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Abstract

We investigated the Onsager relations in the context of electromagnetic constitutive relations of linear, homogeneous
materials. We determined that application of the Onsager relations to the constitutive equations relatingP andM to bothE
andB is in accord with Lorentz reciprocity as well as the Post constraint. Our conclusions are particularly significant for
research on linear magnetoelectric materials.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

In two seminal papers published in 1931[1,2], with the
assumption of microscopic reversibility, Onsager derived a
set of reciprocity relations applicable to coupled linear phe-
nomenons at macroscopic length scales. Fourteen years later,
Casimir [3] improved the foundations of the Onsager re-
lations. Initially considered applicable to purely instanta-
neous phenomenons—or, at least, when “time-lag can be
neglected”[1, p. 419]—the Onsager relations widened in
scope as a result of the fluctuation–dissipation theorem[4]
to time-harmonic phenomenons[5]. Sections 123–125 of
the famous textbook of Landau and Lifshitz on statistical
physics provide a lucid introduction to the Onsager relations
[6], but we also recommend a perusal of a classic monograph
by de Groot[7]. A modern appraisal has been provided by
Berdichevsky[8], whose paper motivated the work leading
to this communication.
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Our focus is thecorrect application of the Onsager re-
lations for linear electromagnetic materials. This issue can
be traced back to a 1973 paper by Rado[9]. This paper
contains a major conflict between a consequence of the as-
sumption of material response without any delay whatsoever
and the Onsager relations as expounded by Callen et al.[5].
The former is definitely a noncausal assumption in electro-
magnetism[10,11], leading to false symmetries between the
electromagnetic constitutive parameters[12]. Furthermore,
Rado consideredE andH as primitive fields, butE andB are
taken to be the primitive fields inmodern electromagnetism
[13–15]. To the best of our knowledge, no otheroriginal
investigation of the Onsager relations in electromagnetism
exists.
Due to the currently increasing emphasis on engineered

nanomaterials[16,17] and complex electromagnetic mate-
rials [18,19], it is imperative that the application of funda-
mental principles (such as the Onsager relations) be care-
fully examined with modern terminology. Accordingly, in
the following sections, we first review the Onsager relations
in general. Then we apply the Onsager relations to the elec-
tromagnetic constitutive relations of linear, homogeneous,
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bianisotropic materials. We show that a naïve application
to constitutive equations relatingD andH to bothE andB
yields unphysical results, but that application to constitutive
equations relatingP andM to bothE andB is in accord
with Lorentz reciprocity[20] as well as the Post constraint
[21,22].

2. Onsager relations

Let us consider the linear macroscopic constitutive

Lm =
N∑

n=1

�mnFn, m ∈ [1, N ], (1)

whereN >1, Lm are theOnsager fluxesand Fm are the
Onsager forces. The Onsager relations deal with the consti-
tutive parameters�mn.
The derivation of the Onsager relations proceeds with the

postulation ofN state variablesan, n ∈ [1, N ]. The state
variables are divided into two groups. The firstÑ �N state
variables are supposed to beevenand the remainingN − Ñ

state variables are supposed to beoddwith respect to a re-
versal of velocities of the microscopic particles constituting
the linear medium; in other words,

am(t)an(t + �) = am(t)an(t − �),

if

{
m ∈ [1, Ñ ] andn ∈ [1, Ñ ]
or
m ∈ [Ñ + 1, N ] andn ∈ [Ñ + 1, N ]

(2)

and

am(t)an(t + �) = −am(t)an(t − �),

if

{
m ∈ [1, Ñ ] andn ∈ [Ñ + 1, N ]
or
m ∈ [Ñ + 1, N ] andn ∈ [1, Ñ ],

(3)

where the overbar indicates averaging over timet [3].
In terms of the state variables, the Onsager fluxes are

defined as

Lm = �
�t

am, m ∈ [1, N ]; (4)

theOnsager forcesare defined as

Fm = −
N∑

n=1

gmnan, m ∈ [1, N ]; (5)

and the coefficientsgmn help define the deviation�S of the
entropy from its equilibrium value as the quadratic expres-
sion [7]

�S = − 1

2

Ñ∑
m=1

Ñ∑
n=1

gmnaman

− 1

2

N∑
m=Ñ+1

N∑
n=Ñ+1

gmnaman. (6)

In consequence of the microscopic reversibility indicated
by (2) and (3), the constitutive parameters satisfy the On-
sager relations

�mn = �nm,

if

{
m ∈ [1, Ñ ] andn ∈ [1, Ñ ]
or
m ∈ [Ñ + 1, N ] andn ∈ [Ñ + 1, N ]

(7)

and

�mn = −�nm,

if

{
m ∈ [1, Ñ ] andn ∈ [Ñ + 1, N ]
or
m ∈ [Ñ + 1, N ] andn ∈ [1, Ñ ].

(8)

In an external magnetostatic fieldBdc, (7) and (8) are mod-
ified to

�mn(Bdc) = �nm(−Bdc),

if

{
m ∈ [1, Ñ ] andn ∈ [1, Ñ ]
or
m ∈ [Ñ + 1, N ] andn ∈ [Ñ + 1, N ]

(9)

and

�mn(Bdc) = −�nm(−Bdc),

if

{
m ∈ [1, Ñ ] andn ∈ [Ñ + 1, N ]
or
m ∈ [Ñ + 1, N ] andn ∈ [1, Ñ ],

(10)

respectively.

3. Application to linear electromagnetism

3.1. Constitutive equations for D and H

Let us now consider a linear, homogeneous, bianisotropic
medium. Its constitutive equations can be written in a Carte-
sian coordinate system as

Dj = ∑3
k=1 �jk ◦ Ek + �jk ◦ Bk

Hj = ∑3
k=1 �jk ◦ Ek + �jk ◦ Bk

}
, j ∈ [1,3]. (11)

We have adopted here themodern view of electromagnetism,
whereinE andB are the primitive fields whileD andH
are the induction fields[13–15]. The operation◦ indicates
a temporal convolution operation in the time domain, and
simple multiplication in the frequency domain[23].
Now,D andE are even, butH andB are odd, with respect

to time-reversal. With that in mind, we can rewrite (11)
compactly as

Qm =
N∑

n=1

�mn ◦ Fn, m ∈ [1, N ], (12)

whereFm = Em, Fm+3 = Bm, Qm = Dm andQm+3 = Hm

for m ∈ [1, 3]; furthermore,Ñ = 3 andN = 6.
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With the assumption of microscopic reversibility, appli-
cation of the Onsager relations (9) and (10) yields the fol-
lowing symmetries:

�mn(Bdc) = �nm(−Bdc), m ∈ [1,3], n ∈ [1,3],
�mn(Bdc) = �nm(−Bdc), m ∈ [4,6], n ∈ [4,6],
�mn(Bdc) = − �nm(−Bdc), m ∈ [1,3], n ∈ [4,6].

(13)

Eqs. (13) imply that

�jk(Bdc) = �kj (−Bdc),

�jk(Bdc) = �kj (−Bdc),

�jk(Bdc) = − �kj (−Bdc). (14)

3.2. Constitutive equations for P and M

When considering a material medium, as distinct from
matter-free space (i.e. vacuum), the presence of matter is
indicated by the polarizationP=D− �oE and the magneti-
zationM = �−1

o B−H, where�o and�o are the permittivity
and the permeability of matter-free space. Linear constitu-
tive equations forP andM can be stated as

Pj = ∑3
k=1 	(1)

jk ◦ Ek + 	(2)
jk ◦ Bk

Mj = ∑3
k=1 	(3)

jk ◦ Ek + 	(4)
jk ◦ Bk,

}
, j ∈ [1,3], (15)

where

�jk = �o
jk + 	(1)
jk ,

�jk = �−1
o 
jk − 	(4)

jk ,

�jk = 	(2)
jk ,

�jk = − 	(3)
jk , (16)

and
jk is the Kronecker delta function.
As P is even butM is odd with respect to time-reversal,

we can rewrite (15) as

Rm =
N∑

n=1

�mn ◦ Fn, m ∈ [1, N ], (17)

whereRm =Pm andRm+3=Mm for m ∈ [1, 3]. As the mi-
croscopic processes underlying the constitutive parameters
in (17) are reversible,�mn must satisfy (9) and (10); thus,

�mn(Bdc) = �nm(−Bdc), m ∈ [1,3], n ∈ [1,3],
�mn(Bdc) = �nm(−Bdc), m ∈ [4,6], n ∈ [4,6],
�mn(Bdc) = − �nm(−Bdc), m ∈ [1,3], n ∈ [4,6],

(18)

whence the symmetries

	(1)
jk (Bdc) = 	(1)

kj (−Bdc),

	(4)
jk (Bdc) = 	(4)

kj (−Bdc),

	(2)
jk (Bdc) = − 	(3)

kj (−Bdc), (19)

are predicted by the Onsager relations as the macroscopic
consequences of microscopic reversibility.

3.3. The conflict

Eqs. (19) imply that

�jk(Bdc) = �kj (−Bdc),

�jk(Bdc) = �kj (−Bdc),

�jk(Bdc) = �kj (−Bdc),

(20)

by virtue of (16).
But (20)3 disagrees completely with(14)3. Let us reiterate

that both (14) and (20) come about from the application of
the Onsager relations, contingent upon the assumption of
microscopic reversibility. Yet, at most, only one of the two
must be correct.

3.4. Resolution of the conflict

Onsager’s own papers help resolve the conflict. His pa-
pers were concerned with motion of microscopic particles,
and he considered his work to hold true for heat conduc-
tion, gaseous diffusion and related transport problems. The
Onsager forces must be causative agents, while the Onsager
fluxes must be directly concerned with particulate motion.
This understanding is reinforced by subsequent commen-
taries[6,7].
Therefore, in order tocorrectlyexploit the Onsager rela-

tions in electromagnetics, we must isolate those parts ofD
andH which indicate the presence of amaterial, because
microscopic processes cannot occur in matter-free space (i.e.
vacuum). The matter-indicating parts ofD andH areP and
M . Hence, (20) must be accepted and(14) must be dis-
carded.
With Bdc = 0, the symmetries (20) coincide—unlike

(14)—with those mandated by Lorentz reciprocity[20, Eqs.
23]. Also unlike (14), the symmetries (20) are compatible
with the Post constraint[21,22]

3∑
j=1

�jj =
3∑

j=1

�jj (21)

which must be satisfied by all (i.e. Lorentz-reciprocal as
well as Lorentz-nonreciprocal) linear materials. These two
well-known facts also support our decision to discard (14)
in favor of (20).
The literature on linear magnetoelectric materials is re-

plete with the use of (14), derived most prominently by
O’Dell [24, Eq. 2.64]; and Rado[9] appears to have distorted
his initial results in order to confirm to that derivation. Thus,
the impact of the correct application of the Onsager relations
should be felt mostly in research on magnetoelectric mate-
rials [12]. A secondary impact shall be on the inadequately
measured properties of the so-called Tellegen medium and
Tellegen particles, a review of which is available elsewhere
[22, Section 5].
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4. Concluding remarks

In this communication, we first reviewed theOnsager rela-
tions which delineate the macroscopic consequences of mi-
croscopic reversibility in linear materials. Then we applied
the relations to the electromagnetic constitutive relations of
homogeneous bianisotropic materials. We determined that
a naïve application to constitutive equations relatingD and
H to bothE andB yields unphysical results, but that appli-
cation to constitutive equations relatingP andM to bothE
andB is in accord with Lorentz reciprocity as well as the
Post constraint.
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