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Abstract

We study the connection between Zamolodchikov operator-valued relations in Liouville fiel
ory and in theSL(2,R)k WZNW model. In particular, the classical relations inSL(2,R)k can be
formulated as a classical Liouville hierarchy in terms of the isotopic coordinates, and their c
ance is easily understood in the framework of theAdS3/CFT2 correspondence. Conversely, we fi
a closed expression for the classical Liouville decoupling operators in terms of the so-calle
formizing Schwarzian operators and show that the associated uniformizing parameter plays th
role as the isotopic coordinates inSL(2,R)k . The solutions of thej th classical decoupling equatio
in the WZNW model span a spinj reducible representation ofSL(2,R). Likewise, we show tha
in Liouville theory solutions of the classical decoupling equations span spinj representations o
SL(2,R), which is interpreted as the isometry group of the hyperbolic upper half-plane.
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1. Introduction

In [1] Al. Zamolodchikov proved the existence of a set of operator-valued relatio
Liouville field theory (LFT). There is one such relation for every degenerate primary
which is labelled by a pair of positive integers(m,n). These relations correspond to
higher order generalization of the Liouville equations of motion, and at the classica
(n = 1, b2 → 0), they can be written as

(1.1)DmD̄m

[
ϕe

1−m
2 ϕ

] = B(c)
m e

1+m
2 ϕ,

whereB
(c)
m = (−2)1−mMmm!(m − 1)! are classical Zamolodchikov coefficients and

(1.2)Dm

[
e

1−m
2 ϕ

] = D̄m

[
e

1−m
2 ϕ

] = 0.

The linear differential operatorsDm can be schematically written as

(1.3)Dm = ∂m
z + Γ m,

whereΓ m = ∑m−2
k=0 d

(m)
k ∂k

z with d
(m)
k polynomials in the classical Liouville stress tenso

(1.4)T = −1

2
(∂zϕ)2 + ∂2

z ϕ

and its derivatives.1

In [2], two of us derived an infinite set of operator-valued relations which hold
degenerate representations of thêsl(2)k Kac–Moody algebra and which are similar to tho
found by Zamolodchikov for the Virasoro degenerate representations in LFT men
above.2 In the classical limit, which corresponds tok → ∞, these relations are equivale
to

(1.5)∂m
x ∂m

x̄ Φ̃m = −m!(m − 1)!Φ−m,

where

(1.6)Φ2j+1(z|x) = 2j + 1

π

(∣∣x − x0(z)
∣∣2eφ(z) + e−φ(z)

)2j

are functions on the homogeneous spaceSL(2,C)/SU(2) = H+
3 , the Euclidean version o

AdS3, and

(1.7)

Φ̃m(z|x) = m

π

(∣∣x − x0(z)
∣∣2eφ(z) + e−φ(z)

)m−1 ln
(∣∣x − x0(z)

∣∣2eφ(z) + e−φ(z)
)
.

1 The operatorsDm have scaling dimensionm. Hence, sinceT (j) ≡ ∂
j
z T has dimension 2+ j , d

(m)
k

is a sum

of terms of the form
∏l

i=1 T (ji ) with
∑l

i=1 ji + 2l + k = m.
2 Zamolodchikov’s proof of the hierarchy of operator-valued relations possesses some general,

independent features. In particular, it is plausible that it could be applied with appropriate modifications to

CFT which involves a continuous spectrum and degenerate states. In order to determine the Zamolodchikov
coefficients, however, it is necessary to know the explicit form of the three-point functions.
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Furthermore, Eq.(1.5)are in one-to-one correspondence with the decoupling equation
null states in the Kac–Moody Verma module

(1.8)∂m
x̄ Φm = ∂m

x Φm = 0.

The meaning of these decoupling equations is that the fieldsΦm transform in a finite-
dimensional spinj = m−1

2 representation ofSL(2,R). This is encoded in the fact th
Φ2j+1(z|x) is a polynomial of order 2j in x.

It was also observed in[2] that in terms ofϕ(z|x) ≡ −2 ln(π
2 Φ2) the first equation in

(1.5)can be rewritten as

(1.9)∂x∂x̄ϕ(z|x) = −2eϕ(z|x),

which is the Liouville equation (with the “wrong sign”) in theSL(2,R)-isospin variables
(x, x̄). This is interesting since in the context of theAdS3/CFT2 correspondence(x, x̄) are
the variables of the Boundary CFT[3,4].

Eqs.(1.1), (1.5) and (1.9)show a manifest parallelism between the Zamolodchikov
erarchy of equations in LFT and the similar one in theSL(2,R)k WZNW model. This
raises the question as to whether there is a more precise correspondence between
Furthermore, while on the WZNW side the decoupling operator is simply∂m

x , the genera
form of Dm involves quite complicated expressions of the classical energy–mome
tensor[1]. We will work out the details of the connection between(1.1)and(1.5)by ana-
lyzing the geometrical meaning of the entities involved. The principal element appear
the discussion turns out to be the uniformization problem of Riemann surfaces, wh
cludes theSL(2,R) group as a basic element and the classical Liouville equation natu
appears in this framework.

1.1. Uniformizing Schwarzian operators

In this paper, we will first show that the classical decoupling operatorsDm in LFT
correspond touniformizing Schwarzian operators (USO)S(m)

τ introduced in[5]. Such op-
erators correspond to a particular kind of covariantizedmth derivative. These operators a
a particular kind of the so-called “Bol operators”, independently rediscovered in[6] in the
framework of the KdV equation formulated on Riemann surfaces. A step in[5] has been
the use of the polymorphic vector field 1/τ ′, with τ the inverse of the uniformizing map
as covariantizing vector field. This leads to new structures involving uniformization th
and covariant operators. Another important property of such operators is that they
compact form: this will enable us to answer the question about the existence of a
and generic explicit form for these differential operators besides the iterative compu
at the classical level presented in Section 2 of Ref.[1]. We will see that

(1.10)Dm = S(m)
τ = τ ′ (m−1)/2 ∂zτ

′−1 · · · ∂zτ
′−1∂z︸ ︷︷ ︸

m derivatives

τ ′ (m−1)/2,
whereτ is the inverse of the uniformizing map.
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1.2. The PSL(2,C) gauge invariance of S(m)
τ

To connect the USOS(m)
τ to the higher equations of motion of the Liouville theory, o

first notes that theS(m)
τ are invariant underPSL(2,C) transformations ofτ . Furthermore,

following [5], one observes that the Poincaré metric

(1.11)eϕ = |τ ′|2
(Im τ)2

can be seen asτ ′(z) after aPSL(2,C) transformation ofτ . In particular, since under
PSL(2,C) transformation

(1.12)τ → γ · τ ≡ A(z̄)τ + B(z̄)

C(z̄)τ + D(z̄)
,

one hasτ ′ → τ ′/(Cτ + D)2, it follows that for

(1.13)C = 1

2iτ̄ ′1/2
, D = − τ̄

2iτ̄ ′1/2
,

τ ′ is transformed into the Poincaré metric

(1.14)eϕ = ∂z(γ · τ),

which is equivalent toeϕ = ∂z̄(γ̄ · τ̄ ). Since the Poincaré metric is invariant und
PSL(2,R) transformations ofτ , it follows thatγ in (1.14)can be replaced by the pro
uctγµ with µ an arbitrary element ofPSL(2,R) with constant entries.

It is interesting to observe that even if the abovePSL(2,C) transformations depen
on the pointz̄ through τ̄ and τ̄ ′, they commute with∂z just like a constant.3 It follows
that the operatorS(m)

τ , which is invariant underPSL(2,C) fractional transformations ofτ ,
remains invariant also under such a point dependent transformation. Therefore, the
PSL(2,C) symmetry ofS(m)

τ extends to a localPSL(2,C) symmetry, and can be seen
an anti-holomorphic gauge invariance. As a consequenceτ ′ in S(m)

τ can be replaced byeϕ .
Note that by the Liouville equation∂zϕz̄ = eϕ/2, we have that(1.14) implies γ · τ =

2ϕz̄ + f (z̄), wheref (z̄) is any solution of∂zf = 0. This means thatϕz̄ ≡ ∂z̄ϕ itself is a
local PSL(2,C) transformation ofτ . Actually, we have

(1.15)ϕz̄ = τ̄ ′′

τ̄ ′ + 2
τ̄ ′

τ − τ̄
,

which has the form

(1.16)τ → A(z̄)τ + B(z̄)

C(z̄)τ + D(z̄)
= ϕz̄.

3 Observe that local univalence ofτ implies thatτ ′ never vanishes, therefore there are noδ-singularities
contributing to it, e.g.,∂zτ̄
′−1. Also note that theδ-singularities at the punctures cannot be seen since the latter

are missing points on the Riemann surface.
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Summarizing, we have the invariance

(1.17)S(m)
ϕz̄

= S(m)
τ ,

which is equivalent to the invariance underτ ′ → eϕ (the factor 2 can be adsorbed by
different transformation in(1.16)).

The above local invariance is very useful to write down the explicit form of the US
terms of the classical Liouville field. In particular, as we will see, they depend only thr
the energy–momentum tensor and its derivatives.

The anti-holomorphic local Möbius transformations and the use of the inverse of
uniformizing map, have been first introduced in[5]. Such features distinguish our approa
from the previous definitions of covariant operators generalizing the Schwarzian der
(e.g.,[6–8]).

Another feature of the above operators is that, once expressed in terms of thetrivializing
coordinateτ , seen as independent variable, they essentially reduces to∂m

τ . More precisely,
we have

(1.18)S(m)
τ =

(
∂z

∂τ

)− m+1
2

∂m
τ

(
∂z

∂τ

) 1−m
2

.

This is equivalent to the fact that the classical energy–momentum tensor vanishe
such a coordinate choice. Conversely, we will show that the classical limit of the
tions derived in[2] in SL(2,R)k can be rewritten in a Liouville-like manner and that t
decoupling operators have such a simple form thanks to the vanishing of the ass
energy–momentum tensor.

A crucial role in the analysis is played by the link between Liouville theory and the
ory of uniformization of Riemann surfaces[5,9–16]. In particular, theSL(2,R) symmetry
which is manifest on the WZNW model side, is consistently mapped to the Liouville
where it acquires a geometrical meaning. It is in fact the isometry group of the hype
upper half-plane. The Liouville decoupling operators are naturallySL(2,R)-invariant and
the classical solutions of the equationD2j+1ψ = 0, j = 0, 1

2, . . . , span a spinj repre-
sentation ofSL(2,R). It also follows thate−jϕ , 2j ∈ Z+, can be decomposed in terms
these representations. The observation that this could be generalized at the quantu
using the representation theory ofUq(sl(2)) was at the basis of the algebraic approach
Liouville theory[19–21].

The paper is organized as follows. In Section2, the basic aspects of uniformization
Riemann surfaces are introduced. The Liouville equation and its relation to the unifo
ing equation are reviewed. In Section3, the USOS(m)

τ of [5] are introduced. They are
generalization of the second-order linear differential operator associated to the unif
ing equation. In Section3.2, we show that the decoupling operatorDm of LFT is themth
USOS(m)

τ . This is consistent with the expressions given by Zamolodchikov for the firs
values ofm in [1]. The classical Zamolodchikov coefficients(−1)m−121−mMmm!(m−1)!,
which appear in Eq.(1.1), are also derived using two equivalent expressions of the U
first in Section3.3and then inAppendix C.
Then we move on to the discussion on theSL(2,R) side. In Section4, we will rewrite
the classicalSL(2,R)k Zamolodchikov relations in a Liouville-like fashion, following the
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observation made in[2], Eq. (1.9). The vanishing of the associated projective connec
provides an explanation of why the decoupling operators in the WZNW model have
a simple form. In this sense, the isotopic or boundary variablex plays the same role a
the trivializing coordinateτ that belongs to the Poincaré upper half-planeH on the Liou-
ville side. In Section4.1, we point out that the covariance of the our discussion on the
between the Zamolodchikov relation of theSL(2,R) model and Liouville theory can b
understood from the AdS/CFT correspondence. In addition, we discuss how the Zam
chikov relations in theSL(2,R) will give Ward identities for the boundary CFT.

Section5 is devoted to remarks suggesting the relation between our results and
known connections between Liouville theory and the WZNW model. Here we dis
how theSL(2,R) symmetry which is manifest on the WZNW side is translated into
Liouville context, where it coincides with the isometry group of the hyperbolic upper
plane. The solutions toD2j+1(ψ) = 0 span a spinj representation ofSL(2,R). Connection
to the quantum groupUq(sl(2)) is also suggested. In Section6, we present the conclusio
and some future directions.

In Appendix A, we review how to express the classical Virasoro decoupling opera
a formal matrix determinant and show that the corresponding quantum decoupling op
reduces to the USO in the classical limit. InAppendix B, we show that the USO depen
only on the energy–momentum tensor and its derivatives. InAppendix C, we provide an-
other derivation of the Zamolodchikov relation from the USO.

2. Uniformization and Poincaré metric

Let us denote byD either the Riemann spherêC = C ∪ {∞}, the complex planeC
or the upper half-planeH = {τ ∈ C | Im τ > 0}. The uniformization theorem states th
every Riemann surfaceΣ is conformally equivalent to the quotientD/Γ , whereΓ is a
freely acting discontinuous group of fractional transformations preservingD, isomorphic
to the fundamental groupπ1(Σ). In particular, for genusg � 2, the universal covering i
given by H. Let us consider this case and denote byJH the complex analytic coverin
JH :H → Σ . Then,Γ is a finitely generated Fuchsian group belonging toPSL(2,R) =
SL(2,R)/{I,−I }. This acts onH by linear fractional transformations

(2.1)τ → γ · τ = aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ Γ, JH(γ · τ) = JH(τ ).

A Riemann surface isomorphic to the quotientH/Γ is endowed with a unique metr
ĝ with scalar curvatureRĝ = −1 compatible with the complex structure. Consider
Poincaré metric onH

(2.2)ds2 = |dτ |2
(Im τ)2

.

Note thatPSL(2,R) transformations are isometries ofH with the above metric. Then, th
inverse of the uniformizing mapJ−1

H
:Σ → H, z → τ = J−1

H
(z), induces the Poincar

metric onΣ
(2.3)dŝ2 = eϕ(z,z̄)|dz|2, eϕ(z,z̄) = |τ ′(z)|2
(Im τ(z))2

,
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which is invariant underSL(2,R) transformations ofτ(z). The condition

(2.4)Rĝ = ĝzz̄∂z∂z̄ ln ĝzz̄ = −1, ĝzz̄ = 1

2
eϕ(z,z̄)

is equivalent to the Liouville equation

(2.5)∂z∂z̄ϕ(z, z̄) = 1

2
eϕ(z,z̄),

whereas the field̃ϕ = ϕ + lnM , M > 0, defines a metric of constant negative cur
ture−M . The expression(2.3) is the unique solution to the Liouville equation onΣ .

2.1. The Liouville equation

Here we consider some aspects of the Liouville equation. First of all, note that, b
Gauss–Bonnet theorem, if

∫
Σ

eϕ > 0, then the equation

(2.6)∂z∂z̄ϕ(z, z̄) = Meϕ(z,z̄)

has no solutions on surfaces with sgnχ(Σ) = sgnM . In particular, on the Riemann sphe
with n � 2 punctures4 there are no solutions of the equation (let us setM = 1

2)

(2.7)∂z∂z̄ϕ(z, z̄) = 1

2
eϕ(z,z̄),

∫
Σ

eϕ > 0.

The metric of curvature+1 onĈ

(2.8)ds2 = eϕ0|dz|2, eϕ0 = 4

(1+ |z|2)2

satisfies the Liouville equation with the “wrong sign”, that is

(2.9)∂z∂z̄ϕ0(z, z̄) = −1

2
eϕ0(z,z̄).

If one insists on finding a solution of Eq.(2.7) on Ĉ, then inevitably one obtains at lea
three delta-singularities

(2.10)∂z∂z̄ϕ(z, z̄) = 1

2
eϕ(z,z̄) − 2π

n∑
k=1

δ(2)(z − zk), n � 3.

However, the(1,1)-differential eϕ is not an admissible metric on̂C. In fact, since the
unique solution of the equation∂z∂z̄ϕ = eϕ/2 on the Riemann sphere isϕ = ϕ0 + iπ with
ϕ0 ∈ R, to consider the Liouville equation on̂C gives the unphysical metric−eϕ0|dz|2.

This discussion shows that in order to find a solution of Eq.(2.7)one needs at least thre
punctures, that is one must consider Eq.(2.7)on the surfaceΣ = Ĉ\{z1, z2, z3} where the
term 2π

∑3
k=1 δ(2)(z− zk) does not appear simply becausezk /∈ Σ , k = 1,2,3. In this case

χ(Σ) = −1, so that sgnχ(Σ) = −sgnM in agreement with the Gauss–Bonnet theore
4 The 1-punctured Riemann sphere, i.e.,C, has itself as universal covering. Forn = 2 we haveJC :C →
C\{0}, z �→ e2πiz. Furthermore,C\{0} ∼= C/〈T1〉, where〈T1〉 is the group generated byT1 : z �→ z + 1.
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2.2. The inverse map and the covariant Schwarzian operator

The Poincaré metric onΣ

(2.11)eϕ(z,z̄) = −4
|τ ′(z)|2

(τ (z) − τ̄ (z̄))2

is invariant underPSL(2,R) fractional transformations ofτ . Eq. (2.11)makes it eviden
that from the explicit expression of the inverse mapτ = J−1

H
(z) we can find the dependenc

of eϕ on the moduli ofΣ . Conversely, one can express the inverse map (up to aPSL(2,C)

fractional transformation) in terms ofϕ. This follows from theSchwarzian equation

(2.12){τ, z} = T (z),

where

(2.13)T (z) = −1

2
(∂zϕ)2 + ∂2

z ϕ

is the classical Liouville energy–momentum tensor(1.4), or Fuchsian projective connec
tion, and

(2.14){f, z} = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

= −2f ′1/2(f ′−1/2)′′

is the Schwarzian derivative off . The Liouville equation implies that the classical energ
momentum tensor is holomorphic

(2.15)∂z̄T = 0.

Note also thatT (z) has the transformation properties of a projective connection un
change of coordinates, namely

(2.16)T̃ (z̃) =
(

∂z

∂z̃

)2

T (z) + {z, z̃} =
(

∂z

∂z̃

)2

T (z) −
(

∂z

∂z̃

)2

{z̃, z}.
Furthermore,PSL(2,C) transformations ofτ leaveT (z) invariant.

Let us define thecovariant Schwarzian operator

(2.17)S(2)
f = f ′1/2∂zf

′−1∂zf
′1/2

mapping−1
2 into 3

2-differentials. In the above formula, it is understood that each∂z acts
on each term on the right. Since

(2.18)S(2)
f ψ =

(
∂2
z + 1

2
{f, z}

)
ψ

the Schwarzian derivative can be written as

(2.19){f, z} = 2S(2)
f · 1.

Like the Schwarzian derivative alsoS(2)
f is invariant underPSL(2,C) fractional transfor-

mations off , that is
(2.20)S(2)
γ ·f = S(2)

f , γ ∈ PSL(2,C).
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Therefore, if the transition functions ofΣ are linear fractional transformations, then{f, z}
transforms as a quadratic differential. However, except in the case of projective c
nates, the Schwarzian derivative does not transform covariantly onΣ . This is evident by
(2.19) since in flat spaces only (e.g., the torus) a constant can be considered as−1

2-
differential.

2.3. The uniformizing equation

As we have seen, one of the important properties of the Schwarzian derivative is t
Schwarzian equation (2.12)can be linearized. Thus ifψ1 andψ2 are linearly independen
solutions of theuniformizing equation

(2.21)

(
∂2
z + 1

2
T (z)

)
ψ(z) = 0,

thenψ2/ψ1 is a solution of Eq.(2.12). That is, up to aPSL(2,C) linear fractional transfor
mation5

(2.22)τ = ψ2/ψ1.

Indeed by setting

(2.23)τ ′1/2∂zτ
′−1∂zτ

′1/2ψ1 = τ ′1/2∂zτ
′−1∂z1= 0

and

(2.24)τ ′1/2∂zτ
′−1∂zτ

′1/2ψ2 = τ ′1/2∂z1= 0

it follows that

(2.25)ψ1 = τ ′−1/2, ψ2 = τ ′−1/2τ

are independent solutions of(2.21). Another way to prove(2.22)is to write Eq.(2.21)in
the equivalent form

(2.26)τ ′1/2∂zτ
′−1∂zτ

′1/2ψ = 0

and then to setz = JH(τ ), whereJH :H → Σ is the uniformizing map.
The inverse map is locally univalent, that is ifz1 �= z2 thenτ(z1) �= τ(z2). Furthermore,

the solutions of the uniformizing equation have non-trivial monodromy properties. W
z winds around non-trivial cycles ofΣ

(2.27)

(
ψ2
ψ1

)
→

(
ψ̃2
ψ̃1

)
=

(
A B

C D

)(
ψ2
ψ1

)
,

5 Note that the Poincaré metric is invariant underPSL(2,R) fractional transformations ofτ whereas the
Schwarzian derivativeT (z) = {τ, z} is invariant forPSL(2,C) transformations ofτ . Thus, with an arbitrary

choice ofψ1 and ψ2 it may be that Im(ψ2/ψ1) is not positive definite, so that in general the identification
τ = ψ2/ψ1 is up to aPSL(2,C) transformation.
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which induces a linear fractional transformation of the inverse mapτ(z)

(2.28)τ → γ · τ = Aτ + B

Cτ + D
,

(
A B

C D

)
∈ Γ.

Thus, under a winding ofz around non-trivial cycles ofΣ , the pointτ(z) ∈ H moves from
a representativeFi of the fundamental domain ofΓ to an equivalent point of another re
resentativeFj . The monodromy group of the uniformizing equation is the automorph
group of the uniformizing mapJH(τ ) and is isomorphic to the fundamental group ofΣ .
However, note that(2.20)guarantees that, in spite of the polymorphicity(2.28), the classi-
cal Liouville energy–momentum tensorT = 2S(2)

τ · 1 is singlevalued.
Observe that, sinceψ is a−1

2–differential, Eq.(2.21)on H readsτ ′3/2∂2
τ φ = 0, that is

we have the trivial equation

(2.29)∂2
τ φ = 0.

In fact using

(2.30)ψ(z)dz−1/2 = φ(τ) dτ−1/2 ⇒ τ ′1/2ψ(z) = φ(τ)

we find that Eq.(2.26)becomes

(2.31)τ ′1/2∂zτ
′−1∂zτ

′1/2ψ(z) = τ ′3/2∂2
τ φ(τ ) = 0.

Note also that Eq.(2.29)is consistent with the fact that by(2.12)and(2.16)

(2.32)T̂ (τ ) =
(

∂z

∂τ

)2

T (z) −
(

∂z

∂τ

)2

{τ, z} = 0.

In this senseτ , or a generalPSL(2,C) transformation of it, is atrivializing coordinate. For
any choice of the two linearly independent solutions we haveφ2/φ1 = τ up to aPSL(2,C)

transformation. Going back toΣ we getτ = ψ2/ψ1.

2.4. PSL(2,R) symmetry

Note that anyGL(2,C) transformation

(2.33)

(
ψ1
ψ2

)
→

(
ψ̃1

ψ̃2

)
=

(
A B

C D

)(
ψ1
ψ2

)
induces a linear fractional transformation ofτ . It follows that the invariance ofeϕ un-
der PSL(2,R) linear fractional transformations ofτ corresponds to its invariance und
PSL(2,R) linear transformations ofψ1,ψ2. This leads us to the expression ofe−jϕ as

(2.34)e−jϕ = (−4)−j (ψ̄1ψ2 − ψ̄2ψ1)
2j .

In particular, when 2j is a non-negative integer, we get

−jϕ −j

j∑
k

(
2j

)
¯ j+k j−k j+k ¯ j−k +
 (2.35)e = 4

k=−j

(−1)
j + k

ψ1 ψ1 ψ2 ψ2 , 2j ∈ Z .
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On the other hand, since we can chooseψ2(z) = ψ1(z)
∫ z

ψ−2
1 , we have

(2.36)e−jϕ = (−4)−j
∣∣ψ(z)

∣∣4j

( z∫
ψ−2 −

z̄∫
ψ̄−2

)2j

, ∀j,

with

(2.37)ψ(z) = Aψ1(z)

(
1+ B

z∫
ψ−2

1

)
, A ∈ R\{0}, B ∈ R.

We note that the ambiguity in the definition of
∫ z

ψ−2 reflects the polymorphicity ofτ .
This property ofτ implies that, under a winding around non-trivial loops, a solut
of (2.21) transforms in a linear combination involving itself and another (independ
solution. It is easy to check that

(2.38)

(
∂2
z + 1

2
T (z)

)
e−ϕ/2 = 0,

which shows that the uniformizing equation has the interesting property of adm
singlevalued solutions. The reason is that thez̄-dependence ofe−ϕ/2 arises through the
coefficientsψ̄1 andψ̄2 in the linear combination ofψ1 andψ2.

Since[∂z̄,S(2)
τ ] = 0, the singlevalued solutions of the uniformizing equation are

(2.39)

(
∂2
z + 1

2
T (z)

)
∂
z̄ e−ϕ/2 = 0,  = 0,1, . . . .

Thus, sincee−ϕ ande−ϕ∂z̄ϕ are linearly independent solutions of Eq.(2.21), their ratio
solves the Schwarzian equation

(2.40){∂z̄ϕ, z} = T (z).

Higher order derivatives∂
z̄ e−ϕ/2,  � 2, are linear combinations ofe−ϕ/2 ande−ϕ/2∂z̄ϕ

with coefficients depending on̄T and its derivatives; for example

(2.41)∂2
z̄ e−ϕ/2 = − T̄

2
e−ϕ/2.

In particular ifψ2(z) = T̄ ψ1(z) then, in spite of the fact that̄T is not a constant onΣ , ψ1

andψ2 are linearly dependent solutions of Eq.(2.21).
Let us show what happens if one setsτ = ψ1/ψ2 without considering the remark mad

in the previous footnote. As solutions of the uniformizing equation, we can considerψ1 =
e−ϕ/2 and an arbitrary solutionψ2 such that∂z(ψ2/ψ1) = 0. Since∂z̄(e

−ϕ/2/ψ2) �= 0, in
spite of the fact that{e−ϕ/2/ψ2, z} = T , we haveτ �= ψ1/ψ2.
We conclude the analysis of the uniformizing equation by summarizing some useful
expressions for the Liouville energy–momentum tensor
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T = {τ, z} = {∂z̄ϕ, z} = 2τ ′1/2∂z

1

τ ′ ∂zτ
′1/2 · 1= 2eϕ/2∂ze

−ϕ∂ze
ϕ/2 · 1

= 2
(
e−ϕ/2/ψ2

)′1/2
∂z

(
e−ϕ/2/ψ2

)′−1
∂z

(
e−ϕ/2/ψ2

)′1/2 · 1

(2.42)= −2eϕ/2(e−ϕ/2)′′ = −2ψ−1ψ ′′,

with ψ given in (2.37) and ψ2 an arbitrary solution of Eq.(2.21) such that∂z(e
−ϕ/2/

ψ2) �= 0.

3. USO and classical Zamolodchikov relations

Here we will consider a set of operatorsS(2j+1)
τ , j = 1

2,1, . . . , corresponding to∂2j+1
z

covariantized by means ofτ . These operators were first introduced in[5] and generalize
theSchwarzian operator S(2)

τ that was studied above. In the next section, we will prove
they actually coincide with the classical decoupling operators in LFTDm, m = 2j +1. Let
us define

(3.1)S(n)
f = f ′ (n−1)/2 ∂zf

′−1 · · · ∂zf
′−1∂z︸ ︷︷ ︸

n derivatives

f ′ (n−1)/2.

This is a linear operator mapping(1−n)/2 differentials to(n+1)/2 differentials. The Ker
of S(n)

f is generated by

(3.2)sk = f k−1

f ′ n−1
2

, k = 1, . . . , n.

Under aPSL(2,C) transformation off we have

(3.3)γ · f = Af + B

Cf + D
, (γ · f )′ = (Cf + D)−2f ′,

the solutionssk transform as

(3.4)sk → 1

f ′(n−1)/2
(Cf + D)n−k(Af + B)k−1.

Since this is a linear combination of thesk ’s, the Ker ofS(n)
f is PSL(2,C)-invariant. This

means that theS(n)
f themselves arePSL(2,C)-invariant

(3.5)S(n)
γ ·f = S(n)

f .

From now on we will consider the operators with

(3.6)f = τ,

whereτ = J−1
H

(z) is the inverse of the uniformizing map. These operators have been
duced in[5]. BesidesPSL(2,C)-invariance they satisfy some basic properties strictly

lated to Liouville and uniformization theories. We will call them uniformizing Schwarzian
operators (USO).
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3.1. Gauge invariance of the USO from the local univalence of τ

We want to show that

(3.7)S(n)
τ e

(1−n)
2 ϕ = 0,

whereϕ is the classical Liouville field, that is

(3.8)eϕ = |τ ′|2
(Im τ)2

is the Poincaré metric. A key observation in[5] is thateϕ can be seen asτ ′ after a Möbius
transformation ofτ with the coefficients depending onz̄. More precisely, we see that und
thePSL(2,C) transformationτ → (Aτ + B)/(Cτ + D), with

(3.9)C = 1

2iτ̄ ′1/2
, D = − τ̄

2iτ̄ ′1/2
,

that is

(3.10)τ → 2iτ̄ ′1/2A + 4τ̄ ′

τ − τ̄

the derivative of the inverse map is transformed into the Poincaré metric

(3.11)τ ′ → eϕ = ∂z(γ · τ) = ∂z̄(γ̄ · τ̄ ).

A crucial step is to observe that nothing changes in the proof of(3.5)if the coefficients ofγ
are anti-holomorphic functions. In other words, the original globalPSL(2,C)-invariance
extends to a point dependent symmetry. This local symmetry is a rather particular on
it depends on̄z rather than onz. We can consider such a symmetry, related to the fact
anti-holomorphic univalent functions commute with∂z, as a “left gauge invariance” of th
S(n)

τ . In this respect we note that the dependence onz̄ of thePSL(2,C) transformation is
throughτ̄ and its derivatives. On the other hand, local univalence ofτ implies thatτ ′ never
vanishes, so there are noδ-singularities contributing to, e.g.,∂zτ̄

′−1. In other words, on the
Riemann surface we always have6

(3.12)[∂z, τ̄ ] = 0= [∂z, τ̄
′].

Apparently, Liouville theorem forbids non-trivial solutions of such equations. On the o
hand, constancy of holomorphic functions on compact manifolds refers to true func
In the present case we are treating with a polymorphic function, i.e., a function with a
Abelian monodromy around non-trivial cycles. As such, the inverse of the uniform
map can be seen as a polymorphic classical chiral boson.7

The above symmetry implies that

(3.13)S(n)
τ = e

n−1
2 ϕ∂ze

−ϕ · · · ∂ze
−ϕ∂ze

n−1
2 ϕ,

6 δ-singularities would appear for elliptic points or by filling-in possible punctures.

7 An issue which deserves to be investigated concerns the chiral boson defined in[17] whose properties sug-

gest a relation with the inverse of the uniformizing map.
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which makes(3.7)manifest. Observe that univalence ofτ and thus the fact thatτ ′(z) �= 0
imply that the USO are holomorphic, so that

(3.14)
[
S(m)

τ , S̄(n)
τ

] = 0.

Eq. (3.7) is manifestly covariant and singlevalued onΣ . Furthermore, we will show in
Appendix Bthat the dependence ofS(2j+1)

f onf appears only through{f, z} and its deriv-
atives; for example

(3.15)S(3)
τ = ∂3

z + 2T ∂z + T ′,

which is the second symplectic structure of the KdV equation. The operatorS(3)
f appears

in the formulation of the covariant formulation of the KdV equation on Riemann surf
[6] where single-valued vector fields, explicitly constructed in[18] and also admitting es
sential singularities of Baker–Akhiezer type, were used instead of the polymorphic v
field 1/τ ′.

An important property of the equationS(2j+1)
τ ψ = 0 is that its projection onH is the

trivial equation

(3.16)w′ j+1∂2j+1
w ψ̃ = 0, w ∈ H,

wherew = τ(z) and

(3.17)ψ(z)dz−j = ψ̃(w)dw−j .

As we saw previously in(2.32) this is consistent with the fact that̂T (w) = 0. This also
explains why only forj > 0 it is possible to have finite expansions ofe−jϕ such as in
Eq. (2.35). The reason is that the solutions of Eq.(3.16)are{wk | k = 0, . . . ,2j} so that
the best thing we can do is to consider linear combinations of positive powers of the
chiral solution Imw which is just the square root of inverse of the Poincaré metric onH.

Note that Eq.(3.13)can also be derived in the following way. By thePSL(2,C) invari-
ance of the Schwarzian derivative, in particular the fact that{τ, z} = {∂z̄ϕ, z}, we find

(3.18)S(2j+1)
τ = S(2j+1)

∂z̄ϕ
, j = 0,

1

2
,1,

3

2
,2, . . . .

On the other hand, by Liouville equation

(3.19)S(2j+1)
∂z̄ϕ

= ejϕ∂ze
−ϕ∂ze

−ϕ · · · ∂ze
−ϕ∂ze

jϕ, j = 0,
1

2
,1, . . . .

The above expression will be crucial to prove that the USO and the classical Lio
decoupling operators are the same.

3.2. Classical decoupling operators in Liouville theory

In [1] Zamolodchikov considered the fields
(3.20)Vm = e(1−m)ϕ/2, m ∈ Z+,
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and showed that the first few representatives satisfy the ODEs

∂z · 1= 0,(
∂2
z + 1

2
T

)
e−ϕ/2 = 0,(

∂3
z + 2T ∂z + T ′)e−ϕ = 0,(
∂4
z + 5T ∂2

z + 5T ′∂z +
(

9

4
T 2 + 3

2
T ′′

))
e−3ϕ/2 = 0,

(3.21)
(
∂5
z + 10T ∂3

z + 15T ′∂2
z + (

16T 2 + 9T ′′)∂z + 16T T ′ + 2T ′′′)e−2ϕ = 0,

together with the complex conjugates (∂z → ∂z̄, T → T̄ ). By using the classical Liouville
equation

(3.22)∂z∂z̄ϕ = Meϕ

it is then possible to show that the fieldsϕVm satisfy the relations

D̄1D1ϕ = Meϕ,

D̄2D2
(
ϕe−ϕ/2) = −M2e3ϕ/2,

D̄3D3
(
ϕe−ϕ

) = 3M3e2ϕ,

D̄4D4
(
ϕe−3ϕ/2) = −18M4e5ϕ/2,

(3.23)D̄5D5
(
ϕe−2ϕ

) = 180M5e3ϕ,

which are some particular cases of(1.1). The main result of[1] is the proof that the abov
relations hold for generalm at the quantum level. However, the general form of the class
decoupling operatorsDm was considered unknown there.

In the following, we will prove that the operatorsDm coincide with the USOS(m)
τ

introduced in8 [5] (another independent proof is given inAppendix A). First of all, the
operatorsS(m)

τ , like theDm, havee(1−m)ϕ/2 as solution. Secondly, also theS(m)
τ depend

on ∂zϕ only through the classical energy–momentum tensorT and its derivatives. This i
shown inAppendix B. Furthermore, bothS(m)

τ andDm are covariant operators mappin
(1 − m)/2-differentials to(m + 1)/2-differentials. In this respect note that covariance
theDm is understood a priori: a possible inhomogeneous term in changing coordina
the intersection of two patches would imply that(3.21)are not covariantly satisfied. Nex
since

(3.24)
[
∂z̄,S(m)

τ

] = 0

it follows that, besidese(1−m)ϕ/2, other solutions ofS(m)
τ ψ = 0 have the form∂

z̄ e(1−m)ϕ/2.

Furthermore, a basis of solutions ofS(m)
τ ψ = 0 is given by[5]

(3.25)ψj = (∂z̄ϕ)j e(1−m)ϕ/2, j = 0, . . . ,m − 1.
8 The coincidence of such operators was pointed out to us by Giulio Bonelli.
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To see this it is sufficient to insertψj on the RHS of(3.13) and systematically use th
Liouville equation

(3.26)e−ϕ∂z(∂z̄ϕ)j = jM(∂z̄ϕ)j−1.

On the other hand, since

(3.27)[∂z̄,Dm] = 0

and∂zT̄ = 0, the functions(3.25) are also a basis of solutions ofDmψ = 0. Therefore,
we proved thatDm = S(m)

τ , which turns out to yield the classical Zamolodchikov re
tions (1.1) as we will see in the next subsection.Appendix Cpresents another equivale
derivation of these relations starting from the expression(3.13)of the decoupling operator

3.3. Classical Zamolodchikov relations

By means of the above results we can now investigate the classical Zamolod
relation in Liouville theory. Let us evaluate

(3.28)S̄(m)
τ S(m)

τ

(
ϕe

(1−m)
2 ϕ

)
.

Since

(3.29)eϕ̃ =
∣∣∣∣dz

dz̃

∣∣∣∣2eϕ

it follows that9

(3.30)ϕ̃(z̃, ¯̃z) = ϕ(z, z̄) + ln

(
dz

dz̃

)
+ ln

(
dz̄

d ¯̃z
)

,

implying thatϕe
(1−m)

2 ϕ is not a covariant quantity. However,(3.28) is still a differential
of weight (m+1

2 , m+1
2 ). In fact, the inhomogeneous term appearing under a holomo

coordinate transformationz → z̃

(3.31)¯̃S(m)
τ S̃(m)

τ

(
ϕ̃e

(1−m)
2 ϕ̃

) =
∣∣∣∣dz

dz̃

∣∣∣∣m+1

S̄(m)
τ S(m)

τ

(
ϕe

(1−m)
2 ϕ + ln

∣∣∣∣dz

dz̃

∣∣∣∣2e (1−m)
2 ϕ

)
cancels. Actually, by(3.14)and(3.7)we have

S̄(m)
τ S(m)

τ

(
ln

∣∣∣∣dz

dz̃

∣∣∣∣2e 1−m
2 ϕ

)
(3.32)= S(m)

τ ln

(
dz

dz̃

)
S̄(m)

τ e
1−m

2 ϕ + S̄(m)
τ ln

(
dz̄

d ¯̃z
)
S(m)

τ e
1−m

2 ϕ = 0.

9 In the quantum theory the geometrical nature of Liouville field is different; in that case the transforma
given byϕ̃ = ϕ + Q ln( dz
dz̃

) + Q ln( dz̄

d ¯̃z ) whereQ is the background charge which, after the appropriate rescaling

in the classical limit turns out to beQ → 1.
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We can express the operators in a form that considerably simplifies the calcula
Actually, note the identity

(3.33)S(m)
τ =

(
∂z

∂τ

)− m+1
2

∂m
τ

(
∂z

∂τ

) 1−m
2

.

It is therefore convenient to considerz as function ofτ rather than vice versa. Thus w
have

(3.34)ϕe
1−m

2 ϕ = −
(

ln

∣∣∣∣ ∂z

∂τ

∣∣∣∣2 + 2 lny

)
ym−1

∣∣∣∣ ∂z

∂τ

∣∣∣∣m−1

,

wherey = Im τ and(3.28)becomes

−
∣∣∣∣ ∂z

∂τ

∣∣∣∣−(m+1)

∂m
τ̄ ∂m

τ

[
ym−1

(
ln

∣∣∣∣ ∂z

∂τ

∣∣∣∣2 + 2 lny

)]
(3.35)= −2

∣∣∣∣ ∂z

∂τ

∣∣∣∣−(m+1)

∂m
τ̄ ∂m

τ

(
ym−1 lny

)
.

Noticing that 4−m∂2m
y is the only term in∂m

τ̄ ∂m
τ that does not contain∂Reτ , we see that ou

problem reduces to compute the numerical coefficientbm in

(3.36)∂2m
y ym−1 lny = bmy−m−1.

Rather than evaluatingbm using the Leibniz formula, we easily obtain it by inductio
By (3.36)we have

∂2m+2
y ym lny = ∂y∂

2m
y

(
mym−1 lny + ym−1) = mbm∂yy

−m−1

(3.37)= −m(m + 1)bmy−m−2,

which givesbm+1 = (−1)mm!(m+1)!b1 and since∂2
y lny = −y−2, we haveb1 = −1, that

is

(3.38)bm = (−1)mm!(m − 1)!.
The final result is

(3.39)S̄(m)
τ S(m)

τ

(
ϕe

1−m
2 ϕ

) = 2(−1)m+14−mm!(m − 1)!e m+1
2 ϕ,

which, for M = 1
2, coincides with the expression Eq.(1.1) argued in[1] by inspection of

the first few cases.

4. Liouville-like equations in SL(2,R)k WZNW model

Now, we move to theSL(2,R) structure of Liouville hierarchy. In particular, in this se
tion, we will discuss the Zamolodchikov hierarchy of differential equations in the co
of the finite-dimensional representations ofsl(2,R)k algebra.
Let us first recall some basic facts about differentiable functions onSL(2,C)/SU(2) =
H+

3 . These are associated to vertex operators of string theory on EuclideanAdS3 and
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in particular certain non-normalizable states inH+
3 describe hermitian representatio

of SL(2,R).
Among the representations of thesl(2)k affine algebra, there is a set of reducible fini

dimensional representations that are similar to those of theSU(2) group and are classifie
by an indexj as usual. These representations precisely correspond to the classical
of the Kac–Kazhdan degenerate states considered in[2]. They are labelled by 2j + 1 =
m ∈ Z+ and are associated to the following functions

(4.1)Φm(z|x) = m

π

(∣∣x − x0(z)
∣∣2eφ(z) + e−φ(z)

)m−1
,

which correspond to the Gauss parametrization of the homogeneous spaceSL(2,C)/SU(2).
They can be related to vertex operators inAdS3 with Poincaré metric whose sigma mod
action is given by

S = k

2π

∫
d2z

(
∂zt0∂z̄t0 + ∂zx0∂z̄x̄0

t2
0

)
(4.2)= k

2π

∫
d2z

(
∂zφ∂z̄φ + ∂zx0∂z̄x̄0e

2φ
)
,

where the spacetime coordinates and their dependence on the worldsheet variable (z, z̄) are
given by{t0(z, z̄) = e−φ(z,z̄), x0(z, z̄), x̄0(z, z̄)}. We will also need the auxiliary functions

Φ̃m(z|x) = m

π

(∣∣x − x0(z)
∣∣2eφ(z) + e−φ(z)

)m−1

(4.3)× ln
(∣∣x − x0(z)

∣∣2eφ(z) + e−φ(z)
)
.

Form = 1 we simply have the identity,Φ1(z|x) = 1
π

. The most important case is

(4.4)Φ2(z|x) = 2

π

(∣∣x − x0(z)
∣∣2eφ(z) + e−φ(z)

)
,

which can be thought of as the basic block in the construction of any other function. I

Φm(z|x) = m

π

(
π

2
Φ2

)m−1

,

(4.5)Φ̃m(z|x) = m

π

(
π

2
Φ2

)m−1

ln

(
π

2
Φ2

)
.

Then, if one defines the field

(4.6)ϕ(z|x) = −2 ln

(
π

2
Φ2

)
,

the first (m = 1) of Eqs.(1.5)becomes simply

(4.7)∂x∂x̄ϕ = −2eϕ,

which is the Liouville equation with the “wrong sign”, sinceM = −2 (cf. Eq.(2.9)). This is

not a coincidence sinceeϕ is actually a metric of constant positive curvature on the sphere
parametrized byx0 (cf. Eq.(2.8)). In this respect we note that it is possible to Weyl rescale
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the metric in such a way that the curvature be−1 everywhere except that atn � 3 singular
points. Then, removing the singularities will lead to the standard Liouville equation o
punctured sphere.

In general, the classical Zamolodchikov relations inSL(2,R)k WZNW model, Eq.(1.5),
are equivalent to

(4.8)∂m
x̄ ∂m

x

[
ϕe

1−m
2 ϕ

] = −2m!(m − 1)![e 1+m
2 ϕ

]
.

Notice also that the coefficient on the RHS of the above equation matches the corre
ing coefficient in(1.1)upon settingM = −2. The decoupling equations(1.8)are

(4.9)∂m
x̄

[
e

1−m
2 ϕ

] = ∂m
x

[
e

1−m
2 ϕ

] = 0,

which are completely analogous to Eqs.(1.1), (1.2)in LFT, except for the fact that th
differential operatorDm is now∂m

x . In other words, whereas in the case of LFT one c
siders the Riemann surface rather than the upper half-plane, in the present case, th
Riemann sphere, the surface corresponds to its universal covering. Thus, in the cas
Riemann sphere the operators simplify to∂m

x , just as in the case of the operatorsDm on
the negatively curved Riemann surfaces that essentially reduce to10 ∂m

τ . In other words, the
simplification of the covariant operators on the Riemann sphere corresponds to the
fication of theDm once seen onH, which in turn has the same origin of the simplificati
of the Poincaré metric from the Riemann surface toH as it reduces to 1/(Im τ)2, and solves
the Liouville equation in theH variableτ , losing its Jacobian|τ ′|2.

As in the case of the upper half-plane, where the Fuchsian projective connectio
ishes,11 the analogous quantity on the Riemann sphere

(4.10)T = −1

2
(∂xϕ)2 + ∂2

xϕ

is identically zero. Actually, one sees that(4.4) and(4.6) give (∂xϕ)2 = 2∂2
xϕ. Besides,

we can directly observe the vanishing of theT (x) by noticing thatT (x) = 2eϕ/2∂2
x e−ϕ/2

and, thus, since the decoupling operators are simply derivatives (i.e.,∂2e−ϕ/2 = 0), we
eventually findT (x) = 0 as a direct consequence.

Therefore, one can immediately conclude that the analogues of the Liouville deco
operatorsDm reduce to∂m

x . In this sense, the variablex is a trivializing coordinate. In
order to better understand this statement, notice that upon a change of coordinates,x → y,
the projective connectionT (x) transforms almost like a quadratic differential but not i
homogeneous way

(4.11)T̃ (y) =
(

∂x

∂y

)2

T
(
x(y)

) + {x, y}.

10 More precisely, note that by(3.33)the solutions ofS(m)
τ ·ψ = 0, have the common global term( ∂z

∂τ
)

m−1
2 , so

thatS(m)
τ · ψ = ( ∂z

∂τ
)
− m+1

2 ∂m
τ φ = 0, whereψ = ( ∂z

∂τ
)

m−1
2 φ. Therefore, finding the inverse of the uniformizin
map reducesS(m)
τ · ψ = 0 to the trivial equation∂m

τ φ = 0.
11 Since the Fuchsian projective connection is given by{τ, z}, onH we simply have{τ, τ } = 0.
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In particular, the presence of the Schwarzian derivative implies thatT (y) will be in general
non-vanishing, unlessy is a linear fractional transformation ofx.

Furthermore, recall that the variableτ introduced in LFT plays the role of atrivializing
coordinate. Correspondingly, in terms ofτ , the LFT decoupling operatorsDm = S(m)

τ are

(∂τ z)
− m+1

2 ∂m
τ (∂τ z)

1−m
2 .12

4.1. SL(2,R) covariant hierarchy and AdS3/CFT2 correspondence

In the previous subsection, we showed that the classicalSL(2,R)k Zamolodchikov re-
lations derived in[2], Eqs.(1.5), (4.8), are in one-to-one correspondence with the class
relations derived by Zamolodchikov in LFT[1], Eq.(1.1). Furthermore, the isotopic coo
dinatex, which is interpreted as the boundary variable in theAdS3/CFT2 correspondenc
[3], plays the role of atrivializing coordinate. This means that the decoupling opera
reduce to simple partial derivatives,∂m

x and∂m
x̄ . Then, theSL(2,R)k decoupling operator

are in one-to-one correspondence with the USOS(m)
τ [5], with τ thetrivializing coordinate

in LFT.
Because of the physical meaning of variables (x, x̄) as the coordinates on the manifo

where the boundary conformal field theory is formulated, we find a motivation to
particular attention to these. For instance, let us note that the first relation

(4.12)∂x∂x̄ϕ(z|x) = −2eϕ(z|x),

is covariant if and only if the RHS transforms as a(1,1)-differential under a holomorphi
change of coordinatesx → x̃. This, in the context of theAdS3/CFT2 correspondence
amounts to saying that the above operator has conformal weight(h, h̄) = (1,1) in the
boundary CFT. In fact, the boundary conformal dimensionhboundaryis determined by the
highest weightj of the vertex operatorΦ2j+1 via [3]

(4.13)hboundary= −j,

which encodes the fact that the generators of the global conformal symmetry of the b
ary correspond to the generators of the globalSL(2,C) symmetry ofAdS3 [22–24]. Be-
sides, observe thateϕ(z|x) is the classical limit of a Kac–Moody primary operatorΦ2j+1,
whose highest weight isj = ̃ +

1,1 = −1 [2]. Thus,eϕ is a(1,1)-differential in the boundary
variables, as is suggested from the fact that it satisfies the Liouville equation. A s
analysis shows that the higher order relations(1.5), (4.8)are also naturally covariant in th
boundary variables.

Furthermore, observe also that the relations found in[2] turn out to be a set of War
identities for the boundary CFT. This is due to the fact that theAdS3/CFT2 correspondenc

12 One may realize an important subtlety here. While the Liouville geometry considered in the last s
has a negative curvature,eϕ for SL(2,R) has a sphere geometry and hence a positive curvature. However
though we have fully utilized the Liouville geometry of the negative curvature (Poincaré upper half-pla
derive the explicit form of the Zamolodchikov relations, once we have written them down in an algebraic m

as differential equations, the analytic continuation of the cosmological constant obviously works (see also the
discussion in Section2.1). Thus the parallelism we propose does not break here.
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states that correlation functions in the BCFT are directly related to correlation functio
appropriate bulk-boundary operators in the worldsheet[3]

(4.14)

〈∏
i

Φji
(xi, x̄i)

〉
BCFT

=
〈∏

i

∫
d2zi Φji

(zi, z̄i |xi, x̄i)

〉
worldsheet

.

Therefore, via Eq.(4.14), operator-valued relations on the RHS yield non-trivial W
identities for the boundary CFT on the LHS. In particular, Eqs.(1.5), (4.8)and their quan-
tum counterpart play a special role since the corresponding decoupling operators na
involve only the isotopic or boundary coordinates(x, x̄).13

5. SL(2,R) finite representations in WZNW and LFT

Certainly, it is impossible to avoid the question about whether the connection be
Liouville theory andSL(2,R) symmetry we have studied so far is or is not connected
the other known relations existing between this pair of CFTs. In fact, since the re
between the WZNW model formulated onSL(2,R) and the LFT (or deformations of thes
models) frequently appears in different contexts, we find it convenient here to short
cuss how the specific connection we point out in this paper relates itself to those
works linking both conformal theories.

Let us first briefly comment on the geometrical nature of theSL(2,R) symmetry, as
being the isometry group of the hyperbolic upper half-plane involved in the uniformiz
problem where Liouville theory plays a central role.

The meaning of the decoupling equations(1.8) within the context ofsl(2)k algebra
is that the Kac–Moody primary fieldsΦm generate a finite-dimensional spinj = m−1

2
representation ofSL(2,R). This fact is reflected in the polynomial form ofΦm in terms
of x. Thus, the solutions of the decoupling equation that span the representation
monomials

(5.15)ψj,m = xj+m, m = −j, . . . , j.

In terms of this realization, the generators of thesl(2) algebra are (a = {+,−,3})
(5.16)D3 = x∂x − j, D− = −∂x, D+ = −x2∂x + 2jx

and then, the action of the currents on the vertex operatorsΦj(z|x) is given by

(5.17)
[
J a

n ,Φj (z|x)
] = znDa

j Φj (z|x).

13 In general, the worldsheet correlation functions on the RHS will contain other vertex operators tha
from the CFTs that are combined with theAdS3 WZNW factor. For instance, the full (super)string backgrou
may beAdS3 ×S3 ×M . The presence of these vertex operators that multiply eachΦji

(zi , z̄i |xi , x̄i ) may actually
be necessary for the above formula to be covariant. Namely, covariance requires that the full vertex o

Φji

(zi |xi )×VN have worldsheet conformal weight(1,1), whereVN refers to the vertex operator in the manifold

S3 × M .
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The monomialsψj,m are eigenfunctions ofD3
j and correspond to the usual basis|j,m〉 of

the spinj representation

(5.18)D3ψj,m = mψj,m, D±ψj,m = (±j − m)ψj,m±1.

Similarly, the solutions of the classical Liouville decoupling equationS
(2j+1)
τ χ = 0 span a

spinj representation ofSL(2,R)

(5.19)χj,m(z) = τ(z)j+m

τ ′(z)j
, m = −j, . . . , j.

The generators are given by

D3 = τ ′(z)−j (τ∂τ − j)τ ′(z)j , D− = −τ ′(z)−j ∂τ τ
′(z)j ,

(5.20)D+ = τ ′(z)−j
(−τ2∂τ + 2jτ

)
τ ′(z)j .

As we discussed in Section2, the SL(2,R) symmetry has a geometrical origin. It corr
sponds to the isometry group of the hyperbolic upper half-plane. The exponential
Liouville field

(5.21)eϕ(z) = τ ′(z)τ̄ ′(z̄)
(Im τ(z))2

is invariant underSL(2,R) transformations. It also follows that for 2j ∈ Z+

(5.22)e−jϕ = 4−j

j∑
m=−j

(−1)m
(

2j

j + m

)
χj,m(z)χ̄j,−m(z̄).

The above expression shows that at the classical level negative powers of the me
decomposed into irreducible representations ofSL(2,R). Likewise, Gervais and Neve
have shown that at the quantum level there exists a decomposition of these negativ
ers of the metric into operators that transform under irreducible representations
quantum groupUq(sl(2)) [19]. This observation is the basis of the algebraic appro
to Liouville theory[20,21]. Representations ofUq(sl(2)) were also studied by Ponsot a
Teschner[25] who expressed the fusion coefficients of Liouville theory in terms of
appropriate Racah–Wigner coefficients. Certainly, it would be interesting to comp
understand the connection existing between the mentioned algebraic approach and
lation we presented here. This requires further study.

6. Conclusion

We proved that the classical Liouville decoupling operators are given by USO[5],
which once again shows the close relationship between Liouville theory and the
of uniformization of Riemann surfaces. This result enables us to define atrivializing co-
ordinateτ , such that the decoupling operators become simple partial derivatives inτ and

the classical energy–momentum tensor vanishes. Conversely, we showed that the classical
SL(2,R)k Zamolodchikov relations derived in[2], Eqs.(1.5), (4.8), can be written in a
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manifestly Liouville-like fashion and are in one-to-one correspondence with the cla
relations derived by Zamolodchikov in LFT[1], Eq.(1.1). In particular, the isotopic coor
dinatex, which is a boundary variable in theAdS3/CFT2 correspondence, plays the sa
role of atrivializing coordinate asτ does. The manifestSL(2,R) symmetry on the WZNW
side is mirrored by theSL(2,R) isometry of the hyperbolic upper half-plane, whereτ lives.

There are some future directions worthwhile pursuing. First of all, it is importa
extend our results beyond the classical limit (i.e., finiteb or k). As we can easily see, th
Zamolodchikov coefficients for the both theories have a similar structure even qua
mechanically. As was signaled in[26], the decoupling operator in theSL(2,R)k model has
an explicitly factorized form, while it does not in the Liouville (Virasoro) case. Theref
the connection at the quantum level may suggest an elegant way to derive Virasoro
pling operators explicitly. In this context, the Hamiltonian reduction may be also us
Furthermore, the geometrical meaning of the Zamolodchikov coefficients will shed a
light on the quantum LFT itself.

Secondly, our results have an obvious application to theAdS3/CFT2 duality. As we have
discussed in Section4, the Zamolodchikov relations in theSL(2,R) model provide a set o
Ward identities for the boundary CFT after the integration over the worldsheet coordinz.
In the case of the Liouville theory, it is believed that constraints from the Zamolodch
relations will give an important clue to the integrability of the minimal string theory (e
in higher genus). Therefore, it is very plausible, in view of the correspondence be
the two theories discussed in this paper, that further study of the Zamolodchikov rel
in theSL(2,R)k model will yield a hint towards the complete solution of theAdS3/CFT2

correspondence.
Finally, the fact that the inverse uniformizing mapτ(z) becomes a trivializing coordi

nate of the Liouville decoupling equation in the classical limit suggests the introdu
of a quantumτ(z) as a fundamental block of the quantization of the LFT. In the litera
(e.g., [19,21]) some attempts of the quantization based on the Bäcklund transform
were discussed in the case of the simple geometry. On more complicated Riema
faces, the non-trivial global transformation ofτ(z) besides the univalence should play
important role. The quantization of such a “scalar” with non-trivial global transforma
properties will be an interesting problem and also useful for the quantization of the
ville theory on the higher genus Riemann surfaces.
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Appendix A. Matrix formulation and explicit form of Virasoro null vectors

Here we give another independent proof of the fact that the classical decoupling
atorsDn coincide with the USOS(n)

τ defined in Section3. The strategy is the following
First we introduce a nice and compact way to express our operators as “formal de
nants” of matrices. In particular, as found in[8], this leads to an explicit formulation of th
quantum decoupling operatorDn,1. Taking the classical limit, we recover the USOS(n)

τ .

A.1. Operators as matrices

Now we explain how to write a general operator as a formal determinant of a m
First we need a realization of thesl(2) algebra in then × n space of matrices (we use al
2j + 1= n). We take

[J−]p,q = δp,q+1, [J0]p,q = (j − p + 1)δp,q,

(A.1)[J+]p,q = p(n − p)δp+1,q .

These matrices satisfy the commutation relations:[J0, J±] = ±J±, [J+, J−] = 2J0. We
call a generic operatorOn, and the corresponding matrix operatorÔn = −J− + A, where
A is an upper triangular matrix. The operatorOn is the formal determinant of the matr
operatorÔn. The formal determinant is defined as follows. We set�f = (f1, f2, . . . , fn)

and �F = (F0,0, . . . ,0). If the matrix satisfies the relation�F = Ôn
�f , then its formal de-

terminant satisfiesF0 = Onfn. There are a lot of matrices that correspond to the s
operator, so we can make a sort of gauge transformation for matrices. We takeN as an up-
per triangular matrix with one on the diagonal. Two matrix operators related by the g
transformation

(A.2)Ô ′
n = N−1ÔnN

define the same differential operator.14

A.2. The Virasoro null vector (n,1)

The operatorDn,1, which annihilates the leveln null Virasoro primary, is obtained a
the formal determinant of the following matrix operator[8]:

(A.3)D̂n,1 = −J− +
∞∑

k=0

(
b2J+

)k
L−k−1.

To take the classical limit[1] we sendb → 0,L−1 → dz and 2(k−2)!b2L−k → dz
k−2T

at k > 1. By using(2.12), the classical decoupling operator is

(A.4)D̂n = −J− + dz1+ 1

2
{τ, z}J+.

14 Note that alsoN−1 is an upper triangular matrix with 1 on the diagonal. The gauge transformation o

vector(f1, . . . , fn) leavesfn invariant, and on the vector(f0,0, . . . ,0) leavesf0 invariant. At the end the formal
determinant takes into account only the dependence off0 from fn.
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This is indeed the matrix formulation of the USO. In fact, defining the logarithmic de
tive l = τ ′′/τ ′ and making the following gauge transformation

(A.5)D̂n = e−lJ+/2Ŝ(n)
τ elJ+/2

we obtain

(A.6)Ŝ(n)
τ = −J− + d1− lJ0.

The formal determinant is equivalent to(1.10).

Appendix B. Schwarzian operators and Schwarzian derivative

The operatorS(m)
τ depends onϕz ≡ ∂zϕ only through the classical energy–moment

tensor

(B.1)T = {τ, z} = {∂z̄ϕ, z} = −1

2
(∂zϕ)2 + ∂2

z ϕ.

In order to prove this, we are going to show that the variation of the operator un
deformation ofϕz that keepsT invariant is vanishing[27].

First of all, forδT to be vanishing we need

(B.2)δT = ∂zδϕz − ϕzδϕz = (∂z − ϕz)δϕz = 0.

The crucial observation is that this is equivalent to

(B.3)(∂z − jϕz)δϕz = δϕz

(
∂z − (j − 1)ϕz

) ↔ Ajδϕz = δϕzAj−1,

whereAj ≡ ∂z − jϕz. On the other hand, since

(B.4)S(m)
τ = S(2j+1)

τ = ejϕ∂ze
−ϕ∂z · · · ∂ze

−ϕ∂ze
jϕ

can be rewritten as

S(m)
τ = S(2j+1)

τ = (
ejϕ∂ze

−jϕ
)(

e(j−1)ϕ∂ze
−(j−1)ϕ

) · · · (e−jϕ∂ze
jϕ

)
(B.5)≡ AjAj−1 · · ·A−(j−1)A−j

one finds

δS(2j+1)
τ = δAjAj−1 · · ·A−j + AjδAj−1 · · ·A−j + · · · + AjAj−1 · · · δA−j

= −jδϕzAj−1 · · ·A−j − (j − 1)Aj δϕz · · ·A−j + · · ·
= −jδϕzAj−1 · · ·A−j − (j − 1)δϕzAj−1 · · ·A−j + · · ·(

j∑ )

(B.6)=

k=−j

k δϕzAj−1 · · ·A−j = 0.
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Appendix C. Classical Zamolodchikov relations, II

Here we show another way to derive the classical Zamolodchikov relations. First
note that

(C.1)S̄(2j+1)
τ S(2j+1)

τ

(
ϕe−jϕ

) = S̄(2j+1)
τ

2j+1∑
k=0

βk,2j+1ϕ
k
z e−jϕ,

where we used

(C.2)S(2j+1)
τ

(
ϕe−jϕ

) = e(j+1)ϕ
(
e−ϕ∂z

)2j+1
ϕ

and

(C.3)
(
e−ϕ∂z

)
ϕ = e−ϕ

∑
m=0

βm,ϕ
m
z .

The latter formula is valid because one can express a higher order derivative ofϕ in terms
of ϕz and the energy–momentum tensor together with its derivatives. Then, since

e−ϕ∂z̄

(
ϕ

2j+1
z

) = e−ϕ(2j + 1)ϕ
2j
z ∂z̄∂zϕ = e−ϕ(2j + 1)ϕ

2j
z Meϕ

(C.4)= (2j + 1)Mϕ
2j
z

one finds that

S̄(2j+1)
τ

(
ϕ

2j+1
z e−jϕ

) = e(j+1)ϕ
(
e−ϕ∂z̄

)2j+1(
ϕ

2j+1
z

)
(C.5)= (2j + 1)!M2j+1e(j+1)ϕ

and likewise

(C.6)S̄(2j+1)
τ

(
ϕk

z e−jϕ
) = 0

for k < 2j + 1. Hence

(C.7)S̄(2j+1)
τ S(2j+1)

τ

(
ϕe−jϕ

) = β2j+1,2j+1(2j + 1)!M2j+1e(j+1)ϕ.

One can evaluateβ2j+1,2j+1 by induction. In fact(
e−ϕ∂z

)+1
ϕ

= e−ϕ∂ze
−ϕ

∑
m=0

βm,ϕ
m
z

(C.8)= e−(+1)ϕ
∑

m=0

[
∂zβm,ϕ

m
z + mβm,ϕ

m−1
z

(
T + 1

2
ϕ2

z

)
− βm,ϕ

m+1
z

]
,

which implies that
(C.9)β+1,+1 = −

2
β, ⇒ βn,n = (−1)n+1 (n − 1)!

2n−1
.
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Finally

(C.10)S̄(2j+1)
τ S(2j+1)

τ

(
ϕe−jϕ

) = (−1)2j (2j)!
22j

(2j + 1)!M2j+1e(j+1)ϕ,

which is exactly Zamolodchikov’s result(1.1)once we usej = m−1
2 .
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