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Abstract
Five-dimensional black holes are studied in Lovelock gravity coupled to
Hoffmann–Infeld nonlinear electrodynamics. It is shown that some of these
solutions present a double peak behaviour of the temperature as a function of
the horizon radius. This feature suggests that the evaporation process, though
drastic for a period, leads to an eternal black-hole remnant. In fact, the form of
the caloric curve corresponds to the existence of a plateau in the evaporation
rate, which implies that black holes of intermediate scales turn out to be
unstable. The geometrical aspects, such as the absence of conical singularity,
the structure of horizons, etc are also discussed. In particular, solutions that are
asymptotically AdS arise for special choices of the parameters, corresponding
to charged solutions of five-dimensional Chern–Simons gravity.

PACS numbers: 04.50.+h, 03.50.Kk

1. Introduction

In this paper we discuss the possibility of finding a class of black hole for which the behaviour
of the temperature as a function of the horizon radius presents a double peak form. Typically,
this particular behaviour leads to the presence of a plateau in the evaporation rate, implying
a drastic evaporation for those black holes having sizes which are bounded between the
two scales where the peaks are located. We show that these black holes actually appear as
solutions of the Lovelock theory of gravity coupled to a particular nonlinear electrodynamics.
The existence of such phase behaviour is due to the fact that the two models considered here
(namely Lovelock theory and Hoffman–Infeld theory) represent short distance corrections
to both general relativity and Maxwell electrodynamics respectively and, consequently, two
peaks arise if the scales induced by both corrections do not coincide (scale splitting).
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Specifically, we study five-dimensional solutions representing charged black holes in
Hoffmann–Infeld electrodynamics within the framework of the Lovelock theory of gravity.
Currently, in a particular context, the study of the combined problem of considering certain
models of nonlinear (Born-Infeld like) electrodynamics and higher order gravitational theories
acquires importance due to the role that these theories play in low energy string inspired
models. Originally, the Hoffmann–Infeld model was proposed to avoid certain pathological
features that Born–Infeld field theory presents when spherically symmetric static solutions
are considered, such as the conical singularities that BIons present at the origin. Actually,
the modification of Born–Infeld theory presented in [1] has been shown to lead to spherically
symmetric particle-like objects whose associated metric is regular everywhere, so avoiding the
conical singularity of the Einstein–Born–Infeld case previously studied in [2]. Nevertheless,
the black-hole solutions in Einstein–Hoffmann–Infeld field theory are still singular since the
curvature diverges at the origin.

The explicit form of Hoffmann–Infeld action is presented in [1]. This can be written as
follows:

SHI = −b2

4

∫
d5x

√−g(1 − η(F) − log η(F))

with

η(F) = b−2FµνF
µν√

1 + 2b−2FµνFµν − 1
(1)

and where b represents a characteristic field, analogue to that appearing in Born–Infeld theory.
Actually, the Hoffmann–Infeld model corresponds to logarithmic modifications to a nonlinear
Born–Infeld-like Lagrangian, and was originally designed in such a way that certain regularity
conditions hold for both gravitational and electric fields when particle-like solutions are
considered. In the case of the gravitational field, the regularity condition comes from the
choice of an integration constant that amounts to stating the identity between gravitational and
electromagnetic masses.

On the other hand, the short distance corrections carried by higher order theories, such
as the Lovelock theory of gravity, automatically held the divergences associated with the
Newtonian term [3]. Hence, the finiteness of the gravitational field at the origin is guaranteed
ab initio. This means that the identification between electromagnetic and gravitational masses
in Lovelock gravity does not come from imposing the requirement for the metric of the
spacetime to be finite but by adding the requirement that no conical singularity should exist
there [4].

In the following section, we describe the charged black-hole solutions in five-dimensional
Lovelock gravity coupled to Hoffmann–Infeld nonlinear electrodynamics. In section 3, we
study the thermodynamics of this solution, with particular interest focused on the evaporation
phenomenon.

2. Charged black-hole solutions

The most general five-dimensional gravity action that depends on the metric and its derivatives
up to the second order and, besides, leads to conserved field equations is the Lovelock
gravitational action. This is given by supplementing Einstein–Hilbert action with Gauss–
Bonnet terms. In lower dimensional models (D < 5) these terms represent topological
invariants and, hence, Lovelock gravity turns out to coincide with general relativity. In five
dimensions the action is

S = 1

16π

∫
d5x

√−g(R − 2� + α(RµνρσRµνρσ + R2 − 4RµνR
µν)) + SHI,
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where α is the Gauss–Bonnet coupling constant, which defines a length scale. Actually, this
theory introduces short distance corrections to general relativity, implying the existence of a
scale lα = √

4α where such corrections turn out to be relevant.
The gravitational equations of motion resulting from δS = 0 are

8πTµν = Rµν − 1
2Rgµν + �gµν − α

(
1
2gµν(RρδγλR

ρδγλ − 4RρδR
ρδ + R2)

− 2RRµν + 4RµρR
ρ
ν + 4RρδR

ρδ
µν − 2Rµρδγ Rν

ρδγ
)
,

where Tµν is the stress-tensor representing the matter-field distribution coming from the
variation δSHI/δg

µν .
Here, we are interested in static spherically symmetric solutions satisfying the following

ansatz:

ds2 = −gα(r) dt2 + g−1
α (r) dr2 + r2 dθ2 + r2 sin2 θ dχ2 + r2 sin2 θ sin2 χ dϕ2

which, once replaced in the field equations, yields

− 3

r3

d

dr
(r2(1 − gα(r)) + 2α(1 − gα(r))2) + 2� = 16πT 0

0. (2)

Then, it is straightforward to prove that the following functional relation holds:

gα(r) − g0(r) = 2α

r2
(1 − gα(r))2 (3)

g0(r) being a spherically symmetric solution of the field equations with α = 0, which is simply
determined by solving Einstein equations in five dimensions. The meaning of equation (3) can
be intuitively understood by the following heuristic argument: let us consider the gravitational
potential φα(r) defined as gα(r) = 1 − 2φα(r); then, according to the above relation, the
potential can be written as φα(r) = φ0(r) + mg(r)

r2 where the mass mg is due to the gravitational
potential itself and given by mg = −(lαφα(r))2.

Besides, when the total energy of the source is finite, g0 can be written as

g0(r) = 1 +
16π

3r2

∫ r

0
ds s3T 0

0(s) − �

6
r2. (4)

This solution amounts to the choice of a null integration constant in (2) (a possible term k/r2

has been removed in (4)), and implies the identification of gravitational and electromagnetic
masses. The finiteness of the total energy guarantees the Newtonian behaviour at infinity.

The nonlinear electrodynamics with finite total energy is characterized by a field scale b
defining the typical length scale lb = (e/b)1/3, where e is the charge of the object. We will
consider the electromagnetic stress-tensor for a particle-like source as having the generic form

T 0
0 (r) = − b2

4πr3
hb(r). (5)

In the case of the Hoffmann–Infeld model, the function hb(r) is given by

hb(r) = 1
2 r3 log

(
1 + l6

br
−6

)
, (6)

and, as was already mentioned, corresponds to a charged particle-like source with electric field
E(r) = e

/(
r3 + l6

br
−3

)
. On the other hand, in the case of the Born–Infeld model the function

is hb(r) =
√

r6 + l6
b − r3. Moreover, in the generic case4 we will demand the following

finiteness conditions:

lim
r→0

1

r2

∫ r

0
ds hb(s) = δ < ∞,

∫ ∞

0
ds hb(s) = γ < ∞. (7)

4 Which are not satisfied by the particle-like source yielded from Maxwell theory.
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Note that, in the case of the Hoffmann–Infeld model one finds γ = πl4
b

4
√

3
. The first condition

in (7) is the requirement for the metric to be finite when a particle-like solution is considered
as the source of Einstein gravity theory. On the other hand, the second condition means that
the total energy of the particle turns out to be finite. The Born–Infeld charge fulfils both
requirements (Hoffmann studied a Born–Infeld charged black hole in four dimensions, in
the context of Einstein gravity [2]). However the Born–Infeld charge yields δ �= 0, which
means that a conical singularity remains in the metric. Hoffmann and Infeld removed the
conical singularity by modifying the Born–Infeld electrodynamics in order to obtain δ = 0
[1]. However, Lovelock gravity also removes the conical singularity, as can be seen in relation
(3). In fact, it results in

gα(r) = 1 +
r2

l2
α

+ ε
r2

l2
α

√
1 +

8b2l2
α

3r4

∫ r

0
ds hb(s) +

l2
α

l2
�

, (8)

where ε = ±1 and l2
� = 3/�. Thus, we find that limr→0 gα(r) = 1 for any finite δ. Note that

this is a charged Deser–Boulware [3] black hole. Moreover, note that, in the large r/ lα limit,
the following asymptotic behaviour is obtained:

gα(r) = 1 + λεr
2 +

4εe2

3l6
br

2

∫ r

0
ds hb(s) + · · · , (9)

where λε = (1 + ε)
/
l2
α + ε

/
2l2

� and the dots refer to subleading orders in lα/r (and subleading
orders in lα/ l� as well). Furthermore, if the large r/ lb limit of the metric is performed, we
find

gα(r) = 1 + λεr
2 − 2mε

πr2
+ · · · (10)

once the mass is accordingly identified as mε = −ε
2π2e2γ

3l6
b

. Conversely, if we first take the limit

b → ∞ (i.e. lb/r → 0) and then explore the asymptotic behaviour, the geometry becomes

gα(r) = 1 + λεr
2 − ε

e2

3r4
+ · · · (11)

which, for instance, in the case ε = +1 corresponds to a black hole with a dominant
cosmological term λ ∼ l−2

α and a wrong sign Reissner–Nordström term ∼ −e2/r4. This
mimics a charged massless black hole with imaginary electric charge; though it has to be
emphasized that the mechanism leading to such a metric is substantially different to the one
leading to black holes with an analogous tidal charge term, cf [5]. It is relatively simple to
verify that, considering subleading effects in powers of lα/ l�, the mass of (8) is given by

m = 2πb2γ

3

(
1 +

∞∑
n=2

(2n − 3)!!

2n−1(n − 1)!

( − l2
α

/
l2
�

)n−1

)
, (12)

where lα < l� and where the dressing of the Newtonian term manifestly appears due to the
presence of the cosmological constant � (see [4]). This dressing effect is characterized by the
expansion in powers of the dimensionless parameter l2

α

/
l2
�. Moreover, the specific value of

the first term in such an expansion is that required for the metric to be regular at r = 0.
On the other hand, for the specific value l2

α = −l2
� (α > 0,� < 0), the solution takes a

rather different form; namely

gα(r) = 1 +
r2

l2
α

+ c(r) (13)
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Figure 1. The position of the event horizon as a function of the black-hole mass for different
values of b (α = 0.5, e = 1, � = 0).

with the function

c2(r) = 8b2

3l2
α

∫ r

0
ds hb(s). (14)

This metric corresponds to an asymptotically anti-de Sitter space in five dimensions. This
is due to the finite value c2(∞) = 8b2γ

3l2
α

at infinity. Geometries (14) present event horizons and
are closely related to the black-hole solutions of Chern–Simons gravitational theory.

In particular, for the Lovelock–Hoffmann–Infeld black hole, the function hb(r) clearly
satisfies the finiteness conditions described above. In this case, the charged black-hole
solution (8) shares several properties with the one built for the Born–Infeld model, e.g.
the existence of charged black holes with a unique horizon. However, the horizon structure
of both theories is certainly different (cf figure 1 and the analogue presented in [6]), e.g. the
fact that the internal radius r− decreases when the mass m increases (for a fixed charge e)
is strongly more evident for the case of the Hoffmann–Infeld black hole. Moreover, by
comparing the solution (8) and the one corresponding to the Lovelock–Born–Infeld black
holes [4–9], it is feasible to verify that in both theories gα(r) can be set to 1 at the origin r = 0.
Nevertheless, in the case of Lovelock–Hoffmann–Infeld solutions, we find that dgα(r)

dr
vanishes

in the limit r → 0 whereas it goes to −∞ for Lovelock–Born–Infeld black holes (see figure 2
which manifests the difference between both solutions at the origin). This is because the short
distance corrections to Maxwell theory involved in the Hoffmann–Infeld are, in some sense,
stronger than the ones corresponding to the Born–Infeld model.

3. Thermodynamics

Now, the question arises as to what are the thermodynamical properties of this charged black-
hole solution. Certainly, it is known that black holes in Lovelock gravity present special
features which are not shared with their analogues in Einstein gravity theory; namely, these
black holes typically have an infinite lifetime, present a positive specific heat for small radii,
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Figure 2. The (potential) function gα(r) for both Hoffmann–Infeld (HI) and Born–Infeld (BI)
solutions (α = 0.1, e = 1, � = 0).

their isothermal graphs for the charged cases turn out to be rather different [6], violate the
Bekenstein’s area formula [7, 8] and the temperature formula in the general case presents
an additional term which identically vanishes for D = 5. Here, we show that, besides
these remarkable aspects, the Lovelock–Hoffmann–Infeld black holes present a plateau in the
evaporation rate as a function of the horizon radius r+. This aspect implies that the solutions
charged under the Hoffmann–Infeld electrodynamics evaporate drastically when they have
middle sizes within the range of scales where the specific heat is negative. Eventually, these
black holes end up in a stable phase (region of positive specific heat) and their lifetimes result
infinite. This can be intuitively inferred from the fact that the caloric curve presents a double
peak form for certain tuning of the parameters.

Let us begin by writing the temperature for the case of vanishing cosmological constant,
namely

T = 1

4π

dgα(r)

dr |r=r+

= r+ − 2b2

3 hb(r+)

2π
(
l2
α + r2

+

) (15)

whose typical form is described in figures 3 and 4. The above expression corresponds to the
temperature of solution (8) with ε = −1 and � = 0; this solution is asymptotically flat, as
can be verified by means of the expansion (10). Actually, the regime of general relativity is
recovered in the limit lα/r+ → 0, where the expression for the temperature takes the form
T ∼ 1/r+.

We also note that the specific heat changes its sign due to the short distance corrections
imposed by both Lovelock and Hoffmann–Infeld models. The sign of the specific heat enables
one to infer which are the regions of thermodynamical stability (where the black hole can be
in thermal equilibrium with the environment). Consequently, the evaporation rate of these
charged solutions is obtained from (15) by integrating over the energy flux. This is done by
making use of the Stefan–Boltzmann law in five dimensions; namely dMs

dτ
∼ T 5,Ms being the

surface energy density
(
Ms ∼ m

/
r3

+

)
. Then, by using that the (three-dimensional) surface of
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Figure 3. Black-hole temperature as a function of the horizon radius (b = 2, e = 1); representing
the caloric curve.
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Figure 4. Black-hole temperature as a function of the horizon radius (α = 0.05, e = 1);
representing the caloric curve.

the horizon is given by π
2 r3

+ and the expression of the temperature is given by (15) we can
integrate over the black-hole size in order to obtain the evaporation time

τ ∼
∫ r0

r+

ds

(
l2
α + s2

)5

s3
(
s − 2

3b2hb(s)
)4 . (16)

This corresponds to the time required for a black hole to evaporate, starting with the initial
size r0 and ending with a size r+. Note that r+ is a monotonic function of the mass (energy) m.
The sign ∼ stands in the above formula because of the presence of a positive multiplicative
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Figure 5. Evaporation time τ as a function of the final radius r+ (α = 0.05, e = 1, b = 2). A
plateau manifestly appears in the evaporation rate. The graph has been normalized by means of
an appropriate redefinition of the Stefan–Boltzmann constant.

constant which is given in terms of the (inverse of the) Stefan–Boltzmann constant in five
dimensions.

This result leads us to observe the presence of the plateau which is studied in figure 5,
showing a rapid transition between the two scales where the first maximum and the local
minimum of figure 3 are located5. The evaporation rate is usually displayed by analysing
the quantity dm/dτ ; let us note that figure 4 (showing the time τ required to reach a size
r+) basically gives the same information: this is because the plateau of the graph precisely
corresponds to those scales for which the transition (evaporation) is abrupt and, hence, the
quantity dm/dτ would present a peak precisely located in that region. Moreover, since we
are interested in studying the scales where such an abrupt transition occurs, we find figure 4
convenient because it manifestly shows those scales within which such a drastic effect takes
place.

An interesting analysis of the black-hole thermodynamics in Einstein–Gauss–Bonnet
gravity and Chern–Simons gravity was recently performed in [10–16]. To make contact with
Chern–Simons gravity, let us consider again the case l2

α = −l2
�, for which the formula of the

temperature as a function of the horizon radius r+ acquires a dominant linear term; namely

T = r+

2πl2
α

− b2hb(r+)

3π
(
l2
α + r2

+

) . (17)

This diverges in the limit r+/lα → 0.
Summarizing, the Lovelock theory of gravity in higher dimensions introduces short

distance corrections to general relativity due to Gauss–Bonnet terms which, in addition to

5 Let us remark the qualitative analogy existing between the caloric curve of the Lovelock–Hoffmann–Infeld black
holes and those corresponding to the models with long-range interactions in condensed matter. In fact, it is well
known that certain quasi-stationary states of those models exhibit a similar (double) change of sign in the specific heat
and actually are qualitatively similar to the profile displayed in figure 4 (for instance, cf [17] and references therein).
The caloric curve obtained here is reminiscent of that.
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the Einstein–Hilbert action, have to be taken into account in the most general theory of
gravity. These terms, corresponding to Lanczos quadratic gravity for D = 5, are such that the
mentioned short distance effects imply substantial differences with respect to the black-hole
thermodynamics of general relativity; these were listed above. In addition, we discussed
here how the charged black holes in Lovelock five-dimensional gravity coupled to nonlinear
Hoffmann–Infeld electrodynamics present other interesting features like the existence of the
double peak profile in the caloric curve, leading to a particular evaporation effect for which
two different thermodynamically stable regions exist. The black holes evaporate drastically
for certain sizes that are bounded by two critical radii; this region corresponds to the one
where the specific heat is negative. Eventually, a final phase is reached and the black holes
become eternal; the explicit computation of the evaporation rate leads to an infinite lifetime
as result. Because of the particular profile of the caloric curve, the evaporation phenomenon
described here is qualitatively different to the one corresponding to the five-dimensional
Lovelock–Born–Infeld solutions, cf [4–9].

Furthermore, the analysis of the static spherically symmetric solution presented in this
paper is general enough as to be suitable for adaptation to the case of Lovelock black holes
charged under a quite generic model of nonlinear electrodynamics. In particular, it would
be relatively easy to extend it to those models of electrodynamics leading to regular black
holes6 in Einstein gravity [18–22]. The analysis of these geometries within the framework of
Lovelock gravity could be an interesting subject for further study.

Before concluding, let us make a brief remark on the higher dimensional case. Certainly,
the five-dimensional case presents a special feature: the fact that the expression for the
temperature (15) acquires an additional term in D dimensions, which is proportional to (D−5).
This is precisely why previous papers on the subject (see for instance [6]) considered the case
D = 5 as a special one. However, it is also true that, besides that, several qualitative aspects of
the thermodynamics of the 5D Lovelock black holes are shared with their higher dimensional
analogues: For instance, this is the case of the change of the sign of the specific heat at
short distances and the existence of infinite lifetime remnants. Then, similar features to those
analysed in this paper are expected to be valid in the D-dimensional Lovelock–Hoffmann–
Infeld black holes.
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