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Abstract. Diffraction of linearly polarized plane electromagnetic waves at the
periodically corrugated boundary of vacuum and a linear, homogeneous, uniaxial,
dielectric–magnetic medium is formulated as a boundary-value problem and
solved using the Rayleigh method. The focus is on situations where the diffracted
fields maintain the same polarization state as the s- or p-polarized incident
plane wave. Attention is paid to two classes of diffracting media: those with
negative definite permittivity and permeability tensors, and those with indefinite
permittivity and permeability tensors. For the situations investigated, whereas the
dispersion equations in the diffracting medium turn out to be elliptic for the first
class of diffracting media, they are hyperbolic for the second class. Examples are
reported with the first class of diffracting media of instances when the grating acts
either as a positively refracting interface or as a negatively refracting interface.
For the second class of diffracting media, hyperbolic dispersion equations imply
the possibility of an infinite number of refraction channels.
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1. Introduction

Originating primarily from a theoretical speculation of Veselago [1], intensive studies of the
propagation of plane electromagnetic waves in isotropic, homogeneous materials with negative
real permittivity and permeability scalars have been recently reported [2]–[4]. Materials with
these constitutive properties are characterized by a negative index of refraction, because the
phase velocity vector is in the opposite direction of the energy flux. This leads to the apparent
(but not actual) reversal of the law often attributed to van Snel (but discovered 6 centuries
earlier by Ibn Sahl [5]) and to other phenomenons not observed in isotropic materials with
positive real permittivity and permeability scalars, such as reversal of both the Doppler shift
and Cerenkov radiation, or a change from radiation pressure to radiation tension [1]. Although
materials with these characteristics do not seem to occur naturally, composite materials having
an effectively negative index of refraction in the microwave range have been constructed
[6]–[8], the negative real permittivity and permeability scalars respectively arising from arrays
of conducting wires [9] and arrays of split ring resonators [10]. The size and spacing of the
array elements being much smaller than the electromagnetic wavelengths of interest, such
non-homogeneous composite materials—often called metamaterials—perform as effectively
homogeneous materials. As McCall et al [11] and Boardman et al [12] have pointed out, it
is best to call these materials negative-phase-velocity (NPV) materials. This definition has been
extended by Mackay and Lakhtakia [13] to encompass the negative projection of the phase
velocity vector on the time-averaged Poynting vector (i.e. the direction of energy flux).

Negative refraction by natural crystals has also been observed [14], but that cannot be
ascribed to a negative index of refraction; instead, due to anisotropy, the phase velocity vector
and the direction of energy flux can sometimes be counterposed [15] to show negative refraction.
Counterposition means that the two vectors lie on opposite sides of the normal to a refracting
interface. Our focus in this paper is not on such anisotropic materials, but on anisotropic NPV
metamaterials.
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This focus comes from the fact that the NPV metamaterials synthesized thus far are actually
anisotropic in nature, and any hypothesis about their isotropic behaviour holds only under some
restrictions on propagation direction and polarization state. As an example, Parazzoli et al
[7] demonstrated negative refraction using s-polarized microwaves and samples for which the
permittivity and permeability tensors have certain eigenvalues that are negative real. Since the
use of anisotropic NPV materials offers flexibility in design and ease of fabrication, attention
has begun to be drawn to such materials [13], [16]–[19].

The intrinsic difference between NPV and positive-phase-velocity (PPV) materials is easily
manifested in simple boundary-value problems. Consider, for example, the reflection and
refraction of a plane wave due to a flat boundary between vacuum and an isotropic, homogeneous
medium characterized by relative permittivity scalar ε and relative permeability scalar µ. The
incident plane wave is directed at an angle θ0 with respect to the normal to the boundary. A
simultaneous change in the signs of the real parts of both ε and µ changes the phase of the
reflection coefficient but not its magnitude [20]; therefore, the reflectance of the boundary is the
same for both cases. Consistently with that conclusion, it has been shown that, when the boundary
is periodically corrugated, the NPV to PPV (or the PPV to NPV) transformation affects mainly
the non-specular reflectances and refractances when the corrugations are shallow, and that the
effect on the specular reflectance and refractance intensifies as the corrugation deepens [21]–[23].

Gratings made of homogeneous NPV materials require investigation for two reasons.
Firstly, the emergence of these metamaterials promises new types of gratings which could be
significantly different from their PPV counterparts. Secondly, all experimental realizations of
NPV metamaterials thus far are as periodically patterned composite materials, with the unit cell
size smaller, although not extremely, than the wavelength. Due to this finite electrical size of the
unit cell, the exposed surface of the metametarial is not planar, but periodically modulated instead.
As a result of the grating formation, the specular reflected/refracted waves can be accompanied
by non-specular diffracted waves, as has been reported recently [8, 24, 25].

In this paper, we discuss the characteristics of diffraction of plane waves due to the
periodically corrugated boundary of vacuum and a linear, homogeneous, uniaxial, dielectric–
magnetic NPV medium [13], whose permittivity and permeability tensors share a common
distinguished axis which is usually referred to as the optic axis. Thus, four constitutive scalars
are needed to characterize the diffracting medium: ε‖ and µ‖, which are the respective elements
of the relative permittivity and relative permeability tensors along the optics axis; and ε⊥ and
µ⊥, which are the elements of the two tensors in the plane perpendicular to the optic axis. These
scalars have positive real parts for natural crystals, but their real parts can have any sign for
metamaterials. The dispersion equation for harmonic plane waves in such a medium can be
factorized into two terms, leading to the conclusion that the medium supports the propagation
of two different types of linearly polarized waves, called magnetic and electric modes [26, 27].

The plan of this paper is as follows. Section 2 contains a description of the boundary-
value problem for the diffraction of a plane wave by a grating made of the chosen anisotropic
NPV medium, as well as a description of the Rayleigh method adopted to solve the problem
numerically. Section 3 is devoted to a discussion of numerical results for two important classes
of the NPV medium: either both the relative permittivity and the relative permeability tensors are
negative definite (section 3.3) or both are indefinite (section 3.4). For the first class, the dispersion
equation has the same algebraic form as ellipses in plane geometry; but it is isomorphic to
hyperbolas for the second case. The incident plane wave is linearly polarized, and the incidence
plane as well as the orientation of the optic axis are chosen such that the reflected and the
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refracted waves are of the same polarization state as the incident plane wave. Most importantly,
we show that refraction can possibly occur in terms of an infinite number of propagating (i.e.,
non-evanescent) plane waves for certain types of NPV gratings. Concluding remarks are provided
in section 4. Let us point out here that, to our knowledge, this is the first report on diffraction by
gratings made of anisotropic NPV materials.

An exp(−iωt) time-dependence is implicit, with ω as angular frequency, t as time and
i = √−1. A cartesian coordinate system �r = (x, y, z) is used.

2. Grating theory

2.1. Boundary-value problem

Let us consider the periodically corrugated boundary y = g(x) = g(x + d) between vacuum
and a linear, homogeneous, uniaxial dielectric–magnetic medium, with d being the corrugation
period. The region y > g(x) is vacuous, whereas the medium occupying the region y < g(x) is
characterized by complex-valued relative permittivity and relative permeability tensors denoted
by ε̃ and µ̃, respectively. In dyadic form [28], these tensors can be written as

ε̃ = ε⊥Ĩ + (ε‖ − ε⊥)ĉĉ, (1)

µ̃ = µ⊥Ĩ + (µ‖ − µ⊥)ĉĉ, (2)

where Ĩ is the identity dyadic and the unit vector ĉ = (cx, cy, cz) is parallel to the optic axis of
the medium.

A linearly polarized electromagnetic plane wave is incident on the boundary from the
vacuous region y > g(x) at an angle θ0 (|θ0| < π/2), with respect to the y axis, the plane of
incidence being the xy plane. In the vacuous half-space y > max g(x), the electromagnetic field
is rigorously represented by the following Floquet expansions:

�E1 =
[

β
(1)
0

k0
H0x̂ +

α0

k0
H0ŷ + E0ẑ

]
exp [i(α0x − β

(1)
0 y)]

+
+∞∑

n=−∞

[
−β(1)

n

k0
Snx̂ +

αn

k0
Snŷ + Rnẑ

]
exp [i(αnx + β(1)

n y)], (3)

�H1 =
[
−β

(1)
0

k0
E0x̂ +

αn

k0
E0ŷ + H0ẑ

]
exp [i(α0x − β

(1)
0 y)]

+
+∞∑

n=−∞

[
β(1)

n

k0
Rnx̂ − αn

k0
Rnŷ + Snẑ

]
exp [i(αnx + β(1)

n y)]. (4)

Here and hereafter, x̂, ŷ and ẑ are the unit Cartesian vectors; k0 = ω/c is the wavenumber in
vacuum and c the speed of light in vacuum; E0 and H0 are complex amplitudes depending on
the polarization of the incident plane wave; Rn and Sn, |n| � 0, are scalar coefficients to be
determined by solving the boundary-value problem; and

α0 = k0 sin θ0, αn = α0 + 2nπ/d, β(1)
n = +

√
k2

0 − α2
n. (5)

We note that for any n, either β(1)
n is real and positive, or it is imaginary and positive.
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In the diffracting medium, for plane waves with electric-field amplitude vector �e and
wavevector �k, the Maxwell equations yield the condition [26]

W̃ · �e = �0, (6)

where �0 is the null vector and the dyadic

W̃ = (�k × µ̃−1) · (�k × Ĩ) + k2
0 ε̃. (7)

The dispersion equation

(�k · ε̃ · �k)(�k · µ̃ · �k) − ε⊥µ⊥k2
0[µ‖(�k · ε̃ · �k) + ε‖(�k · µ̃ · �k)] + k4

0det(ε̃)det(µ̃) = 0 (8)

is obtained therefrom by imposing the condition det(W̃) = 0. After the substitution of equations
(1) and (2), the dispersion equation becomes factorable, thereby showing that the allowable
wavevectors �k are solutions of the following equations:

�k · ε̃ · �k = k2
0µ⊥ε⊥ε‖, (9)

�k · µ̃ · �k = k2
0µ⊥ε⊥µ‖. (10)

The plane waves that satisfy equation (9) constitute the so-called electric modes, whereas those
that satisfy equation (10) are known as magnetic modes [26, 27].

Expressing the wavevector �k(�)
n = αnx̂ + β(�)

n ŷ (either � = E for modes of the electric type
or � = M for modes of the magnetic type) and then substituting �k = �k(�)

n into equation (9) or
(10), we obtain quadratic equations for β(�)

n as functions of αn, |n| < ∞ [29]. The vector �e(�)
n

corresponding to each solution �k(�)
n is given via a non-zero column of the adjoint of W̃ [26, 28].

By virtue of the Faraday equation, we also define the vector

�h(�)
n = 1

k0
µ̃−1 · (k̂(�)

n × �e(�)
n ), � = E, M, |n| < ∞. (11)

With these definitions, we are able to write the following Floquet expansions that represent
rigorously the electromagnetic fields in the region y < min g(x) [29]:

�E2 =
+∞∑

n=−∞

[
C(E)

n �e(E)
n exp (i �k(E)

n · �r) + C(M)
n �e(M)

n exp (i �k(M)
n · �r )

]
, (12)

�H2 =
+∞∑

n=−∞

[
C(E)

n
�h(E)

n exp (i �k(E)
n · �r) + C(M)

n
�h(M)

n exp (i �k(M)
n · �r )

]
. (13)

Here, �k(E)
n and �k(M)

n denote those solutions of equations (9) and (10) which correspond to waves
satisfying the radiation condition as y → −∞ [13]; whereas C(E)

n and C(M)
n , |n| � 0, are unknown

scalar coefficients quantifying the degree of diffraction into the uniaxial medium.
The tangential components of �E1 and �E2 must be equal at y = g(x) ∀ x, and so must also

be the tangential components of �H1 and �H2. These four boundary conditions must be satisfied
by any method to find {Rn, Sn, C(E)

n , C(M)
n }, |n| < ∞.

2.2. Rayleigh method

For that purpose, we invoke the Rayleigh hypothesis [30]—that is, we assume that the
expansions (3), (4), (12) and (13), which are strictly valid outside the corrugation region
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max g(x) > y > min g(x), can be used to satisfy the usual conditions across the boundary
y = g(x). Generally speaking, the Rayleigh hypothesis gives valid results for smooth boundaries
with corrugations that are not too deep. For sinusoidal gratings, this typically occurs when the
corrugation depth does not exceed 0.3 times the period [31]. The limit of validity of methods based
on the Rayleigh hypothesis has been investigated for impenetrable gratings [32, 33]; gratings
made of isotropic penetrable materials [34], electrically uniaxial materials [35] or anisotropic
absorbers [36]; and gyroelectromagnetic index-matched, periodically corrugated interfaces [37].

The family of functions exp(i αmx), |m| < ∞, constitute the so-called Rayleigh basis.
Introducing expansions (3), (4), (12) and (13) into the boundary conditions and thereafter
projecting the resulting equations into the Rayleigh basis, we obtain a matrix equation for the
diffraction amplitudes in terms of E0 and H0. In symbolic notation, this equation is written as


M−

11 0 M−
13 M−

14

0 M−
22 M−

23 M−
24

0 M−
32 M−

33 M−
34

M−
41 0 M−

43 M−
44







Rn

Sn

C(E)
n

C(M)
n


 =




M+
11|m0E0

M+
20|m0H0

M+
32|m0H0

M+
41|m0E0


 , (14)

where the elements of the block matrices are

M±
11|mn = ∓Dmn(∓β(1)

n ),

M−
13|mn = −(�e(E)

n · ẑ)Dmn(β
(E)
n ),

M−
14|mn = −(�e(M)

n · ẑ)Dmn(β
(M)
n ),

M±
22|mn = 1

k0
[ ± αnEmn(∓β(1)

n ) + β(1)
n Dmn(∓β(1)

n )],

M−
23|mn = −(�e(E)

n · ŷ)Emn(β
(E)
n ) − (�e(E)

n · x̂)Dmn(β
(E)
n ),

M−
24|mn = −(�e(M)

n · ŷ)Emn(β
(M)
n ) − (�e(M)

n · x̂)Dmn(β
(M)
n ), (15)

M±
32|mn = M±

11|mn,

M−
33|mn = −(�h(E)

n · ẑ)Dmn(β
(E)
n ),

M−
34|mn = −(�h(M)

n · ẑ)Dmn(β
(M)
n ),

M±
41|mn = 1

k0
[ ∓ αnEmn(∓β(1)

n ) − β(1)
n Dmn(∓β(1)

n )],

M−
43|mn = −(�h(E)

n · ŷ)Emn(β
(E)
n ) − (�h(E)

n · x̂)Dmn(β
(E)
n ),

M−
44|mn = −(�h(M)

n · ŷ)Emn(β
(M)
n ) − (�h(M)

n · x̂)Dmn(β
(M)
n ),

with

Dmn(u) =
∫ d

0
exp

[
i
2π

d
(n − m)x + i ug(x)

]
dx, (16)

Emn(u) =
∫ d

0
g′(x) exp

[
i
2π

d
(n − m)x + i ug(x)

]
dx. (17)

(The prime denotes differentiation with respect to the argument.)
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On restricting the sums in equations (3), (4), (12) and (13) to |n| � N, the infinite system
(14) becomes a system of 8N + 4 linear equations with 8N + 4 unknowns: Rn, Sn, C(E)

n and C(M)
n ,

n ∈ (−N, N). For all calculated results presented in the following section, the value of N was
selected to satisfy the principle of conservation of energy within a tolerance of ±10−6.

After the determination of the Floquet expansion coefficients, the diffraction efficiencies
for the propagating planewave components of the reflected or refracted fields can be calculated
as the ratio between the diffracted and the incident intensities. These diffraction efficiencies are
defined as

ρn = Re[β(1)
n ]

β
(1)
0

|Rn|2 + |Sn|2
|E0|2 + |H0|2 , (18)

for the reflected Floquet harmonics, and

τ(�)
n = − |C(�)

n |2
|E0|2 + |H0|2

Re[β(�)
n ]

β
(�)
n

k0

β
(1)
0

Re{[�e(�)
n × (�h(�)

n )∗] · ŷ}, � = E, M, (19)

for the refracted Floquet harmonics, with the asterisk denoting the complex conjugate and Re
denoting the ‘real part’.

3. Numerical results and discussion

3.1. Classification of constitutive tensors

Our focus being on gratings of anisotropic NPV materials, it is best to delineate certain
relevant properties of the relative permittivity and the relative permeability tensors. In order
to unambiguously distinguish between propagating and evanescent Floquet harmonics in the
diffracting medium, we set both tensors to be Hermitian. As the tensors (1) and (2) are
real symmetric, each can be classified as (i) positive definite, (ii) negative definite or (iii)
indefinite [38]. If all eigenvalues of a real symmetric tensor are >0, it is positive definite;
if all eigenvalues are <0, it is negative definite; but if it has both negative and positive
eigenvalues, then it is indefinite. In the present context, we exclude constitutive tensors with null
eigenvalues.

Thus, the relative permittivity tensor (1) is positive definite if ε⊥ > 0 and ε‖ > 0; it is
negative definite if ε⊥ < 0 and ε‖ < 0; and it is indefinite if ε⊥ε‖ < 0. A similar classification
applies to the relative permeability tensor (2). If both ε̃ and µ̃ are positive definite, the material
is of the PPV kind.

3.2. Cases chosen for investigation

The diffracting medium is transversely isotropic, i.e. it is isotropic in the plane to which
its optic axis is normal. The plane of incidence being the xy plane, the anisotropy of the
diffracting medium would be essentially inconsequential if ĉ = ẑ. In order to eliminate the
effects of transverse isotropy, we chose cz = 0 for numerical investigation. As distinct from
the boundary-value problem for isotropic NPV gratings [21]–[23], the problem stated in
section 2.1 is not always separable for two independent polarization states or modes and generally
involves a full vectorial approach, as can be gleaned from equation (14). For the sake of simplicity
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Figure 1. (a) Reciprocal space map for ε⊥ = 2.5, ε‖ = 1.8, µ⊥ = 1.2, µ‖ = 1.5
and ĉ = ŷ; kx = �k · �x and ky = �y · �x. The value k0d = 2π/2.1 is indicated by the
horizontal, light-grey double-arrow. (b) Relationship of the angle of incidence θ0

and the angle θt
n between the wavevector of the refracted Floquet harmonic of

order n and the −y axis, when k0d = 2π/2.1. Magnetic type (s-polarized): blue
curves; electric type (p-polarized): red curves.

and without sacrificing the distinctive features of anisotropy, we confine ourselves here to
situations wherein the diffracted fields have the same linear polarization state as the incident
plane wave. Specifically, we assume that

• the optic axis is either perpendicular (ĉ = ŷ) or parallel (ĉ = x̂) to the mean corrugation plane
(y = 0), and lies in the plane of incidence; and

• the incident plane wave is either s-polarized (H0 = 0) or p-polarized (E0 = 0).

Let us note that the separation of linear polarization states is not generally possible when
ĉ = x̂ cos γ + ẑ sin γ , unless γ = qπ/2, q = 0, 1, 2, . . . .

For the constitutive tensors of the diffracting medium, we consider two cases as well:

• Case I: either both ε̃ and µ̃ are positive definite, or both are negative definite. These two are
referred to as cases IP and IN in the remainder of this paper. Case IP provides a PPV reference
to compare and evaluate the results for NPV gratings.

• Case II: both ε̃ and µ̃ are indefinite.

As can be deduced from equations (9) and (10), the reciprocal space map (�k · �x, �k · �y) for plane
waves propagating in the diffracting medium and for these orientations of the optic axis is elliptic
for case I, but hyperbolic for case II.

3.3. Case I

Let us begin with case IP with ĉ = ŷ and the incident plane wave being either s- or p-polarized.
The reciprocal space map for plane waves propagating in the xy plane is shown in figure 1(a) for
ε⊥ = 2.5, ε‖ = 1.8, µ⊥ = 1.2 and µ‖ = 1.5.
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The inner circle

α2
n + (β(1)

n )2 = k2
0 (20)

(light grey in figure 1(a)) corresponds to plane waves in the medium of incidence, whereas the
outer ellipse

α2
n

µ‖
+

(β(M)
n )2

µ⊥
= k2

0ε⊥ (21)

(blue curve in figure 1(a)) describes waves of the magnetic type (s-polarized for ĉ = ŷ) and the
inner ellipse

α2
n

ε‖
+

(β(E)
n )2

ε⊥
= k2

0µ⊥ (22)

(red curve in figure 1(a)) describes waves of the electric type (p-polarized for ĉ = ŷ) in the
diffracting medium. From this map and from equations (5) for αn and β(1)

n , we conclude that if
the frequency is chosen so that k0d = 2π/2.1 (as indicated by the horizontal, light-grey double-
arrow in figure 1(a)), β(1)

n is real-valued only for n = 0. Then the grating acts like a flat interface,
in the sense that only the specularly reflected Floquet harmonic can propagate in the medium of
incidence for any angle of incidence.

Besides, as the semiaxes (along the x axis) of the ellipses described by equations (21) and
(22) for the chosen constitutive scalars are (ε⊥µ‖)1/2 = 1.93 and (µ⊥ε‖)1/2 = 1.47 respectively,
only the two specularly refracted harmonics (of the electric and magnetic types with n = 0),
but no non-specularly refracted harmonics, can exist in the diffracting medium for near-normal
incidence. Taking into account that

• the energy–velocity direction is normal to the dispersion curve, and

• the sign of the projection of the energy–velocity direction along the phase-velocity direction
is given by the sign of ε⊥ for magnetic waves and by the sign of µ⊥ for electric waves [16],
for propagation in the plane containing the optic axis,

we conclude that the phase and energy velocities of both refracted waves are nearly (exactly)
parallel for near-normal (normal) incidence. So, the grating acts as a positively refracting
interface, in the sense that both refracted rays (i.e., the energy fluxes) bend towards the normal
to the mean corrugation plane and never emerge on the same side of the normal as the incident
ray [15].

Changing the signs of all four constitutive scalars to go from case IP to case IN does not
affect the shape of the reciprocal space map, as may be concluded by comparing figures 1(a)
and 2(a). Therefore, for k0d = 2π/2.1, the grating still acts like a flat interface supporting only
refracted Floquet harmonics of the electric and magnetic types and of order n = 0 under near-
normal incidence conditions. However, as the directions of the phase and the energy velocities
of both of the refracted harmonics are now nearly (exactly) antiparallel for near-normal (normal)
incidence, both the refracted rays emerge on the same side of the normal to the mean corrugation
plane as the incident ray; therefore, the grating acts as a negatively refracting interface.

The graphical construction to find the wavevectors for the specularly refracted wave (n = 0)
of the electric type is indicated in figure 1(a) for case IP and in figure 2(a) for case IN, when

New Journal of Physics 7 (2005) 158 (http://www.njp.org/)

http://www.njp.org/


10 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

–2,5 –2,0 –1,5 –1,0 –0,5 0,0 0,5 1,0 1,5 2,0 2,5

–1,0

–1,5

–0,5

0,0

0,5

1,0

1,5

p s

(a)

n=–1

n=0

kx/k0

k y
/k

0

0 15 30 45 60 75 90

140

145

150

155

160

165

170

175

180

185

angle of incidence (deg)

190

200

210

220

230

240

250

260

270

p

s

ps

(b)

θn
t

0 (–)

–1(–)

θ
t–1

(deg)θ
t 0
(d

eg
)

Figure 2. Same as figure 1, but for ε⊥ = −2.5, ε‖ = −1.8, µ⊥ = −1.2 and
µ‖ = −1.5.

the angle of incidence θ0 ≈ 24◦.5 Unlike the near-normal incidence situation, a non-specularly
refracted Floquet harmonic (n = −1) of the magnetic type can also propagate for this angle
of incidence. The construction of the wavevector is shown in figure 1(a), where the horizontal
double arrow indicates the quantity 2π/d = 2.1/k0: both the wavevector and ray emerge on the
same side of the normal as the incident ray for case IP, whereas the wavevector corresponds to
an energy flux bent towards the interface normal with respect to the incident ray for case IN.
The relationship of the angle of refraction to the angle of incidence is shown in figures 1(b)
and 2(b).

In the absence of corrugations (i.e. g(x) = 0), the diffraction efficiencies (i.e. the specular
reflectances and transmittances) due to the boundary between vacuum and either an NPV material
or its PPV analogue are identical [20, 39]. But differences should be evident when the boundary is
corrugated, even when all non-specularly refracted harmonics are evanescent for the chosen value
of k0d. Such an expectation, supported by known results for isotropic NPV and PPV gratings
[21]–[23], is indeed borne out for the anisotropic gratings—as evinced by the diffraction
efficiency plots in figure 3 for the sinusoidal corrugation g(x) = 0.5h cos(2πx/d) with h/d = 0.1
and the same constitutive properties and incidence conditions as for figures 1 and 2.As θ0 increases
from 0, the diffraction efficiencies show evidence of weak Rayleigh–Wood anomalies [40]

• at θ0 ≈ 9.41◦, a value at which the refracted Floquet harmonic of the magnetic type and order
n = −1 changes from being evanescent to propagating, and

• at θ0 ≈ 39.07◦, a value at which the refracted Floquet harmonic of the electric type and order
n = −1 changes similarly.

The diffraction efficiencies of these non-specular refracted harmonics (figure 3(c)) are more
sensitive than of their specular counterparts (figure 3(b)) to the type of the diffracting medium.
Indeed, a comparison of figures 3(c) and 4(c), for h/d = 0.1 and 0.3 respectively, supports that
conclusion.
5 Wavevectors for refracted waves of the magnetic type with n = 0 have nearly the same direction, and are therefore
not shown for the sake of clarity.
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Figure 3. Diffraction efficiencies for a sinusoidal corrugation g(x) = 0.5h

cos(2πx/d) with h/d = 0.1. The incident wave is either s- or p-polarized and
the diffracting medium has either all positive constitutive scalars (case IP) or
all negative constitutive scalars (case IN); ε⊥ = ±2.5, ε‖ = ±1.8, µ⊥ = ±1.2,
µ‖ = ±1.5 and �c = �y, For s-polarized (p-polarized) incidence, the refracted
waves are only of the magnetic (electric) type. (a) Specular reflection (n = 0),
(b) specular refraction (n = 0) and (c) non-specular refraction of order n = −1.

There is no need to present results for ĉ = x̂ for cases IP and IN, as our conclusions
were qualitatively similar to that for ĉ = ŷ. In fact, we made similar conclusions for all other
orientations of the optic axis in the xy plane.

3.4. Case II

Either all four constitutive scalars of the diffracting medium are positive or all four are negative in
section 3.3. In contrast, we now examine the cases when ε‖ε⊥ < 0 and µ‖µ⊥ < 0. As for case I,
when the incident plane wave is either s- or p-polarized, the polarization state is not changed
upon reflection and refraction, provided that the optic axis lies in the xy plane.

Furthermore, for numerical illustration, we maintained the value of k0d = 2π/2.1, so that
only the specularly reflected Floquet harmonic can propagate in the medium of incidence for
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Figure 4. Same as figure 3, except that h/d = 0.3.

any angle of incidence. For illustration of diffractive effects, we chose

• Case IIA: ε⊥ = −2.5, ε‖ = 1.8, µ⊥ = 1.2, µ‖ = −1.5 and ĉ = x̂;

• Case IIB: ε⊥ = +2.5, ε‖ = −1.8, µ⊥ = −1.2, µ‖ = +1.5 and ĉ = x̂;

• Case IIC: ε⊥ = −2.5, ε‖ = 1.8, µ⊥ = 1.2, µ‖ = −1.5 and ĉ = ŷ; and

• Case IID: ε⊥ = +2.5, ε‖ = −1.8, µ⊥ = −1.2, µ‖ = +1.5 and ĉ = ŷ.

The conclusions gleaned from studying these four cases hold not merely for the chosen sets of the
constitutive scalars but all other sets satisfying the conditions delineated for case II. Furthermore,
in order to concentrate on the refracting properties of the anisotropic medium with hyperbolic
dispersion curves, we excluded cases for which ε‖µ⊥ < 0 and ε⊥µ‖ < 0, where only one type
of refracted harmonics, either electric or magnetic, are evanescent for all angles of incidence.

3.4.1. Cases IIA and IIB. Let us begin with cases IIA and IIB. The dispersion equation for the
diffracting medium is

α2
n

µ⊥
+

(β(M)
n )2

µ‖
= k2

0ε⊥ (23)
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Figure 5. (a) Reciprocal space map for ε⊥ = ∓ 2.5, ε‖ = ± 1.8, µ⊥ = ± 1.2,
µ‖ = ∓ 1.5 and ĉ = x̂; kx = �k · x̂ and ky = �k · ŷ. The value k0d = 2π/2.1
is indicated by the horizontal, light-grey double-arrow. The little arrows
perpendicular to the hyperbolas indicate the direction of energy transport
associated with each wavevector. Dotted lines indicate the asymptotes of
the hyperbola associated with electric modes in the diffracting medium. (b)
Relationship of the angle of incidence θ0 and the angle θt

n between the wavevector
of the refracted Floquet harmonic of order n and the −y axis for case IIA, when
k0d = 2π/2.1. Replace θt

n by −θt
n for case IIB. Magnetic type (s-polarized): blue

curves; electric type (p-polarized): red curves.

for Floquet harmonics of the magnetic type (s-polarized for ĉ = x̂), and

α2
n

ε⊥
+

(β(E)
n )2

ε‖
= k2

0µ⊥ (24)

for Floquet harmonics of the electric type (p-polarized for ĉ = ŷ). These equations are similar
to equations (21) and (22), respectively. But there is a major difference due to the signs of the
constitutive scalars in cases IIA and IIB: these dispersion equations now describe hyperbolas,
not ellipses.

The reciprocal space maps for both cases IIA and IIB are shown in figure 5(a). The outer
hyperbolas correspond to refracted harmonics of the magnetic type and the inner hyperbolas
correspond to refracted harmonics of the electric type in the diffracting medium; whereas the
circle refers to harmonics in the medium of incidence. Repeating in figure 5(a) the graphical
constructions described for figures 1(a) and 2(a), we conclude that the dispersion equation for
the Floquet harmonic of order n in the diffracting medium has real-valued solutions for all n.
This is in huge contrast not only to case I but also to all gratings made of conventional materials,
for which the dispersion equation for the Floquet harmonics has real-valued solutions only in a
limited n-range [40]–[43].

Therefore we can state that gratings made of uniaxial materials with indefinite ε̃ and µ̃

can refract an incident plane wave into propagating Floquet harmonics exclusively. In contrast,

New Journal of Physics 7 (2005) 158 (http://www.njp.org/)

http://www.njp.org/


14 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0 15 30 45 60 75 90
138

140

142

144

146 (a)

t

t nθ
(d

eg
)

+5

+4

+2

+1

+3

angle of incidence (deg)

0 15 30 45 60 75 90

angle of incidence (deg)

θn

205

210

215

220

(b)

θ
t n
(d

eg
)

–5

–4

–2

–1

–3

Figure 6. Relationship of the angle of incidence θ0 and the angle θt
n between the

wavevector of the refracted Floquet harmonic of order n and the −y axis for case
IIA, when k0d = 2π/2.1 and the refracted harmonics are of the magnetic type.
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refraction by conventional gratings consists of a few propagating and the remaining evanescent
Floquet harmonics. The infinite set of propagating Floquet harmonics for cases IIA and IIB can
be readily deduced from the graphical construction in figure 5(a) by noting that there is always
a theoretically possible direction of energy flux associated with these harmonics, lying along
the normal to the dispersion curves and pointing towards y < 0 as required by the radiation
condition.

Referring to the construction shown in figure 5(a), we observe that the refracted wavevectors
corresponding to n = 1 lie inside the angular region delimited by the asymptotes of the inner
hyperbola (dotted lines) and containing the ky = �k · ŷ axis.A similar construction for other values
of n shows that all the refracted wavevectors are always inside the same region, delimited by
the asymptotes of the inner hyperbola (which corresponds to modes of the electric type, for both
cases IIA and IIB in figure 5(a)). The relationship of θ t

n-to-θ0 is shown in figure 5(b), which
demonstrates that the refracted wavevectors for high |n| are concentrated in narrow angular
sectors delineated by the asymptotes of the hyperbolas in figure 5(a). For k0d = 2π/2.1, the
only refracted orders with substantial variation in direction with the angle of incidence are
the ones with |n| < 2. To further appreciate the characteristic angular separation between the
refracted orders, in figure 6 we present the θ t

n-to-θ0 relationships for Floquet harmonics of positive
(figure 6(a)) and negative (figure 6(b)) orders and of the magnetic type.

The direction of the energy flux associated with the refracted waves (i.e. the direction of
the refracted rays) is along the normal to the dispersion curves and pointing towards the −y axis
(as required by the radiation condition). For ĉ = x̂, let the angle between the ray direction of the
refracted Floquet harmonic of order n and the −y axis be denoted by ξt

n. Then,

sin ξt
n = sin θt

n

µ⊥
, cos ξt

n = cos θt
n

µ‖
(25)

for harmonics of the magnetic type, and

sin ξt
n = sin θt

n

ε⊥
, cos ξt

n = cos θt
n

ε‖
(26)
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Figure 7. Relationship of the angle of incidence θ0 and the angle ξt
n between the

ray direction of the refracted Floquet harmonic of order n and the −y axis for
case IIA, when k0d = 2π/2.1. (a) Magnetic type and (b) electric type.

for harmonics of the electric type. Thus, for refracted harmonics of the electric type, the
wavevector and the ray direction are oriented either on the same side or on opposite sides of the
y axis, depending on ε‖ being positive or negative, respectively, whereas for refracted harmonics
of the magnetic type, it is the sign of µ‖ which determines if the two vectors are oriented on
the same side or on opposite sides of the y axis. Accordingly, for case IIA, the refracted Floquet
harmonics are counterposed [15] only when the incident plane wave is s-polarized, whereas
counterposition occurs only for the p-polarized incidence for case IIB.

The relationship of the the ray angles ξ t
n with θ0 is shown in figure 7 for refracted Floquet

harmonics of the magnetic (figure 7(a)) and electric (figure 7(b)) types, for case IIA. We note
that although the wavevector and the ray direction are counterposed for magnetic types, the
specularly refracted ray (n = 0) never emerges on the same side of the y axis as the incident ray;
i.e. ξt

0 > 0, just as for positively refracting interfaces. The same happens for refracted Floquet
harmonics of order n > 0. In contrast, the wavevector and the ray direction are not counterposed
for refracted harmonics of the electric type—ξt

0 < 0 as for negatively refracting interfaces.
In the absence of corrugations, the diffraction efficiencies are identical for cases IIA and

IIB. But an infinite number of refraction channels are available when the interface is corrugated
even weakly. The kinematic arguments used up to this point, based on the analysis of reciprocal
space maps, only show that energy can be transported by the infinite set of refracted Floquet
harmonics, but do not give further information about the diffraction efficiencies. For that purpose,
a boundary-value problem must be solved.

All theoretical methods available for gratings made of conventional materials rely on
restricting the Floquet harmonics to |n| � N, and the adequacy of the results is studied by
checking convergence against N and the fulfilment of physical tests (such as on the conservation
of energy and reciprocity) [40, 41]. An adequate value of N for conventional gratings is such that
all propagating and some evanescent Floquet harmonics on both sides of the corrugated boundary
are covered. But no evanescent harmonics can exist in the diffracting medium for cases IIA and
IIB, which means that particular care must be taken to choose N.

With the Rayleigh method described in section 2.2, we found good convergence with N � 7
for both cases IIA and IIB for a sinusoidal corrugation g(x) = 0.5h cos(2πx/d) with h/d = 0.1.
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Table 1. Reflection (ρ) and some refraction (τ) efficiencies for a sinusoidal
grating g(x) = 0.05d cos(2πx/d ) for cases IIA and IIB, when the incident plane
wave is either s- or p-polarized; θ0 = 15◦, k0d = 2π/2.1 and N = 7.

Efficiency s (IIA) p (IIA) s (IIB) p (IIB)

ρ0 0.1540 × 10−1 0.5880 × 10−2 0.2098 × 10−1 0.8506 × 10−2

τ−3 0.1952 × 10−3 0.2423 × 10−5 0.7361 × 10−6 0.6619 × 10−4

τ−2 0.2260 × 10−2 0.5039 × 10−4 0.1217 × 10−4 0.1236 × 10−2

τ−1 0.4548 × 10−1 0.2638 × 10−2 0.2020 × 10−2 0.3700 × 10−1

τ0 0.8813 0.9872 0.9685 0.9149
τ1 0.5170 × 10−1 0.4155 × 10−2 0.8165 × 10−2 0.3669 × 10−1

τ2 0.3314 × 10−2 0.8779 × 10−4 0.3147 × 10−3 0.1521 × 10−2

τ3 0.3182 × 10−3 0.4046 × 10−5 0.2558 × 10−4 0.9005 × 10−4

The results presented in table 1, where we have provided the diffraction efficiencies for θ0 = 15◦,
show that little power is coupled into the higher-order refracted harmonics for the chosen grating
geometry, thus ensuring convergence and the satisfaction of the principle of conservation of
energy with 15 Floquet harmonics. Figure 8 shows plots of the diffraction efficiencies against
θ0, indicating that the reversal of signs of all four constitutive scalars leads to effects that are
exactly the same as for case I (figure 3).

When we increased the corrugation depth to h/d = 0.2, we were unable to obtain convergent
results. The fact that the Rayleigh method works well for gratings of conventional anisotropic
materials for h/d � 0.3 [35] (as in our previous example in figure 4) suggests that the lack of
convergence observed here

• is related to the existence of an infinite number of propagating refracted harmonics, and

• should be common to all known theoretical methods for gratings, when applied to diffraction
materials with hyperbolic dispersion equations.

These issues are currently under investigation, and we shall present our results elsewhere in due
course.

3.4.2. Cases IIC and IID. Cases IIC and IID are similar to cases IIA and IIB, respectively,
except that the optic axis is perpendicular to the mean corrugation plane (ĉ = ŷ). The dispersion
equations in the diffracting medium are still the same as equations (21) and (22), but the dispersion
curves are hyperbolas instead of ellipses.

The reciprocal space map for cases IIC and IID is exemplified in figure 9(a). The outer
hyperbolas correspond to refracted harmonics of the magnetic type (s-polarized for ĉ = ŷ), the
inner hyperbolas correspond to refracted harmonics of the electric type (p-polarized for ĉ = ŷ)
and the circle to harmonics in the medium of incidence. The graphical construction shown
in figure 9(a) shows that when the corrugations are absent (g(x) ≡ 0), incident plane waves
are totally reflected for all angles of incidence and both linear polarization states, because the
dispersion equations for the diffracting medium do not have real-valued solutions. This is a
particular case of the anomalous total reflection phenomenon reported by Hu and Chui [16], so
labelled because it occurs when the angle of incidence is smaller, but not larger, than a critical
angle—in contrast with the usual total reflection phenomenon that occurs only if the angle of
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Figure 8. Diffraction efficiencies for a sinusoidal corrugation g(x) = 0.5h

cos(2πx/d) with h/d = 0.1. The incident plane wave is either s- or p-polarized
and the diffracting medium is described either by case IIA or IIB. (a) Specular
reflection (n = 0), (b) specular refraction (n = 0), (c) non-specular refraction of
order n = −1 and (d) non-specular refraction of order n = −2.

incidence is larger, but not smaller, than a critical angle [42]. We note that for the constitutive
scalars chosen for section 3.4.2, the anomalous total reflection angle is π/2; thus, in the absence
of corrugations, the boundary acts as an omnidirectional totally reflecting interface.

Repeating in figure 9(a) the graphical constructions described for figures 1(a) and 2(a), we
deduce the two following conclusions for cases IIC and IID.

• Firstly, specularly refracted harmonics are never allowed to propagate in this kind of grating.
This is a direct consequence for periodically corrugated surfaces of the anomalous total
reflection phenomenon for flat interfaces. Of course, the present-day construction of NPV
metamaterials is such that the boundary is periodically stepped [24], which would subvert the
anomalous total refraction phenomenon.

• Secondly, as for cases IIA and IIB, the relevant dispersion equation for the Floquet harmonics
in the diffracting material has an infinite number of real-valued solutions—but only for
|n| � nmin > 0. As an example, for the incidence condition depicted in figure 9(a), the
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Figure 9. Reciprocal space map for ε⊥ = ∓2.5, ε‖ = ±1.8, µ⊥ = ±1.2, µ‖ =
∓1.5 and ĉ = ŷ; kx = �k · �x and ky = �y · �x. (b) Relationship of the angle of
incidence θ0 and the angle θt

n between the wavevector of the refracted Floquet
harmonic of order n and the −y axis for case IIC, when k0d = 2π/2.1. Replace
θt
n by −θt

n for case IID. Magnetic type (s-polarized): blue curves; electric type
(p-polarized): red curves.

specularly refracted Floquet harmonics of both types as well as the non-specularly refracted
Floquet harmonic of order n = −1 and the magnetic type are the only non-propagating
harmonics; whereas all other Floquet harmonics (n �= −1 and n �= 0), whether of the electric
or the magnetic type, are non-evanescent. On increasing the angle of incidence, the refracted
Floquet harmonic of order n = −1 of the electric type ceases to propagate when sin θ0 exceeds
2π/k0d − µ⊥ ε‖, the transition value being θ0 ≈ 30.07◦ for the chosen constitutive scalars.

Thus, again we encounter a class of gratings which can refract into an infinite number of
channels. In figure 9(a), we observe that the refracted wavevectors corresponding to n = ±1
lie inside the angular region delimited by the asymptotes of the inner hyperbola (dotted lines)
and containing the kx = �k · x̂ axis. A similar argument for other values of n shows that all the
refracted wavevectors are always inside the same region, delimited by the asymptotes of the
inner hyperbola (which corresponds to modes of the electric type, for both cases IIC and IID in
figure 9(a)). The relationship of θ t

n to θ0 is shown in figure 9(b), which demonstrates that the
refracted wavevectors for high |n| are concentrated in narrow angular sectors defined by the
asymptotes of the hyperbolas in figure 9(a).

For ĉ = ŷ, the angle ξ t
n between the ray direction of the refracted Floquet harmonic of order

n and the −y axis is delineated by

sin ξt
n = sin θt

n

µ‖
, cos ξt

n = cos θt
n

µ⊥
(27)

for harmonics of the magnetic type, and

sin ξt
n = sin θt

n

ε‖
, cos ξt

n = cos θt
n

ε⊥
(28)
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Table 2. Same as table 1, but for cases IIC and IID.

Efficiency s (IIC) p (IIC) s (IID) p (IID)

ρ0 0.9839 0.9125 0.9674 0.9023
τ−3 0.7113 × 10−4 0.1238 × 10−3 0.4113 × 10−4 0.3617 × 10−3

τ−2 0.8084 × 10−3 0.1156 × 10−2 0.4823 × 10−3 0.3134 × 10−2

τ−1 0 0.3690 × 10−1 0 0.6118 × 10−1

τ0 0 0 0 0
τ1 0.1413 × 10−1 0.4608 × 10−1 0.3119 × 10−1 0.3034 × 10−1

τ2 0.1009 × 10−2 0.2859 × 10−2 0.8003 × 10−3 0.2306 × 10−2

τ3 0.8305 × 10−4 0.3388 × 10−3 0.5571 × 10−4 0.2858 × 10−3

for harmonics of the electric type. Thus, for refracted harmonics of the electric type, the
wavevector and the ray direction are oriented either on the same side or on opposite sides
of the y axis, depending on ε⊥ being positive or negative, respectively; whereas for refracted
harmonics of the magnetic type, it is the sign of µ⊥ which determines if the two vectors are
oriented either on the same side or on opposite sides of the y axis. Accordingly for case IIC,
the refracted Floquet harmonics are counterposed [15] only when the incident plane wave is
p-polarized; whereas counterposition occurs only for s-polarized incidence for case IID.

When g(x) = 0 ∀x, total reflection takes places for cases IIC and IID for all angles of
incidence and both linear polarization states. Just as for cases IIA and IIB, the diffraction
efficiencies must be very carefully computed when the interface is periodically corrugated,
because the number of refraction channels is infinite. Table 2 presents computed efficiencies for
the same incidence conditions as in table 1, but for ĉ = ŷ, thereby showing that the Rayleigh
method can yield convergent results for shallow gratings. However, just as in section 3.4.1, the
Rayleigh method breaks down when the corrugation depth is increased.

Confining ourselves to shallow sinusoidal gratings, we computed the diffraction efficiencies
as functions of θ0 for cases IIC and IID. The plots for h/d = 0.1 are presented in figure 10. The
specular reflection efficiencies, shown in figure 10(a), are generally high for almost all angles
of incidence and for either polarization states. Rayleigh–Wood anomalies are also evident at
θ0 ≈ 9.41 and 39.07◦ in the plots. The most remarkable features of the plots in figure 10(a) are

• a sharp dip in the specularly reflected efficiency centred at θ0 ≈ 44◦ for case IID and
s-polarized incidence, and

• a blunt dip located at θ0 ≈ 88◦ for case IIC and p-polarized incidence.

We found these two features to be associated with the resonant excitation of surface waves
[44, 45].

Suppose that the corrugations are absent. For the special cases we are considering here, it is
easy to show, as has been done by others for isotropic media [44, 45], that the boundary supports
an s-polarized surface wave with propagation constant α0 given by

α2
0 = k2

0µ‖
µ⊥ − ε⊥
µ⊥µ‖ − 1

. (29)

Substitution of the constitutive scalars for case IID in (28) yields the value θ0 = 43.80◦ for
exciting a surface wave. Likewise, an uncorrugated boundary supports a p-polarized surface
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Figure 10. Diffraction efficiencies for a sinusoidal corrugation g(x) = 0.5h

cos(2πx/d) with h/d = 0.1. The incident plane wave is either s- or p-polarized
and the diffracting medium is described either by case IIC or IID. (a) Specular
reflection (n = 0); non-specular refraction of order (b) n = −1, (c) n = −2 and
(d) n = −3.

wave delineated by

α2
0 = k2

0ε‖
ε⊥ − µ⊥
ε⊥ε‖ − 1

, (30)

and this equation yields the value θ0 = 88.35◦ for surface-wave excitation with the constitutive
scalars chosen for case IIC. For shallow corrugations, the predictions (29) and (30) can be
expected to hold approximately; and comparison with figure 10(a) indicates that our expectation
is reasonable.

The resonant excitation of surface waves on gratings leaves its signature in the plots
of non-specular diffraction efficiencies, as seen clearly in figures 10(c) and 10(d). For the
chosen constitutive scalars, when a surface wave is excited, most of the refracted power is
found in the Floquet harmonic of order n = −2. That would not be possible in the absence of
corrugations.
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4. Concluding remarks

In the foregoing sections, we considered the diffraction of plane electromagnetic waves at the
periodically corrugated boundary of vacuum and a linear, homogeneous, uniaxial, dielectric–
magnetic medium. To reduce the number of the many parameters involved and to be consistent
with specific geometries considered previously for flat boundaries, we presented results in
situations where the diffracted fields maintain the same polarization state as the s- or p-polarized
incident plane wave. In the context of negative refraction, our attention was focused on two classes
of media: (I) with negative-definite permittivity and permeability tensors, and (II) with indefinite
permittivity and permeability tensors. For the simplest non-trivial configurations chosen for the
plane wave incidence conditions and the orientation of the optic axis, the dispersion equations
in the diffracting medium are elliptic for the first class of diffracting media, whereas they are
hyperbolic for the second class.

By evaluating the effects of reversing signs of the eigenvalues of the relative permittivity
and the relative permeability tensors of the diffracting medium, we identified instances when the
grating acts either as a positively refracting interface (in the sense that the rays associated with
specularly refracted Floquet harmonics bend towards the normal to the mean corrugation plane
and never emerge on the same side of the normal as the incident ray) or as a negatively refracting
interface (in the sense that rays associated with specularly refracted Floquet harmonics emerge
on the same side of the normal to the mean corrugation plane as the incident ray).

In contrast to elliptic dispersion equations, which are commonplace for conventional
gratings as well, hyperbolic dispersion equations imply the possibility of an infinite number
of refraction channels. Only a small proportion of the incident power is coupled into the higher
refracted orders for shallow sinusoidal gratings, a fact that ensures convergence of and the
fulfilment of physical tests of the results obtained by the application of Fourier method. However,
the lack of convergence observed for deeper gratings seems to be related to the existence of an
infinite number of refraction channels; and we conjecture that the same problem would be
experienced with other numerical techniques as well. Research will be undertaken shortly to
explore different theoretical methods.

Acknowledgments

RAD acknowledges financial support from Consejo Nacional de Investigaciones Cientı́ficas y
Técnicas (CONICET),Agencia Nacional de Promoción Cientı́fica y Tecnológica (ANPCYT-BID
1201/OC-AR-PICT14099) and Universidad de Buenos Aires (UBA). AL acknowledges partial
support from the Penn State Materials Research Science and Engineering Center.

References

[1] Veselago V G 1968 The electrodynamics of substances with simultaneously negative values of ε and µ Sov.
Phys.—Usp. 10 509–14

[2] Lakhtakia A, McCall M W and Weiglhofer W S 2003 Negative phase-velocity mediums Introduction to
Complex Mediums for Optics and Electromagnetics ed W S Weiglhofer and A Lakhtakia (Bellingham,
WA: SPIE Press)

[3] Special issue on negative refraction 2003 Opt. Express 11 639–830
[4] Pendry J B 2004 Negative refraction Contemp. Phys. 45 191–202

New Journal of Physics 7 (2005) 158 (http://www.njp.org/)

http://www.njp.org/


22 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[5] Rashed R 1990 A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses Isis 81 464–91
[6] Shelby R A, Smith D R and Schultz S 2001 Experimental verification of negative index of refraction Science

292 77–9
[7] Parazzoli C G, Greegor R B, Li K, Koltenbah B E C and Tanielian M 2003 Experimental verification and

simulation of negative index of refraction using Snell’s law Phys. Rev. Lett. 90 107401
[8] Houck A A, Brock J B and Chuang I L 2003 Experimental observations of a left-handed material that obeys

Snell’s law Phys. Rev. Lett. 90 137401
[9] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Extremely low frequency plasmons in metallic

mesostructures Phys. Rev. Lett. 76 4773–6
[10] Pendry J B, Holden A J and Stewart W J 1999 Magnetism from conductors and enhanced nonlinear phenomena

IEEE Trans. Micro. Theory Tech. 47 2075–84
[11] McCall M W, Lakhtakia A and Weiglhofer W S 2002 The negative index of refraction demystified

Eur. J. Phys. 23 353–9
[12] Boardman A D, King N and Velasco L 2005 Negative refraction in perspective Electromagnetics 25 at press
[13] Mackay T G and Lakhtakia A 2004 Plane waves with negative phase velocity in Faraday chiral mediums

Phys. Rev. E 69 026602
[14] Zhang Y, Fluegel B and Mascarenhas A 2003 Total negative refraction in real crystals for ballistic electrons

and light Phys. Rev. Lett. 91 157404
[15] Lakhtakia A and McCall M W 2004 Counterposed phase velocity and energy-transport velocity vectors in a

dielectric–magnetic uniaxial medium Optik 115 28–30
[16] Hu L B and Chui S T 2002 Characteristics of electromagnetic wave propagation in uniaxially anisotropic

left-handed materials Phys. Rev. B 66 085108
[17] Lakhtakia A and Sherwin J A 2003 Orthorhombic materials and perfect lenses Int. J. Infrared Millim. Waves

24 19–23
[18] Smith D R and Schurig D 2003 Electromagnetic wave propagation in media with indefinite permittivity and

permeability tensors Phys. Rev. Lett. 90 077405
[19] Smith D R, Kolinko P and Schurig D 2004 Negative refraction in indefinite media J. Opt. Soc. Am. B 21

1032–43
[20] Lakhtakia A 2003 On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real

permittivity and permeability Electromagnetics 23 71–5
[21] Depine R A and Lakhtakia A 2004 Plane-wave diffraction at the periodically corrugated boundary of vacuum

and a negative-phase-velocity material Phys. Rev. E 69 057602
[22] Depine R A and Lakhtakia A 2004 Perturbative approach for diffraction due to a periodically corrugated

boundary between vacuum and a negative phase-velocity material Opt. Commun. 233 277–82
[23] Depine R A and Lakhtakia A 2005 Diffraction gratings of isotropic negative phase-velocity materials Optik

116 31–43
[24] Smith D R, Rye P M, Mock J J, Vier D C and Starr A F 2004 Enhanced diffraction from a grating on the

surface of a negative-index metamaterial Phys. Rev. Lett. 93 137405
[25] Depine RA, LakhtakiaA and Smith D R 2005 Enhanced diffraction by a rectangular grating made of a negative

phase-velocity (or negative index) material Phys. Lett. A 337 155–60
[26] Lakhtakia A, Varadan V K and Varadan V V 1991 Plane waves and canonical sources in a gyroelectromagnetic

uniaxial medium Int. J. Electron. 71 853–61
[27] Lakhtakia A, Varadan V K and Varadan V V 1991 Reflection and transmission of plane waves at the planar

interface of a general uniaxial medium and free space J. Mod. Opt. 38 649–57
[28] Chen H C 1983 Theory of Electromagnetic Waves: A Coordinate-Free Approach (New York: McGraw-Hill)

ch 1
[29] Lakhtakia A, Depine R A, Inchaussandague M E and Brudny V L 1993 Scattering by a periodically corrugated

interface between free space and a gyroelectromagnetic uniaxial medium Appl. Opt. 32 2765–72
[30] Lord Rayleigh 1907 On the dynamical theory of gratings Proc. R. Soc. A 79 399–416

New Journal of Physics 7 (2005) 158 (http://www.njp.org/)

http://www.njp.org/


23 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[31] Kazandjian L 1996 Rayleigh methods applied to electromagnetic scattering from gratings in general
homogeneous media Phys. Rev. E 54 6802–15

[32] Millar R F 1971 On the Rayleigh assumption in scattering by a periodic surface. II Proc. Camb. Phil. Soc. 69
217–25

[33] Hill N R and Celli V 1978 Limits of convergence of the Rayleigh method for surface scattering Phys. Rev.
B 17 2478–81

[34] Popov E and Mashev L 1987 Convergence of Rayleigh–Fourier method and rigorous differential method for
relief diffraction gratings: nonsinusoidal profile J. Mod. Opt. 34 155–8

[35] Depine R A and Gigli M L 1994 Diffraction from corrugated gratings made with uniaxial crystals: Rayleigh
methods J. Mod. Opt. 41 695–715

[36] Inchaussandague M E, Gigli M L and Depine R A 2003 Reflection characteristics of a PML with a shallow
corrugation IEEE Trans. Micro. Theory Tech. 51 1691–5

[37] Gigli M L and Inchaussandague M E 2004 Propagation and excitation of eigenmodes at isotropic-
gyroelectromagnetic index-matched interfaces Opt. Commun. 241 263–70

[38] Lütkepohl H 1996 Handbook of Matrices (Chichester: Wiley) ch 9
[39] Lakhtakia A 2003 Handedness reversal of circular Bragg phenomenon due to negative real permittivity and

permeability Opt. Express 11 716–22
[40] Maystre D (ed) 1993 Selected Papers on Diffraction Gratings (Bellingham, WA: SPIE)
[41] Petit R (ed) 1980 Electromagnetic Theory of Gratings (Berlin: Springer)
[42] Born M and Wolf E 1980 Principles of Optics 6th edn (Oxford: Pergamon) pp 47–51
[43] Loewen E and Popov E 1997 Diffraction Gratings and Applications (New York: Dekker)
[44] Boardman A D (ed) 1982 Electromagnetic Surface Modes (New York: Wiley)
[45] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Heidelberg: Springer)

New Journal of Physics 7 (2005) 158 (http://www.njp.org/)

http://www.njp.org/

