Eq. (51), we conclude that c2eff �
�p�=��� on scales approaching the horizon. The overall
effect is that the pressure fluctuations �p� are weak and
k-essence perturbations are enhanced via gravitational in-
stability of the matter field. Finally, for our divergent sound
speed model we obtain that on subhorizon scales

c2eff �
�p�
���

� �� � 1�
V
V0

d��
d�

; (52)

where �� is associated with �m and the geometry through
Eq. (45). We have also used that the dynamical Eqs. (42)
and (44) fix the derivatives of the field once the potential
has been given so that _� � _����, so that �x �
�2 _���d _�=d�.

To study the approximate expression for the finite sound
speed c2eff given by Eq. (52), we investigate a simple ad hoc
example in which the barotropic index has the form

�� � 2 ln
�0

�
; (53)

where �0 is a constant, so that for an inverse square
potential

c2eff � ��: (54)

An accelerated dark energy scenario requires that �� <
2=3, consequently for this model the value of the sound
speed satisfy the condition c2eff < 1. Combining Eqs. (14)
and (53) we can investigate the solutions of the remaining
equation near the value of the k-field � � �0. Writing
� � �0 � $ with j$j � 1, we find that to first order in $

_$ �
2�
��0

$: (55)

Thus, whenever ����0�
�1 < 0 the constant solution � �
023505
�0 is stable, then the barotropic index and the sound speed
have a vanishing limit for large cosmological times.

V. CONCLUSIONS

This work means to contribute to a better understanding
of a divergent speed of sound in k-essence cosmological
models. We have reviewed some known results by consid-
ering a theory of that kind, for which the Lagrangian
density depends linearly on the time derivative of the
k-field. In previous works, solutions were obtained under
the hypothesis of an inverse square potential. In contrast,
we have shown here that for the theory to be consistent the
potential of the k-field cannot take any other form. Then,
following with revision we have reminded the known result
that the corresponding power-law solutions can be mapped
to power-law solutions of theories with no divergence in
the speed of sound.

After that, we have presented two important new results
that reinforce our view that k-essence cosmologies with a
divergent speed of sound are very special indeed. First, we
have constructed a detailed argument that shows that the
requirement of a divergent sound speed at some point fixes
uniquely the form of the Lagrangian of the theory to be
exactly the one considered earlier. After that we have
shown that in the divergent theory the Hubble factor de-
pends on the k-field only, whereas in the nondivergent ones
depends on its first derivative too. On the other hand, we
have proved that, from the cosmological point of view, the
most interesting solutions belonging to the divergent the-
ory are asymptotically stable.

We then have considered matter in addition of the
k-essence studied in the previous section. It turns out that
in this alternative model the k-essence potential is not fixed
any longer, and may be freely chosen. This also brings
implications on the admissible definitions of the sound
speed. Following in this respect [16,17] we have studied
the behavior of linear perturbations. The dark energy clus-
tering in k-essence scenarios, where the k-field is assumed
to be responsible for the cosmic acceleration today can be
realized. The scalar field density perturbations can grow on
subhorizon scales and the effective sound speed c2eff may
satisfy the requirement c2eff � 1 for a large set of poten-
tials. In particular, we have introduced a cosmological
model for which the effective sound speed and barotropic
index have both suitable asymptotic properties.
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