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Abstract

We present an analysis of communality structure in networks based on the application of

simulated annealing techniques. In this case we use as ‘‘cost function’’ the already introduced

modularity Q (1), which is based on the relative number of links within a commune against the

number of links that would correspond in case the links were distributed randomly. We

compare the results of our approach against other methodologies based on betweenness

analysis and show that in all cases a better community structure can be attained.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of different properties of networks have recently attracted the
attention of researchers in different areas. Among them we recall the emergence of
Small world effect [1], degree distribution of the nodes [2], etc.

In this communication we will focus in the recently addressed problem of detecting
‘‘community structures’’ in networks. This means that for many networks in nature,
see front matter r 2005 Elsevier B.V. All rights reserved.
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the nodes composing them, can be divided into groups such that the connections
within each group are dense, while connections between groups are sparse. The
analysis presented in this communication has roots both in the field of networks and
the problem of phase transitions in small systems. For the first we recall that the
problem of communality has been investigated by Newman and Girvan [3] (hereafter
referred as I) who have performed an already extensive set of studies in this field [4].
In their work both a parameter for measuring the merit of a given partition of a
graph in communities has been given, which we will use in our approach, and a
method for calculating the community structures was devised. We will critically
reanalyze the properties of such a method. On the other hand we recall a series of
works in which one of us has investigated the formation of cluster in equilibrated [5]
and out of equilibrium fragmentation [6,7]. In this case also a parameter for the
analysis of the merit of a given grouping of particles in clusters was given and a
method based on global optimization (using simulated annealing) of such a quantity
was given [8].

In Section 2 we briefly review fundamental definitions in the field of networks and
we describe the parameter Q which will be used to quantify the merit of a given
partition of the graph under analysis into communities. In Section 3 we describe the
community recognition algorithms used in this work. In Section 4 we study the
properties of a simple graph and unveil the main properties of the algorithms
described in the previous section. In Section 5 we present the analysis of more
complex networks already analyzed in the literature. Finally, conclusions are
presented.
2. Community structures in networks

A network N is defined by a set of nodes fng ðn1; n2; . . . ; nnÞ, and a set of links
flg ðl12; l14; . . . ; lkmÞ. A link lij denotes a relation between node ni and node nj .
Depending on the possible values of lij the resulting network can be of two types. If
lij can only have the values 1 or 0 we will call the network unweighted, on the other
hand a network will be defined as weighted if lij can attain values 0; 1; 2; 3 . . . thus
indicating that the relation between nodes is also characterized by a given strength.
In most of this work we will focus on unweighted networks. We will assume that for
every node ni there exists at least another node nj such that lij is different from 0,
moreover we will consider networks such that for every conceivable pair of nodes
there will be a path (i.e., a sequence of links {lij ljklkm . . .g) joining them, in such a case
we say that we are dealing with connected networks. We will consider that the links
are undirected i.e., lij ¼ lji. Further on, we will focus on sparse networks for which
the number of links in flg; Nl is much less than the maximum possible number of
links, Nlmax

given by Nlmax
¼ nnðnn � 1Þ=2 , with nn the total number of nodes in fng.

The associated adjacency matrix M is defined as mij ¼ lij .
The distance between two nodes dij will be defined as the length, or number of

links that are to be traversed, when we move from i to j along the minimum path
joining them.
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Given the network N we will define a partition P as a given grouping of the nodes
in subsets pi ð1pipgÞ; while keeping the structure of the adjacency matrix unaltered.

Following I we will quantify the degree of communality of a given partition P in
the following way:

Given a partition P comprising g subsets, a matrix e (of dimension g � gÞ is defined
such that the corresponding component eij is the fraction of edges in the original
network that connect nodes in subset i with nodes in subset j. In I the modularity Q is
defined as

Q ¼
X

i

eii �
X

ijk

eijeki ¼ Tre� je2j . (1)

Q stands for the difference between the relative quantity of links within subsets and
the expected relative number of links that would result from a random placement of
links when no attention is given to the community structure of the network under
consideration [9].

If the network under consideration has no community structure, Q equals 0. On
the other hand, if the network under consideration does have a community structure,
the closer the chosen partition is to the actual community structure of the network,
the larger the modularity Q will be.

In this way, the search of community structures in networks is reduced to finding
the partition P which maximizes the modularity Q.
3. Community recognition algorithms

In this section we review the algorithm presented in I based on edge removal
(hereafter referred as edge removal (ER)), and describe our approach based on
simulated annealing (hereafter referred as SA).

3.1. Community recognition via edge removal

In a recent work, Newman and Girvan [3] have proposed to study the structure of
the network by analyzing the effect of the removal of links with highest betweenness.
The betweenness bij of a given link lij is

bij ¼
X

paths

a�1
no

X

lkm�pathno

dðlij � lkmÞ (2)

with
P

paths the sum over all the path joining the nn nodes. ano is the degeneracy of the
path between nodes n and o, and

P
lkm�pathno

is the sum over all the links lkm that form
the path under consideration. In this way the link with highest betweenness is the one
that appears most often when we study all the components of all the minimum paths
between all the pairs of nodes.

According to this prescription:
(i) One calculates the betweenness of all the links in the network. (ii) The one with

the highest betweenness is removed.
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The process is continued until a disjoint cluster is obtained. Afterwards, it is
applied to each of the resulting subgraphs.

Special care is to be taken when the highest betweenness is degenerate. Because it
is not possible to foresee which will be the optimum cut, we should select at random
the link to be removed.

In this way, partitions with 2; 3; . . . ;N 0 subsets can be obtained. The best one,
according to the discussion in the previous section, is the one that maximizes the
magnitude Q.

3.2. Simulated annealing analysis

In this section we present a methodology to study the community structure in
networks based on the search for that partition that maximizes the value of Q. This is
accomplished by resorting to a SA [10] calculation in the space of the partitions of
the network under analysis. SA is a generalization of the well known Metropolis
Monte Carlo (MMC) procedure. MMC consists in the realization of a Markov
Chain in the space of the configurations of the system according to certain transition
probabilities chosen in such a way that the asymptotic frequency of each state
satisfies the Boltzmann distribution expð�bEiÞ=Z with b ¼ ð1=kTÞ where T is the
temperature of the system, Ei the energy of state i and Z the canonical partition
function. The transition probability qij reads

qij ¼ minð1; expð�bðEj � EiÞÞ .

In SA (see [10] for details) the same procedure is employed but instead of using
the temperature of the system we use a pseudo temperature, t, which controls
the behavior of the transition probability and instead of the energy the observ-
able that we want to maximize. The pseudo temperature t is monotonously
lowered until an extremum of the relevant observable is attained. In our case the
Markov Chain is performed in the space of the partitions of the network under
consideration. The transition probabilities read qij ¼ minð1; expð�b0ðQj � QiÞÞ with
b0 ¼ 1=t and Ek has been replaced by Qk, the modularity of partition k. Moreover,
because we are looking for the maximum of the modularity ðQj � QiÞ stands for
ðQinitial� Qfinal).

The Markov Chain is implemented in the following way:
We start out from an arbitrary initial partition fpg0 of the nn nodes in which the

initial number of subsets is taken at random between m0 ¼ 2 and m0 ¼ ðnn � 1Þ and
then the nodes that compose the network are randomly assigned to any to the
corresponding pi subsets. In order to allow the procedure to increase the number of
subsets in the partition of the system, the algorithm is implemented in such a way
that at every step there is an empty subset present. Starting from this configurations
we randomly choose a node ni which belongs to the subset pk of the partition fpg0.
We then choose at random another subset pl of the partition fpg0. If pl is not empty
we check if there is a link between the chosen node ni and any of the nodes belonging
to pl . If no such a link exists, the possibility of transferring ni from pk to pl is
discarded and the selection procedure is repeated. If, on the other hand, there exists
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at least one link lim between the node ni and node nm in pl , or pl is empty, we perform
the Metropolis acceptance analysis:
(i)
 We calculate the value of Q for the partition fpg0.

(ii)
 The transference of ni from subset pk to subset pl is proposed, thus giving a new

partition fpg0.

(iii)
 The value of Q0for fpg’ is calculated.

(iv)
 The new partition is accepted with a probability q ¼ minð1; expð�bDQÞÞ and the

transference of node ni is performed accordingly. If pl was empty the total
number of subsets, mk, is increased by 1.
(v)
 Steps (ii)–(iii) are repeated with and exponentially increasing value of b until no
new configurations are accepted within a fixed number of steps. The pseudo
inverse temperature b is changed according to the rule b0 ¼ ab, with a41.
(vi)
 Whenever a partition with a higher Q is visited during the development of the
Markov Chain, it is recorded. If the asymptotic partition is worse (lower Q) than
the recorded one we consider this one as the result of the calculation.
This steps are repeated until the rate of acceptance of particle transfer drops to 0.
In order to improve the performance of this algorithm we have implemented steps

of the Markov Chain in which multiple transferences of nodes between partitions are
performed before the acceptance criterion is checked over the resulting partition.
This procedure is used in order to avoid trapping configurations (those in which the
removal of a single node is highly improbable but the configuration as a whole is not
a maximum of Q).

It should be noted at this time that the resulting methodology is the same as the
one developed by one of us for the analysis of fragmentation of highly excited liquid
drops [8] and for the case of phase transitions in small constrained systems [6] (see
these references for further details, for a comparison between different fragment
recognition algorithms see [11]).
4. Case study

In order to check the properties of the two approaches above mentioned, we have
found it helpful to analyze the following simple undirected graph Fig. 1A. The
advantage of dealing with such a small and simple graph is that the calculations can
be performed by hand and the properties of the recognition algorithms can be easily
understood.

In Fig. 1 we show the comparison between the results obtained with the above
mentioned algorithms (see figure captions for details).

We first analyze what happens when we apply the ER approach:
(1) We search for the links with highest betweenness, in this case there is

degeneration and links l10;11, l10;12, l12;13, l11;13, stand on an equal footing. We then
have to choose one at random (as proposed by [3]) and this edge is removed. In our
example we choose l12;13 obtaining the graph displayed in Fig. 1B.
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Fig. 1. Development of community structures in terms of the ER and SA analysis. Full arrows denote

steps in the ER approach. Dotted arrows denote results from SA methodology. Starting from network A

by applying ER methodology we first get to network B and, after the second removal of a link, to network

C. On the other hand, starting from the same initial network the SA will give network D if we impose the

constraint that the final configuration should display two communes. If we do not impose any constraint

the result according to SA will be network E. It is important to notice that network E is unreachable from

network C. This is the main drawback of the ER approach.

A. Medus et al. / Physica A 358 (2005) 593–604598
(2) We repeat step (1) and we find that the edge with highest betweenness is l10;11.
It should be noticed that as a consequence of removing this link the graph breaks up
in two pieces Fig. 1C. The value of Q is in this case Q ¼ 0:409.
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As we continue in this way we will obtain that the next breaking of the
network takes place when removing link l10;12. By removing this link we
obtain 3 clusters with a modularity value of Q ¼ 0:405. Notice that the removal of
l11;13 is equivalent to removing l10;12, giving a different graph with the same value
of Q.

We now apply the SA approach. (i) If no restriction on the number of partitions is
imposed, we obtain the result displayed in Fig. 1E. In this case the original network
is broken into 3 subsets with a modularity value of Q ¼ 0:446, (ii) if, on the other
hand, we restrict the number of partitions to two, we obtain the result displayed in
Fig. 1D, which is the same graph as the one obtained using ER for two subsets (of
course the equivalent configuration resulting from the removal of l10;12 and l11;13 can
be obtained as well).

It is relevant to notice that the best result according to SA cannot be reached using
ER, because in order to get the graph displayed in Fig. 1E, from the previous step in
the calculation (Fig. 1C), the link l10;11 must be reconstructed, but this step does not
exists in the ER methodology.

From this analysis it is clear that the SA algorithm is able to find a better (as
measured by the quantity Q) solution to the communality analysis than the ER
criterion.

The reason why the ER approach fails to reach the best result is because this
methodology is local and irreversible. A decision is made at a given stage of the
analysis based only on the betweenness of the links with total disregard to the
possible value of Q at the end of the calculation. Once a link is removed it is not
rebuild into the system at any other stage of the calculation. On the other hand,
when we analyze the sequence of results obtained with SA when we impose the
condition of having 2; 3; 4; . . . partitions, we see that in going from two partitions to
three partitions the link l10;11 appears again. This is no problem in SA because we are
working with different groupings of the nodes and all the information about the
links is conserved at all times.

It is interesting to note that in a recent paper [12] it has been proposed that all links
that share the highest value of betweenness are to be removed. If such a recipe is
applied for our test case, there would be no route to a three communities solution. In
fact the first structure that appears gives four communities in which two nodes
(11; 12) are isolated.
5. Examples

Once we have gained insight into the properties of the different approaches
analyzed in this paper, we have found it appropriate to reanalyze some
examples present in the literature and compare the results already published
with the ones obtained using our methodology. We will analyze the Zachary’s
Karate Club network [3] and the relationship network of the characters of the
novel Les Misérables by Victor Hugo, as compiled by Knuth [13] and analyzed
in [3].
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5.1. Zachary’s karate club network

The main reason for the election of this network is that it is a classic social
network and it has been analyzed by means of ER algorithms in some previous
works [3]. This network was constructed by Wayne Zachary [14], who dedicated two
years to the observation of social interactions between the members of a karate club.
The data collected by Zachary made it possible to build the corresponding adjacency
matrix that characterize relations between the members of the club.

In Figs. 2 and 3 we show the best partition obtained, in terms of the modularity Q,
for the Zachary’s non-weighted network by means of the SA and ER algorithms,
respectively [15]. For the case of the SA algorithm, we achieve the largest modularity
(Q ¼ 0:42) for a structure of four communities (Fig. 2).

On the other hand the best community structure recognized with the ER approach
[3] corresponds to five communities with a modularity value of Q ¼ 0:37 (see Fig. 3).

In the actual case analyzed by Zachary, a dispute arose between the club’s director
and the karate teacher, and as a result the club split in two smaller clubs, one
centered around the director and the other around the karate teacher. We performed
the analysis of Q for this two-community split using both algorithms. We started the
Fig. 2. Community structures for the Zachary network according to SA approach. In this figure, squares

and circles denote the members of the two subsets according to observations by Zachary. Broken lines

denote the partitions obtained according to SA approach.
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calculation using the network structure previous to the incident. The results are
shown in Figs. 2 and 3 through circles and squares. Only the node 10 is misclassified
by SA approach in comparison with the actual two-communities division observed
by Zachary. However, when we run our algorithm for this problem, taking into
account that the network can be transformed into a weighted network, with the
weight of the links given by the ‘‘affinity degree’’ among the members, (see [14]) we
obtain the actual two-community split shown in Fig. 4. Here we want to emphasize
the fact that our SA algorithm can by applied either to weighted or unweighted
networks without modification. This is so, because all the information about weights
is contained in the adjacency matrix M and using this information, changes in the
value of Q due to nodes regrouping, can be straightforwardly calculated (Fig. 4).

5.2. Les Misérables network

In the following example we analyze the network of interactions between major
characters in the novel Les Misérables, by Victor Hugo, using the list of character
appearances by scene as compiled by Knuth [13]. For this case, a link between two
characters (nodes) represents the simultaneous appearance of both characters in one
or more chapters.

Fig. 5 shows the community structure achieved by our SA algorithm. The best
community structure has a modularity of Q ¼ 0:546 and corresponds to 5
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Fig. 4. Actual community structures as recorded by Zachary. Once again squares and circles denote the

members of each subset.
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communities, two of which are centered on the protagonists Jean Valjean and his
persecutor, the police officer Javert; as can be seen in the figure. The other
communities are centered on Marius, Fantine and bishop Myriel (here we want to
note that the original data collected by Knuth, which we use in our calculations, has
some mistakes, like the inclusion of Jondrette as a individual character, while
Jondrette is only a pseudonymous of Thenardier). In the course of the analysis we
find 3 isolated nodes, this mean that they have not links with other nodes, and for
this reason they have been excluded from this figure.

When we run the ER algorithm for the same network, we obtain a structure with
11 communities and Q ¼ 0:538, smaller than the obtained with our algorithm.
6. Conclusions

In this paper we have presented an analysis of communality structures in graphs
based on a process of global optimization on the cost function Q. As stated in
Section 1 (see [3,4,9,12]) the higher the value of Q the better the communality
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Fig. 5. Community structures for the ‘‘Les Misérables’’ network. Lines denote the best partition as

obtained according to SA approach.
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structure detected. We have compared our results with other calculations in the
literature based on the Edge Removal approach as described above. In this case
edges are removed according to their betweenness which is a measure of the
importance of a link.

It has been shown via the analysis of a very simple graph that the process involved
in the ER approach might fail due to a couple of reasons:

(a) Edge removal is performed in a local and irreversible way and it is completely
blind to further developments of the graphs communality properties. Being the ER
an irreversible process it might render subsequent (with better communality
structure) partitions of the graph unreachable.

(b) When there is degeneracy (the highest betweenness corresponds to more than
one link) one is to choose a link at random in order to cut it. Moreover if, according
to a recent publication [12], one removes all of them at once, less accurate solutions
are obtained.

All this properties have become apparent in the analysis of the simple graph. We
have further applied our approach to other graphs already analyzed in the literature
(Zachary’s Karate club, Les Misérables ) and in all cases the results obtained with the
SA approach are better (larger Q) that the results obtained using ER methodology.

So far we have talked about accuracy, another issue relevant for this kind of
analysis is speed, SA approaches are intrinsically slow, so, by the time being, we are
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restricted to not too big graphs (we are currently working on different schemes in
order to improve the efficiency of the calculation). As an example, for the Zachary
case SA is 10 times slower than ER.
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