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Abstract
The damping of vortex cyclotron modes is investigated within a generalized
quantum theory of vortex waves. Similarly to the case of Kelvin modes, the
friction coefficient turns out to be essentially unchanged under such oscillations,
but it is shown to be affected by appreciable memory corrections. On the
other hand, the non-equilibrium dynamics of the vortex energy, which is
investigated within the framework of linear response theory, shows that its
memory corrections are negligible. The vortex response is found to be of the
Debye type, with a relaxation frequency whose dependence on temperature
and impurity concentration reflects the complexity of the heat bath and its
interaction with the vortex.

PACS numbers: 05.30.−d, 05.40.Jc, 67.40.−w, 67.60.−g

1. Introduction

The simplest vortex dynamics in a superfluid corresponds to the two-dimensional motion of
a rectilinear vortex filament [1]. In fact, in an infinite superfluid a vortex ‘charged’ with one
quantum of anticlockwise circulation will move like an electron in a uniform magnetic field,
i.e. performing a circular cyclotron motion ruled by

mv r̈ = ρshẑ × ṙ. (1)

Here mv denotes the vortex effective mass per unit length, ρs is the number density of the
background superfluid at rest, h is Planck’s constant and r = (x, y) is the two-dimensional
coordinate of the vortex core. We note that the Magnus force on the right-hand side of (1) is
formally equivalent to the Lorentz force on a negative point charge in a uniform magnetic field
parallel to the z axis. Actually, this electromagnetic analogy is only a part of a whole mapping
by which a 2D homogeneous superfluid can be mapped onto a (2+1)D electrodynamic system,
with vortices and phonons playing the role of charges and photons, respectively [2]. For
instance, any accelerated motion of a vortex would result in the radiation of sound waves

0305-4470/05/377929+14$30.00 © 2005 IOP Publishing Ltd Printed in the UK 7929

http://dx.doi.org/10.1088/0305-4470/38/37/001
mailto:cataldo@df.uba.ar
http://stacks.iop.org/ja/38/7929


7930 H M Cataldo

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

ε k/k
B [K

]

k [Å
-1

]

Figure 1. Dispersion curve for elementary excitations in superfluid 4He (full curve) and energy
spectrum of solvated 3He atoms in ordinary helium (broken curve).

in the superfluid, i.e. the emission of phonons, a process which is entirely analogous to the
photon radiation mechanism stemming from an accelerated charge in electrodynamics. In
practice, however, this simple picture would only apply to a superfluid formed by 4He atoms,
namely the boson isotope of helium, at low temperatures (T < 0.4 K). Ordinary helium,
on the other hand, contains a small amount of impurity, fermion 3He atoms, which however
produces a viscous drag force on a moving vortex at the lowest temperatures. In fact, below
0.4 K the scattering of thermal phonons by the vortex has negligible effects compared to the
drag force due to 3He scattering [3]. In addition, at higher temperatures (T > 0.5 K), most
of the elementary excitations of the superfluid 4He that collide with the vortex are rotons,
i.e. quasi-particles having their momentum around the minimum of the dispersion curve. In
fact (see figure 1), only the elementary excitations with momentum below 0.5 Å

−1
can be

regarded as phonons arising from a linear dispersion relation ω = csk, whereas the rest of
the dispersion curve does not yield thermal elementary excitations, except for a small interval
around the minimum (∼1.9 Å

−1
). Quasi-particles with momentum at the right (left) of this

minimum have their group velocity parallel (antiparallel) to their momentum and are called
R+ (R−) rotons. Above 0.5 K, the source of the drag force on a vortex in ordinary helium is
roton scattering, the effect of 3He collisions being practically negligible. Whatever the source,
however, such a drag force can be written as two additional terms on the right-hand side of
equation (1), namely

mv r̈ = (ρsh − D′)ẑ × ṙ − Dṙ, (2)

where D′ and D denote transversal and longitudinal friction coefficients, respectively
[1, 4]. It is interesting to compare in figure 1 the dispersion curve for elementary excitations
in superfluid 4He, with the energy spectrum of 3He atoms in ordinary helium. Such solvated
atoms behave like heavier free particles (εk = h̄2k2/2m∗) with an effective mass m∗ which
exceeds twice the mass of a bare 3He atom. As a final remark about figure 1 we note that
the terminations of both curves are due to unstabilities caused by roton creation processes.
That is, any elementary excitation exceeding twice the roton energy should be unstable against
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decay into two rotons, whereas 3He atoms exceeding the roton energy should decay into a low
energy atom plus a roton.

Here it is also important to take into account another consequence of the above scattering
processes, apart from the friction itself, that is the thermal excitation of vortex waves [1, 5].
These are helical waves in which each vortex line element executes a circular motion about
the undisturbed line (z axis). The radius of such a circle is assumed to be much smaller than
the wavelength, so the above elements will remain almost parallel to the z axis, fulfilling an
equation of motion like (1). In fact, such an equation has to be generalized to the situation
where there exists an external superfluid flow of velocity vs :

mv r̈ = ρshẑ × (ṙ − vs). (3)

Such an ‘external’ superflow corresponds in our case to the local self-induced velocity
generated by the vortex line curvature [1, 6], vs = −vi θ̂ , which points in a direction opposite to
that of the superfluid velocity field generated by the undisturbed vortex line. This self-induced
velocity, being proportional to the line displacement |r| from the z axis, can be written as
vi = ω−|r|, where

ω−(k) � − h̄k2

2m4
[ln(|k|a) + 0.116] (4)

corresponds to the well-known dispersion relation for Kelvin waves of long wavelength
λ, |k|a � 1, with |k| = 2π/λ, a ∼ 1 Å = vortex core parameter and m4 = mass of a
4He atom. Note that the wave vector k, which points along the z axis, can take positive or
negative values depending on the two ways of generating the vortex helix. Then, equation (3)
can be rewritten as

r̈ = �ẑ × ṙ − �ω−r, (5)

where

� = ρsh/mv (6)

corresponds to the cyclotron frequency arising from the equation of motion (1). Actually, it
is easy to check that equation (5) allows both possible directions for circular motion, since
the replacement |r| = const, ṙ = ω|r|θ̂ in (5) leads to a quadratic equation in the angular
frequency ω with solutions:

ω(±) = �

2

[
1 ±

√
1 +

4ω−
�

]
. (7)

That is, in the limit ω−/� � 1 we have either the anticlockwise cyclotron motion of frequency
ω(+) � �, or the usual clockwise polarization of Kelvin waves ω(−) � −ω− (cf (4)), for
vortices of anticlockwise circulation and negligible mass (� → ∞). Actually, there are no
experimental data about vortex trajectories, so the value of the vortex mass mv and hence
of � can only be extracted from theoretical considerations. If mv is calculated from a
classical hydrodynamical model, � should be about 3 ps−1 [1], whereas more recent theories,
for which mv should be logarithmically divergent with the system size, lead to � of order
0.1−0.01 ps−1, for typical experimental conditions [7, 8]. All these figures are consistent with
the approximation � � ω− for long wavelengths |k|a � 1, where the dependence on k of the
frequency ω(+) can be neglected [1].

Finally, the vortex equation of motion is obtained by adding both effects, friction (2) and
oscillations (5), together:

r̈ = �

[(
1 − D′

ρsh

)
ẑ × ṙ − D

ρsh
ṙ − ω−r

]
. (8)
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Note that in addition to the time dependence of r, one should take into account a parametric
dependence r(z) following the helix curvature.

Up to this point we have regarded the vortex coordinates as classical time-dependent
variables, but it is important to observe in this respect that the above theoretical estimates of
the cyclotron frequency yield values of h̄�/kBT greater than ∼0.1 for T < 1 K. This seems
to indicate that a classical treatment cannot be wholly satisfactory. Moreover, even in the case
of purely low-frequency Kelvin waves, the need for a quantum mechanical analysis was pointed
out early by Fetter [9]. Such a theory was in fact used to study phonon scattering by a vortex
[10], and it is our purpose to present in this paper a more general treatment in which the vortex
mass, and hence the cyclotron frequency, are included in the theory and assigned finite values.
Our starting point will be a vortex Hamiltonian from which the equation of motion (5) derives.
Then, after quantization of the vortex variables, we will show that such a Hamiltonian consists
of independent harmonic oscillator modes of frequencies � and ω−, which interact with the
heat bath represented by the ordinary helium at a finite temperature. Such an interaction is
modelled through a generic momentum-conserving scattering Hamiltonian, which is used to
study the dissipative dynamics of the cyclotron modes. Thus, we shall show that the friction
turns out to be essentially unaffected by such oscillations, allowing us to extend our previous
conclusions on the memory effects on straight vortex lines [11]. Similar behaviour was
reported long ago by Fetter [10] and Sonin [12] for the low-frequency Kelvin modes, showing
that the dissipation of such modes remains essentially equal to that of strictly rectilinear
vortices.

Our main objective in the present paper will be to analyse, within the framework of
the linear response theory [13], the non-equilibrium dynamics and the equilibrium quantum
fluctuations of the energy of the cyclotron modes. There exists an extensive literature on
quantal Brownian motion of harmonic oscillators [14], but it is important to realize that our
problem presents a number of distinctive features that are not found in previous treatments,
namely

(i) Most of such previous studies have focused on the coordinates or the momentum of the
oscillator, rather than on the energy, e.g. treatments of the time correlation function of the
energy are rather uncommon.

(ii) It is evident that we are dealing with a very special heat bath, since in addition to being
formed by Fermi particles and Bose quasi-particles, such bosons are characterized by a
complex dispersion relationship which gives rise to different species (phonons, rotons R+

and R−).
(iii) The drag force on vortices that has been experimentally detected arises from scattering,

thus we leave aside from our study the phonon radiation damping [2, 11]. We note that
such a scattering interaction Hamiltonian is also unusual since it must be nonlinear in the
heat bath operators. In fact, most of the Brownian motion models assume that the heat
bath couples linearly to the harmonic oscillator, but in our case it is easy to realize that
the scattering events must involve products of creation and annihilation operators of the
particles that collide with the vortex.

(iv) Our recent study [11] has shown that the drag force could be affected by appreciable
memory effects, so it will be important to extend our treatment beyond the usual Markovian
approximation to explore such possible effects.

A suitable formalism to handle the above items can be found in [15], where a non-
Markovian calculation of the energetic susceptibility of a harmonic oscillator, weakly coupled
to boson and fermion environments, was carried out. So, we shall base our treatment on the
above formalism.
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This paper is organized as follows: in the following section we describe our quantum
model for the dissipative vortex dynamics which leads to an analysis of vortex oscillations and
memory effects. In section 3, we summarize the main results of the linear response theory
applied to the vortex energy. In section 4, based on the previous calculation of the harmonic
oscillator susceptibility, we analyse memory corrections to the Markov approximation. In
section 5 we calculate the response and time correlation functions, and study the dependence
of the relaxation frequency on temperature and impurity concentration. Finally, in section 6
we gather the summary and main conclusions of our study.

2. Quantum model for vortex dynamics

We start from a vortex Hamiltonian given by

Hv(z) = mv

2
(v2 + �ω−r2), (9)

where

v = p/mv +
�

2
ẑ × r (10)

corresponds to the vortex velocity ṙ and p denotes the vortex canonical momentum. The second
term in (10) corresponds to that of the vector potential (central gauge) in the electromagnetic
analogy, and the z dependence in (9) which arises from r(z) and p(z) corresponds to the
rotation in the x–y plane parametrized by z, which results from following the helix path. Note
that both the canonical momentum p and the Hamiltonian (9) are given per unit length of the
z axis. Then, it is easy to verify that the Hamilton equations lead from (9) to the equation of
motion (5).

The two-dimensional coordinate r of the vortex core can be written as the sum of the
centre coordinate r0 of the cyclotron circle plus the relative coordinate r′ from such a centre.
Then, the quantization of such variables straightforwardly arises from the electromagnetic
analogy:

r0 = 1√
4πρsL

[(β† + β)x̂ + i(β† − β)ŷ] (11)

r′ = 1√
4πρsL

[(a† + a)x̂ + i(a − a†)ŷ], (12)

where a† (β†) denotes a creation operator of right (left) circular quanta [16] and L denotes
the vortex line length. The z dependence of r arises from the replacements β† →
exp(−ikz)β

†
k, a

† → exp(ikz)a
†
k in (11) and (12), and correspondingly for the annihilation

operators. Actually, Fetter’s theory identifies r0(z) as the whole displacement from the z

axis (see [10], equation (14)). Analogous quantization for the canonical momentum p leads
through (10) and (9) to a vortex Hamiltonian∫ L

0
dzHv(z) = h̄(� + ω−)

(
a
†
kak +

1

2

)
+ h̄ω−

(
β
†
kβk +

1

2

)
+ h̄ω−

(
a
†
kβ

†
k + akβk

)
, (13)

where it is worthwhile to note that v2 and r2 in (9) turn out to be independent of z, as expected.
The above Hamiltonian can be written to first order in ω−/� as

h̄�
(
a
†
kak + 1

2

)
+ h̄ω−

(
β
†
kβk + 1

2

)
, (14)

where both polarizations (cyclotron and Kelvin modes) become decoupled. To prove this
approximation, we first note that the set of eigenfunctions of (14) are represented by
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wavefunctions corresponding to well-defined values of both numbers of circular quanta, right
and left [16]. On the other hand, the Schrödinger equation for the Hamiltonian (13) can be
easily solved by noting that the term proportional to r2 in expression (9) can be added to the
corresponding term arising from v2, yielding a Schrödinger equation formally equivalent to
that with ω− = 0, whose solution is well known. Thus, we find that to the first order in ω−/�

we obtain the same spectrum of eigenvalues and eigenfunctions as from (14), except for a
slight correction in the radial coordinate of the wavefunctions, which has to be multiplied by
the factor 1 + ω−/�.

The Hamiltonian (14) corresponds to helical oscillations of fixed wavelength λ = 2π/|k|.
In the final step of our quantization procedure we shall assume that the system obeys periodic
boundary conditions over a length L along the z axis, so k will be restricted to values 2πs/L,
where s is an integer. Thus, the complete vortex Hamiltonian is obtained by summing up
expression (14) over all these values of k:

Hv =
∑

k

h̄�(k)

(
a
†
kak +

1

2

)
+ h̄ω−(k)

(
β
†
kβk +

1

2

)
. (15)

The above Hamiltonian differs from that of Fetter’s theory by the presence of the cyclotron
modes of frequency �(k) � � (cf [10], equation (11)).

The heat bath Hamiltonian is given by

HB =
∑

k

h̄ωkb
†
kbk +

∑
q,σ

εqc
†
q,σ cq,σ , (16)

where b
†
k denotes a creation operator of 4He quasi-particle excitations of momentum h̄k and

frequency ωk , and c
†
q,σ denotes a creation operator of solvated 3He atoms of momentum h̄q,

energy εq and spin 1/2 projection σ . Note that we disregard any interaction between the
heat bath particles themselves, since we shall work at low enough temperature and impurity
concentration, so that such particles remain dilute allowing their treatment as a non-interacting
gas.

To model the scattering interaction Hamiltonian, we will consider a generic momentum-
conserving form:∫ L

0
dz

∑
k,q,σ

[
�

(k)
kq b

†
kbq + �

(k)
kq c

†
k,σ cq,σ

]
e−i(k−q)·r, (17)

where �
(k)
kq and �

(k)
kq denote scattering amplitudes depending on the momentum of the heat

bath scatterers and the wave vector kẑ of the vortex wave. Recalling that the vortex coordinate
can be written as r = r0(z) + r′(z) + zẑ and taking into account that r0(z) and r′(z) commute,
the exponential factor in (17) can be factorized as e−i(kz−qz)z e−i(k−q)·r′(z) e−i(k−q)·r0(z). Since
the amplitude of the vortex wave was assumed to be very small, it is tempting to expand the
last two exponentials retaining only first-order terms in r′(z) and r0(z). This procedure was
analysed by Fetter [10] for r0(z), finding that it leads to divergences at long wavelengths. The
physical reason for this result can be understood by recalling that r0(z) is linear in the creation
and destruction operators, β

†
k and βk . Consequently, an expansion in powers of r0(z) is bound

to fail whenever the energy per quantum h̄ω− becomes very small at long wavelengths, as
the transitions should involve many of these ‘soft’ quanta [10]. Note that this argument does
not apply to r′(z) since the operators a

†
k and ak correspond to the high-frequency cyclotron

quanta. This means that the treatment of Kelvin modes represented by r0(z) turns out to be
considerably more complicated than that of the cyclotron modes represented by r′(z). In fact,
only the phonon drag force arising from r0(z) could be analysed by Fetter [10], but we shall
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see that all sources of friction acting on r′(z) can be studied. To this aim, let us set r0(z) = 0
in (17) while retaining only the first-order term in r′(z). Then, using the second-quantized
expression for r′(z) (cf (12)), performing the integral in z and recalling the above-mentioned
periodic boundary conditions, the interaction (17) reads

L
∑
k,q,σ

[
�

(k)
kq b

†
kbq + �

(k)
kq c

†
k,σ cq,σ

] {
δkz,qz

+
1√

4πρsL

[
i(qx − kx)

(
δk,kz−qz

a
†
k + δk,qz−kz

ak

)

+ (qy − ky)
(
δk,kz−qz

a
†
k − δk,qz−kz

ak

)]}
, (18)

where the Kronecker-delta factors represent z-momentum conservation and the scattering
amplitudes were assumed to be independent of the sign of k, i.e. the interaction should be the
same for both possible directions of a helical deformation. Note that the first term between
braces in (18) does not contribute to the interaction, so it should be added to the heat bath
Hamiltonian (16). Finally, summing up expression (18) over k we obtain the interaction
Hamiltonian:

Hint =
√

L

4πρs

∑
k,q,σ

[
�

(kz−qz)

kq b
†
kbq + �

(kz−qz)

kq c
†
k,σ cq,σ

]
× [

i(qx − kx)
(
a
†
kz−qz

+ aqz−kz

)
+ (qy − ky)

(
a
†
kz−qz

− aqz−kz

)]
. (19)

From (15) and (19), we may realize that each cyclotron mode of the unperturbed Hamiltonian

Hk = h̄�(k)
(
a
†
kak + 1

2

)
, (20)

will evolve independently, interacting with the heat bath through the following terms of (19):

H
(k)
int =

√
L

4πρs




(+)∑
k,q,σ

[
�

(k)
kq b

†
kbq + �

(k)
kq c

†
k,σ cq,σ

]
[(qy − ky) + i(qx − kx)]a

†
k

+
(−)∑

k,q,σ

[
�

(k)
kq b

†
kbq + �

(k)
kq c

†
k,σ cq,σ

]
[(ky − qy) + i(qx − kx)]ak


 , (21)

where the (±) sign above each summation symbol indicates that only the terms with
kz − qz = ±k must be considered. We recall, however, that for long wavelengths we
have k � a−1 ∼ 1 Å

−1
, so it will be valid to neglect k in such z-momentum conservation

relationships, except at extremely low temperatures (h̄cskz ∼ kBT ). Thus, H
(k)
int becomes

H
(k)
int =

√
L

4πρs

∑
k,q,σ

δkz,qz

[
�

(k)
kq b

†
kbq + �

(k)
kq c

†
k,σ cq,σ

]{
[(qy − ky) + i(qx − kx)]a

†
k

+ [(ky − qy) + i(qx − kx)]ak

}
(22)

and the time evolution of a
†
k will be ruled by the Hamiltonian given by the sum of (20), (16) and

(22). To study the time evolution of the vortex coordinate r′ = (x ′, y ′), it will be convenient
to use a complex form R′ = x ′ + iy ′ since

R′(z) = 1√
πρsL

∑
k

eikza
†
k (23)

is simply written as a linear combination of a
†
k(t). In [11] we studied the cyclotron dynamics

of a rigid rectilinear vortex; this being equivalent to considering a single term with k → 0
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in (23). We derived, within a weak-coupling approximation, a non-Markovian equation of
motion for the mean value of the vortex position operator, finding that cyclotron frequency
values within the range 0.01−0.03 ps−1 lead to a very good agreement with the experimental
determinations of the longitudinal friction coefficient D (equation (2)), versus temperature and
3He concentration. We showed that memory effects could represent up to ∼10% of the D
value as the number of heat bath scatterers is increased, that is, such effects are found to be
increasing with temperature and impurity concentration. The scattering amplitudes leading to
such results read [11, 17]

�
(0)
kq = 2πh̄2

m4V cs

√
19

140
|ω′

k||ω′
q | (24)

�
(0)
kq = 3h̄2

m∗V

√
π

32
σ0(kq)

1
4 , (25)

where V denotes the volume of the system, ω′
k denotes the quasi-particle group velocity and

σ0 = 18.54 Å corresponds to an effective cross section for vortex–3He scattering. Note
that these amplitudes are in fact negligible with respect to the heat bath single-particle levels,
L�

(0)
kk � h̄ωk and L�

(0)
kk � εk , for experimental sizes [18] and not extremely low temperatures.

The thermal excitation of vortex waves can be made consistent with the above experimental
data, if we assume that the scattering amplitudes �

(k)
kq and �

(k)
kq in (22) are well approximated

by the k = 0 values, (24) and (25), respectively. Note that this approximation is similar to the
previous one, kz − qz = ±k → 0 (below equation (21)) and also to �(k) � � in (20). Thus,
each a

†
k(t) in (23) will present the same dissipative evolution as a

†
0(t), i.e., the same friction

coefficient D should be ascribed to all long-wavelength cyclotron modes. This generalizes
the previous result [10, 12] that the phonon friction coefficient associated with low-frequency
Kelvin modes turns out to be essentially the same as that of strictly rectilinear vortices.

3. The vortex energy in the linear response theory

According to the standard framework of the linear response theory [13], we will assume
that, having the vortex reached thermal equilibrium with the heat bath before t = 0, a weak
perturbing time-dependent scalar field λ(t) is coupled to the vortex Hamiltonian from t = 0
onwards. Then, the Hamiltonian of the whole system can be written as

H(t) = Hv + HB + Hint − λ(t)Hv, (26)

where HB is given by (16), the vortex Hamiltonian is given by

Hv = h̄�
∑

k

(
a
†
kak +

1

2

)
(27)

and the interaction Hamiltonian is given by

Hint =
√

L

4πρs

∑
k,k,q,σ

δkz,qz

[
�

(0)
kq b

†
kbq + �

(0)
kq c

†
k,σ cq,σ

]
× {

[(qy − ky) + i(qx − kx)]a
†
k + [(ky − qy) + i(qx − kx)]ak

}
. (28)

Then, the mean value of the vortex energy can be written to first order in λ(t) as

〈Hv(t)〉 = 〈Hv〉eq +
∫ t

0
dτ λ(t − τ)α(τ), (29)
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where 〈Hv〉eq = Nh̄�
{
[exp(h̄�/kBT ) − 1]−1 + 1

2

}
corresponds to the canonical equilibrium

value (N = total number of long-wavelength cyclotron modes), and the function α(τ)

embodies the vortex response to the applied field. In particular, for a Dirac delta impulse
λ(t) = τ0δ(t − t0), the above equation yields

〈Hv(t)〉 − 〈Hv〉eq

τ0
= α(t − t0) (30)

that is, α(τ) represents the energy displacement from the equilibrium value, per unit strength
of a pulse acting at τ = 0. Now, if we assume a constant field λ(t) = λ0, the so-called
response function [13] is given by

�(t) ≡ lim
λ0→0

[〈Hv(t)〉 − 〈Hv〉eq]/λ0 =
∫ t

0
dτ α(τ). (31)

Finally, if the field is oscillatory λ(t) = λ0 cos(ωt) (t � 0), the non-transient regime [13] can
be described by setting t = ∞ in the upper limit of the integral in (29),

〈Hv(t)〉NT − 〈Hv〉eq = λ0

∫ ∞

0
dτ cos[ω(t − τ)]α(τ)

= λ0 Re[α̃(ω) exp(−iωt)], (32)

where α̃(ω) may be defined as a complex generalized susceptibility, which is given by the
Fourier–Laplace transform of the pulse response α(τ),

α̃(ω) =
∫ ∞

0
exp(iωτ)α(τ) dτ. (33)

Then, according to (33) and (31), the static susceptibility α̃(0) is given by

α̃(ω → 0) = �(t → ∞) = N(h̄�)2

4kBT

[
sinh

(
h̄�

2kBT

)]−2

, (34)

where the right-hand side arises from taking into account that 〈Hv(t → ∞)〉 in (31)
corresponds to the canonical distribution of a vortex with a Hamiltonian(1 − λ0)Hv

(or equivalently, a vortex with the Hamiltonian Hv at the effective temperature T/(1 − λ0)).
As a final remark we note that from the susceptibility α̃(ω), one can readily get the

equilibrium time correlation function

C(t) = 1
2 〈Hv(t)Hv(0) + Hv(0)Hv(t)〉eq − 〈Hv〉2

eq (35)

via the fluctuation–dissipation theorem [19]:

C̄(ω) = h̄ coth

(
h̄�

2kBT

)
Im[α̃(ω)], (36)

where C̄(ω) = ∫ ∞
−∞ dt exp(iωt)C(t) denotes the Fourier transform of C(t).

4. Analytic continuation of the generalized susceptibility: study of memory effects

Being a Laplace transform, the generalized susceptibility (33) can be regarded as a function
of a complex variable z, α̃(z), which must be analytic in the upper half-plane, Im z > 0.
The important information, however, lies in the lower half-plane, where the spectrum of
singularities of its analytic continuation yields the set of characteristic frequencies in the time
evolution of the pulse response α(τ) [15]. Our calculation of α̃(z) is completely analogous to
that leading to the harmonic oscillator susceptibility in [15]. Thus, we refer the reader to that
paper for the technical details, and only quote here the final result (cf [15], equation (2.25)):

α̃(z) = Nh̄2�2[q(z) − q(0)]/z

[1 − exp(−h̄�/kBT )][z + iv(z)]
, (37)
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where q(z) and v(z) are Cauchy integrals,

q(z) = 1

2π i

∫ ∞

−∞

dω

ω − z
F (ω) (38)

v(z) = 1

2π i

∫ ∞

−∞

dω

ω − z
ν(ω), (39)

with kernels (cf [15], equations (2.31) and (2.32)),

F(ω) = R(ω)n(� + ω)

n(ω)
− R(−ω)n(� − ω)

n(−ω)
(40)

ν(ω) = h̄

i
[R(ω) + R(−ω)], (41)

being

n(ω) = [exp(h̄ω/kBT ) − 1]−1 (42)

and

R(ω) = 2i

mvh̄�
(� + ω)D(� + ω). (43)

The function D in the above equation has been studied in previous works [11, 17], since
D(�) corresponds to the longitudinal friction coefficient in the Markovian approximation. It
reads [11]

D(�) = Lπ

2h̄�

∑
k,q

δkzqz
(k − q)2[∣∣�(0)

kq

∣∣2
(nq − nk)δ(ωk − ωq − �)

+ 2
∣∣�(0)

kq

∣∣2
(fq − fk)δ(εk/h̄ − εq/h̄ − �)

]
, (44)

where nk = [exp(h̄ωk/kBT )− 1]−1 and fk = {exp[(εk −µ)/kBT ] + 1}−1 respectively denote
the thermal equilibrium Bose and Fermi occupation numbers for the corresponding scatterers.
The expression (37) for the susceptibility, on the other hand, is fully non-Markovian and each
pole zj of it yields a term proportional to exp(−izj τ ) in α(τ). Then, the Markov approximation
consists in neglecting the set of such poles which are located far enough from the origin, so
that they yield rapidly vanishing terms, i.e. terms which decay faster than any observational
timescale. This is the case for the set of poles arising from q(z) in (37), actually poles of
n(� ± ω) in (40) [15], which are of the form ±� − in2πkBT /h̄ (n = 1, 2, . . .). Such poles
give rise to exponentially decaying terms in the expression of α(τ), which have lifetimes
shorter than h̄/kBT . This thermal timescale turns out to be much smaller than that arising
from the friction coefficient, i.e. h̄/kBT � mv/D(�) = [ρsh/D(�)]�−1 for T < 1.5 K and
� of order 0.01 ps−1. So, the above set of thermal poles can be safely ignored. It is then clear
that we should look for poles of order �[D(�)/ρsh] and, in the following, we shall see that
they arise from the equation z + iv(z) = 0. In fact, looking for a solution close to the origin,
one may begin with the ansatz z0 = −iv(0) and next proceed iteratively, i.e. z1 = −iv(z0)

and so on. This leads to a very rapid convergence to a solution zs that is better worked out in
terms of the Taylor expansion of v(z) around the origin:

zs = −iv(0)[1 − iv′(0) − v′′(0)v(0)/2], (45)

where the second and third terms inside the square brackets represent first- and second-
order corrections to the zeroth-order solution, respectively. The Cauchy integral (39) and its
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derivatives in (45) can be written as [15]

v(0) = ν(0)/2 = 2�D(�)/ρsh (46)

v′(0) = 1

2π i

∫ ∞

−∞

dω

ω2
[ν(ω) − ν(0)]

= 2

iπρsh

∫ ∞

0

dω

ω2
[(� + ω)D(� + ω) + (� − ω)D(� − ω) − 2�D(�)] (47)

v′′(0) = ν ′′(0)/2 = 2

ρsh
[2D′(�) + �D′′(�)]. (48)

We see from (46) that the zeroth-order solution z0 = −iv(0) has in fact the expected
dependence and, moreover, the factor 2 in the expression of v(0) is easily interpreted if
we recall that a damping in the velocity like exp(−�tD(�)/ρsh) should give rise to twice
as fast energy damping. The first- and second-order corrections in (45) are easily evaluated
from (47) and (48), and they are always negligible, e.g. for ordinary helium at T = 0.67 K
(� = 0.01 ps−1) we have −iv′(0) = 1.52 × 10−5 and −v′′(0)v(0)/2 = 1.32 × 10−9. In
conclusion, we have found that the Markovian pole −i2�D(�)/ρsh is unaffected by memory
corrections. This is to be contrasted with the appreciable memory corrections to the friction
coefficient seen in section 2. Therefore, the Markovian approximation for the generalized
susceptibility (37) reads

α̃M(z) = Nh̄2�2q ′(0)

[1 − exp(−h̄�/kBT )][z + iv(0)]
(49)

which should be valid for z inside a circle with a radius r0 fulfilling v(0) < r0 � kBT /h̄.
Note that we have replaced the expression [q(z) − q(0)]/z in (37) by the derivative q ′(0).
This approximation may be readily tested if one considers the first-order term q ′′(0)z/2 at
z = z0 = −iv(0). In fact, we have [15]

q ′(0) = F ′(0)/2 = −n(�)z0/kBT (50)

and

q ′′(0) = 2

π i

∫ ∞

0

dω

ω3
[F(ω) − F ′(0)ω], (51)

so, we may find again that the first-order correction is totally negligible, e.g. for ordinary helium
at T = 0.67 K (� = 0.01 ps−1) it represents ∼10−6 of the zeroth order q ′(0). Then, replacing
(50) in (49) we have the final expression,

α̃M(z) = Nh̄2�2i2�D(�)/ρsh

4kBT sinh2(h̄�/2kBT )[z + i2�D(�)/ρsh]
(52)

which immediately reproduces the result (34) for the static susceptibility α̃(0).

5. Response and time correlation functions

From (52) one easily extracts α(τ) and the response function (31),

�(t) = N(h̄�)2

4kBT

[
sinh

(
h̄�

2kBT

)]−2

[1 − exp(−2�tD(�)/ρsh)]. (53)

This kind of response, characterized by a single relaxation time, is well known in theories of
dielectric and magnetic relaxation and goes under the name of Debye response [13].
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Figure 2. Relative value of the friction coefficient D(�) with respect to the Magnus force
coefficient ρsh, versus temperature for several 3He concentrations C.

The Fourier transform of the time correlation function arises from (36) and (52):

C̄(ω) = N(h̄�)2

4kBT

[
sinh

(
h̄�

2kBT

)]−2
h̄ coth(w)wε

ε2 + w2
, (54)

where ε = [�D(�)/ρsh]/[kBT /h̄] and w = h̄ω/2kBT . With ε � 1, the function of w,
ε/(ε2 + w2) in (54), turns out to be sharply peaked around w = 0, so we may approximate
coth(w)w � 1 and thus get the antitransform:

C(t) = N(h̄�)2 exp[−2�|t |D(�)/ρsh]

4 sinh2(h̄�/2kBT )
. (55)

Therefore, the time correlation function is ruled by the same relaxation time as the response
function, as expected. Note that C(0) in (55) actually corresponds to

〈
H 2

v

〉
eq − 〈Hv〉2

eq, as can

be easily verified by an elementary calculation of
〈
H 2

v

〉
eq in the canonical ensemble.

To conclude, it is interesting to analyse how the relaxation frequency 2�D(�)/ρsh

depends on temperature and impurity concentration. In figure 2, D(�)/ρsh is plotted against
temperature for several 3He concentrations [3]. Such curves actually correspond to � =
0.01 ps−1, but it is important to remark that the dependence on � turns out to be negligible
for � within 10−2 ps−1 or less [11, 17]. It is also worth noting that consistently with our
weak-coupling approximation [11, 15, 17], the Markovian friction coefficient D(�) always
remains small compared to the coefficient ρsh of the Magnus force in (1) (actually ρsh has
virtually no dependence on temperature for T < 1 K). The lowest curve in figure 2 corresponds
to pure 4He and it displays two well separated regimes [17],

D(�) ∼
{
T 5, for T < 0.4 K (phonon domain)
exp(−�/kBT ), for T > 0.5 K (roton domain),

where �/kB = 8.62 K corresponds to the height of the roton minimum in the dispersion curve
of figure 1. Note that the phonon–roton transition clearly manifests itself as an intermediate
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region of positive second derivative. The remaining curves in figure 2 correspond to finite
3He concentrations that have been experimentally studied [3]. Such concentrations are low
enough to allow a Maxwell–Boltzmann approximation for the 3He statistics in (44). Then,
the low-temperature regime of D(�), which is now dominated by impurity scattering, turns
out to be proportional to

√
T and 3He concentration [3, 11]. We may see from figure 2 that

phonon effects are completely hidden in ordinary helium, since the 3He domain extends as
far as T � 0.4 K. For higher concentrations such a domain reaches higher temperatures also
hiding the first portion of the roton curve.

Finally, it is worth observing that relaxation frequencies with any temperature dependence
rarely appear in models of quantal Brownian motion of harmonic oscillators, since most of
them assume, in contrast to our scattering model, linear coupling in the heat bath operators
[14, 15].

6. Summary and conclusions

A generalization of the quantum theory of vortex waves [9, 10] has been proposed to study
the damping of cyclotron modes. We have shown that the friction values should be practically
unaffected by such oscillations, a result which was already known in the case of phonon
scattering of low-frequency Kelvin modes [10, 12]. All sources of dissipation arising in
ordinary helium, namely phonons, rotons and 3He atoms, were considered, showing that
appreciable memory effects must be taken into account in the evaluation of the friction
coefficient. We have also analysed memory corrections to the Markov approximation in the
case of the non-equilibrium energetics of cyclotron modes, finding this time that they are
negligible. We have shown that the vortex response is of the Debye type, i.e. it is ruled by
a single relaxation frequency which governs the time correlation function as well. Such a
relaxation frequency is shown to embody all the complexities of the heat bath, in that very
well separated regimes belonging to the different species comprising the superfluid helium are
recognized from its dependence on temperature and impurity concentration.
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