
GUEST
EDITORIAL

Consensus in the search for areas
of endemism
Lone Aagesen1*, Claudia Szumik2 and Pablo Goloboff2

1Instituto de Bot�anica Darwinion

(CONICET-ANCEFN), San Isidro,

B1642HYD, Buenos Aires, Argentina,
2Instituto Superior de Entomolog�ıa (INSUE-

CONICET), 4000, Tucum�an, Argentina

*Correspondence: Lone Aagesen, Instituto de

Bot�anica Darwinion (CONICET-ANCEFN),

Labarden 200, CC22, San Isidro, B1642HYD

Buenos Aires, Argentina.

E-mail: laagesen@darwin.edu.ar

ABSTRACT

For ambiguous data sets, methods to determine areas of endemism based on

an optimality criterion may result in large numbers of candidate areas, and

thus some kind of consensus technique is required to summarize those results.

This paper presents a formal description of two possible algorithms or rules

for area consensus, which merge candidate areas if they share a user-defined

percentage of the species that define each candidate area. The two consensus

rules summarize ambiguity in different ways. Applying the ‘tight’ rule will

result in consensus areas defined by species present in nearly all cells, but in

cases where there is significant conflict the result may be a high number of dis-

tinct consensus areas. The ‘loose’ consensus rule is more agglomerative and will

result in fewer consensus areas, combining areas when overlapping distribution

patterns exist. Depending on the aim and scale of the analysis, the two consen-

sus rules can be used either to delimit areas of endemism with sharp bound-

aries or to identify diffuse and gradually replacing biogeographical patterns.

These two different approaches are discussed and demonstrated using real data.
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INTRODUCTION

In the last few decades, a number of formal methods have

been proposed to identify areas of endemism (Morrone,

1994; Crisp et al., 2001; Linder, 2001; Szumik et al., 2002;

Hausdorf & Hennig, 2003) or distribution patterns akin to

endemism (Dos Santos et al., 2008). There are several inter-

esting debates on areas of endemism, including their onto-

logical nature (Crother & Murray, 2011, 2013). Defining

areas of endemism is considered fundamental for historical

and ecological biogeography (Crisp et al., 2001; Crisci et al.,

2003), but an additional urge to define these areas comes

from conservation studies, especially in cases where the pro-

tected area systems are focusing on diversity hotspots and

endemism is found outside the highly diverse regions (Orme

et al., 2005; Whittaker et al., 2005; Swenson et al., 2012).

The various methods aimed at defining areas of ende-

mism, differing both in details and in their general approach,

have been compared and discussed elsewhere (e.g. Linder,

2001; Carine et al., 2008; Escalante et al., 2009; Casagranda

et al., 2012). However, one often overlooked but important

issue is that real data sets at any geographical and taxonomic

scale include ambiguous or contradicting patterns, as

revealed by distribution analyses if applying an optimality

criterion to search for multiple equal optimal solutions

(Garc�ıa-Barros et al., 2002; Rovito et al., 2004; Carine et al.,

2008; Aagesen et al., 2009; Szumik et al., 2012).

Parsimony analysis of endemicity (PAE; Morrone, 1994)

and the optimality criterion implemented in the open-source

program vndm by Szumik et al. (2002) are currently the

only methods that explicitly explore and present ambiguity

in distribution data when searching for areas of endemism.

As PAE uses algorithms from phylogenetics to search for

areas of endemism, it deals with multiple optimal solutions

by the use of well-known consensus techniques from that

conceptual framework. However, optimality criteria devel-

oped within the context of phylogenetic analysis carry several

conceptual and practical problems when applied to the defi-

nition of areas of endemism (Szumik et al., 2002). To avoid

these problems, vndm (Szumik et al., 2002; Szumik &

Goloboff, 2004) focuses on using an optimality criterion

explicitly developed for evaluating candidate areas of ende-

mism. The use of an optimality criterion implies that multi-

ple candidate areas will be found in the case of data

ambiguity. Authors have dealt differently with multiple solu-

tions, either discussing a large number of areas or applying
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consensus techniques that have been recently made available

in vndm but not formally described (e.g. Dom�ınguez et al.,

2006; Carine et al., 2008; Ferrari et al., 2010).

The aim of this paper is to discuss the conceptual back-

ground that consensus techniques must consider when

applied to the context of species distributions, as well as pro-

viding a formal description of the details and implications of

the algorithms available in vndm. We use real data to illus-

trate two different consensus techniques and rules to be used

depending on the aim and scale of the study.

VNDM

The method implemented in vndm (Goloboff, 2004) is grid-

based, and searches for ‘areas’ (= sets of cells) that are congru-

ent with the distribution of as many species as possible. vndm

uses as input a list of species that includes georeferenced loca-

tions for each species. The georeferenced locations are trans-

formed automatically into presence/absence in cells of the

grid. To evaluate a candidate area, vndm assigns a score to

each species, depending on how well the species fits the area,

with absences in part of the area as well as presence in cells

outside the area penalized; the strength of penalization is user

defined. Any area can receive an endemicity score, E, which is

the sum of the scores of the supporting species. The value of E

therefore improves both with the number of species concor-

dant with the area, as well as with the degree of concordance

between the area and those species.

One implication of using an optimality criterion is that

areas that differ only in the presence or absence of a few cells

(and thus are almost identical) may have the same value of E.

This (as noted by Casagranda et al., 2012) is an inescapable

consequence of using an optimality criterion in any combina-

torially intensive problem, with a perfect parallel in the multi-

ple optimal trees often found in phylogenetic analyses

(summarized by means of consensus trees). Therefore, when

the output is several hundreds of possible areas, consensus

techniques are required to summarize the results.

Consensus rules and cut-off values

The ‘consensus’ may focus on different aspects to be summa-

rized. In the present case, it is desirable to establish some

form of ‘identity’ of the areas to be placed together in a

‘consensus area’. Doing so by similarity in cell composition

alone would have the problem that, depending on the under-

lying species distributions, minor but consistent differences

among sets of candidate areas could represent truly different

areas of endemism. Thus, it seems preferable to operate at

the level of supporting species, combining sets of candidate

areas into consensus areas if they share some proportion of

their respective defining species. Because under the criterion

of vndm (Szumik & Goloboff, 2004) a species will be consid-

ered as ‘endemic’ of an area only if it has a good spatial con-

cordance with the area, then using the species takes into

account, in an indirect but definite way, the spatial similarity

of the areas to be included in one consensus. In the

approach implemented in vndm, the user defines the pro-

portion of species that areas must share to merge them in a

consensus area. As this proportion approaches unity, areas

have to be more similar to be merged together. For propor-

tions of shared species below unity, two possibilities arise.

Tight consensus rule

The strictest rule only adds a candidate area to the set of areas

to be merged in a consensus if the area shares the selected per-

centages of defining species with each of the other areas in the

consensus. As an example, Fig. 1a shows six individual areas

supported by a total of 11 species distributed as seen in

Table 1. Areas 2 and 3 share 75% of their species and will

group into a consensus area using cut-off values equal to or

lower than 75%. No other candidate area shares 75% of their

defining species; therefore, under this cut-off, vndm will dis-

play the consensus of areas 2 + 3, plus the remaining four can-

didate areas as individual areas (Fig. 1b). Note that the two

candidate areas must share 75% of the union of their defining

species, hence areas 5 and 6 do not group into a consensus

under the 75% cut-off value: five species define these two

areas, of which three are shared (Table 1), and they will only

group under a cut-off value of 60% or lower. However, candi-

date area 1 also shares 60% of its defining species with candi-

date area 5 (three out of five species shared) and 60% of its

defining species with candidate area 6 (also three out of five

species shared; note these are not the same three species shared

with area 5). Therefore, under a cut-off value of 60% the areas

1, 5 and 6 are merged into a single consensus area (Fig. 1c).

vndm will furthermore display consensus area 2 + 3 as well as

candidate area 4 that shares less than 60% of its defining spe-

cies with the other candidate areas. Candidate area 4 is more

species-rich than the remaining areas but combines with area 6

under the cut-off value of 50% (sharing with area 6 three out

of six species). However, area 6 still shares 50% (or more) of

its defining species with areas 1 and 5; therefore, under this

cut-off value, vndm will display the distribution overlap in

area 6 by presenting both consensus 1 + 5 + 6 and consensus

4 + 6 (as well as consensus area 2 + 3). As the candidate areas

1, 4, 5 and 6 share some species they will eventually group in a

consensus area under sufficiently low cut-off values (28% or

less; Fig. 1e). On the contrary, candidate areas 2 and 3 do not

share any species with candidate areas 4, 5 or 6; hence, these

areas will never group under the tight rule. However, as both

candidate areas 2 and 3 share a single species with area 1, they

will group with area 1 under the lowest possible cut-off value

(14%, Fig. 1f), the cut-off under which consensus area

1 + 4 + 5 + 6 is still displayed.

Loose consensus rule

The second, more agglomerative consensus rule implemented

in vndm considers a candidate as part of a consensus set if it

shares the selected percentages of defining species with at
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least one other set in the consensus (Fig. 1g,h). In the exam-

ple, the two consensus rules will produce the same results

under cut-off values above 50%, where no conflicting pat-

terns were detected among the candidate areas. Using a 50%

cut-off value, under which candidate area 6 shares some spe-

cies with both area 1 and 5 and some with area 4, the loose

rule merges all four candidate areas into the same consensus,

as opposed to the tight rule, which displays two consensus

areas (compare Fig. 1d and 1g). Likewise, under the lowest

possible cut-off values (sharing a single species) the loose

rule merges all candidate areas into a single consensus area,

in contrast with the tight rule, which displays the overlap-

ping pattern in candidate area 1 by displaying two distinct

consensus areas (compare Fig. 1f and 1h). Thus, the loose

rule agglomerates more candidate areas into consensus sets,

producing fewer consensus areas.

The alternative positions of candidate area 1 are caused by

taxon 10 which is found in the candidate areas 1, 2 and 3.

The final result is either two possible tight-consensus areas

(1 + 2 + 3 and 1 + 4 + 5 + 6) or a single loose-consensus

area including all candidate areas. However, suppose that

taxon 10 scores highly in candidate areas 2 and 3 while fit-

ting candidate area 1 poorly. In that case, simply ignoring

the presence of taxon 10 in candidate area 1 would remove

the conflict and none of the consensus rules would merge

Table 1 Hypothetical example showing the distribution of 11

taxa in six different candidate areas. The effects of applying
different consensus rules and cut-off values to these data are

illustrated in Fig. 1.

Candidate area

1 2 3 4 5 6

Taxon 1 x

Taxon 2 x x x x

Taxon 3 x

Taxon 4 x x

Taxon 5 x x

Taxon 6 x x x x

Taxon 7 x

Taxon 8 x x x

Taxon 9 x

Taxon 10 x x x

Taxon 11 x x

(a)

(b)

(f) (g) (h)

(c) (d) (e)

Figure 1 Hypothetical example to illustrate the result of applying different consensus rules and cut-off values to the 11 species shown
in Table 1. (a) Six candidate areas each supported by the species in Table 1. (b–f) Output using the ‘tight consensus rule’ under the

cut-off values of (b) 75%, (c) 60%, (d) 50%, (e) 28% and (f) 14%. (g–h) Output using the ‘loose consensus rule’ under the cut-off
values (g) 50% and (h) 14%.
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the pattern in consensus area 2 + 3 with the pattern in con-

sensus area 4 + 5 + 6.

By default, vndm finds all area sets with two or more

endemic species, following Platnick’s (1991) definition of

area of endemism. Therefore, one way to prevent the high

numbers of tight-consensus areas generated by partly over-

lapping but poorly supported area sets would be searching

for candidate areas with more supporting species while

simultaneously rejecting poorly fitting species. If a minimum

of four endemic species with a relatively high fit were

required for the data in Fig. 1, candidate areas 1 and 3

would not be reported and the two consensus rules would

settle on the same results either under cut-off value 28%

(Fig. 1e) or cut-off value 50% (Fig. 1g).

Colour scale of fit

When consensus areas are requested, vndm calculates the

consensus areas and displays them. When doing so, vndm

keeps track of the scores of the individual candidate areas,

and displays the original score of each area set through a col-

our scale. The colour code associated with each score-range

is shown next to the consensus area (colours can be changed

by the user with a double click on the box displaying each

colour). Figure 1 shows schematically how each cell in a con-

sensus area is coloured. When a cell is part of several areas

combined into a consensus area, the colour of the cell in the

consensus corresponds to the set of highest score.

vndm rescales the colours for each consensus in order to

display maximum possible details within each consensus

area. The colour codes of two different consensus areas

found under the same consensus rule and cut-off value are

therefore not necessarily comparable – they are scaled and

partitioned differently. The absolute score of each cell will,

however, still be comparable between consensus areas even if

these are derived from different consensus rules and/or cut-

off values, as long as the consensus areas are calculated from

the same pool of candidate areas. In the example of Fig. 2,

described below, we have edited the colour codes so that

each colour represents a single score range, to facilitate com-

parisons between consensus areas.

Relationships between consensus rules, species

overlap and diffuse borders in a real data set

Which of the consensus rules should be presented and dis-

cussed depends on the aim and scale of the analysis. Ideally,

the tight consensus rule should be used for identifying well-

defined areas of endemism, as this ensures that at least some

species are shared by all the individual candidate areas, thus

ensuring greater consistency among the areas merged into a

consensus. Although the species defining the loose consensus

may well be found in only a small part of the consensus area

resulting from the merger, the loose consensus is a useful

tool to outline gradual species overlap and replacement

among candidate areas (as is evident from Fig. 1). Areas of

endemism defined by the tight rule may be feasible only in

small-scale or regional studies, where the main aim is to

identify and separate the core areas of endemism for further

examination, as in Fig. 2. Loose consensus areas may be suf-

ficiently detailed in large-scale studies, such as areas of ende-

mism in the Central Andes or the Southern Cone. The

alternative in such large-scale studies would be presenting

several tight consensus areas or increasing the cell size at the

expense of missing details in the distribution patterns.

Figure 2 illustrates how the consensus rules can be applied

to explore conflicting distributions in real data using as an

example a data set of vascular plants endemic to the south-

ern Central Andes (data set from Aagesen et al., 2012). The

data set includes 540 species, but conflicting distributions

produce 695 candidate areas under a cell size of half a

degree, which group into 82 tight consensus areas with a

cut-off value of 5%. Most areas are supported by about 10

species; thus, the overlap is not caused by a few weakly sup-

ported candidate areas.

Under the loose consensus rule with a cut-off of 5%, 663

of the area sets combine into the consensus shown in Fig. 2a.

Despite the complexity of the region, the loose consensus

clearly shows three main areas of endemism, with endemicity

much higher than in the surrounding cells. The northern

and central areas have high endemicity, with their cells

marked with highest fit values, while the third southernmost

area is coloured, indicating a much lower degree of endemic-

ity.

The two areas of high endemicity are not sharply delimited

– they are instead surrounded by diffuse borders, evident from

the gradual decrease in endemism in the neighbouring cells,

caused by an overlap in species distribution between the core

area and surrounding cells. In contrast, the southern area is

only surrounded by cells of low fit, showing an abrupt

decrease in endemicity as the borders of the area are crossed.

By using different cut-off values it is possible to isolate the

three areas of high endemicity for further examination. Three

different cut-off values are required in this case, owing to the

variable degree of species overlap between the core and the

surrounding cells in these three areas.

The smaller southern area of endemism has well-defined

borders and is separated from the main consensus area with

a cut-off of 25% (Fig. 2b,c). Once it is isolated from the

main area with this cut-off, it can be seen that the southern

area corresponds to two candidate areas with 19 defining

species. At this cut-off, the main consensus area continues,

including the two areas of high endemicity, but a northern-

most consensus area (merging 19 candidate areas) now sepa-

rates from the main consensus as a large area of low

endemicity (defined by 22 species; Fig. 2d). The area in

Fig. 2d partly overlaps with the northern area and was there-

fore not detectable in Fig. 2a.

Raising the cut-off value to 40%, the northern consensus

area (including its diffuse borders), separates from the main

consensus area, while the central area continues to be

included in the main area (Fig. 2e,f). The cores of both the
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northern and central consensus areas separate only when the

cut-off rises to 45% (Fig. 2g,h). Most of the remaining can-

didate areas are combined in a large consensus area of low

endemicity (Fig. 2i). Note that although the area in Fig. 2i

has low endemicity it is supported by a large number of spe-

cies, indicating that many species fit the area but do so

poorly. The number of candidate areas included in the con-

sensus area of Fig. 2i (370 candidate areas), as well as in the

core northern area of Fig. 2f (101 candidate areas), makes it

evident that the ambiguity of the data set is mainly caused

by the difficulty in delimiting these two distribution patterns.

CONCLUSIONS

The examples and discussion show that merging candidate

areas of endemism into ‘consensus’ sets and displaying the

overlapping sets with colour codes to indicate values of

endemicity, provides a useful way to summarize the results

of endemicity analyses that result in large numbers of candi-

date areas. The two consensus rules presented can be used

depending on whether the main interest is in delimiting

well-defined areas of endemism, or in identifying diffuse and

gradually replacing biogeographical patterns.
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(e) (f) (g) (h) (i)

Figure 2 Consensus rules and cut-off values applied to distribution data of 540 vascular plant species from southern Bolivia and north-
western Argentina. Different consensus areas obtained under the ‘loose consensus rule’ in a real data set under the cut-off values of (a)

5%, (b–d) 25%, (e,f) 40% and (g–i) 45%. The data set is from Aagesen et al. (2012) and available at http://www.zmuc.dk/public/
phylogeny/TNT/More.
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