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Solution for boson-diboson elastic scattering at zero energy in the shape-independent model

J. H. Macek and Serge Ovchinnikov
Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996-1501, USA

and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372 USA

Gustavo Gasaneo
Departamento de Fisica, Universidad Nacional del Sur, Av. Alem1253, (8000) Bahia Blanca, Buenos Aires, Argentina
(Received 21 March 2005; published 9 September 2005)

We derive an exact analytic expression for the boson-diboson elastic scattering phase shift in the shape-
independent model for positive two-body scattering lengths when the total energy vanishes. A three-body
hard-core potential depending upon a hyperradial cutoff parameter R is introduced to obtain a finite result. The
exact result is compared with adiabatic hyperspherical calculations of the phase shift, and a similar functional
dependence on the cutoff parameter is found. The cutoff parameter plays the role of a renormalization constant
in that it renormalizes the wave function at vanishing hyperradius.
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I. INTRODUCTION

The properties of homogeneous dilute Bose condensates
depend primarily upon the two-body S-wave scattering
length a. This is seen most directly in the expansion [1] of
the energy density in powers of yna®, where n is the particle
density and where the coefficients of terms of order vna® and
vna® In(Vna®) are universal constants. The coefficients of the
next-order term—namely, the term na’—depend upon details
of two- and three-body interactions not germane to the two-
body scattering length a. Such details are relevant to proper-
ties that depend upon the particle interactions when all three
particles are close together. This region can be treated with
high accuracy using the hyperspherical adiabatic basis set
and the hyperspherical close coupling (HCC) method [2,3].
When the spatial extent of the region where the two- and
three-body potentials are important is small compared with
the scattering length a these details can be incorporated in a
single parameter identified as a renormalization constant A.
[4—6]. Once the renormalization constant is set, all other ob-
servables can be computed unambiguously.

The renormalization constant is set by fitting a low-energy
three-body observable to a measured or computed value.
This computed value is usually determined numerically—
i.e., by solving the three-body Schrédinger equation with re-
alistic two-body potentials at some level of approximation—
e.g., by the hyperspherical close coupling method. Explicit
three-body interactions can also be included in the HCC ba-
sis, if needed [3].

Because the renormalization constant is fundamental to
the shape independent representation it is desirable to know
the functional form of the observable quantities used to set
the renormalization constant as exactly as possible. In this
paper we give an exact closed-form solution of the three-
body Schrodinger equation for the special case of three iden-
tical bosons in the shape-independent model when a >0 and
the total energy E of the three-body system vanishes. The
exact solution involves a renormalization constant—namely,
a fixed hyper-radius R; thus, this constant can be related
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exactly to one observable—namely, the elastic scattering
phase shift at zero energy.

We find that the dependence of the elastic scattering phase
shift upon Ry is identical to the form obtained by Efimov in
a 1/R?* model potential analysis [7]. The exact expression is
used to compute parameters of Efimov’s model at zero en-
ergy. Exact solutions for this phase computed using effective
field theory (EFT) [6] obtain a form that is similar to that of
Ref. [7]. More importantly, Ref. [6] extends Efimov’s model
to include true molecular effects expected in realistic physi-
cal situations. In this way they show how the shape-
independent model is fundamental to the theory of three-
boson interactions.

The computations of Ref. [6] employ a renormalization
constant A. conjugate to a distance R:=1/A. in atomic
units, which are used throughout this report. We show that R
and R, are proportional up to terms of the order 10~ and find
the proportionality constant.

While investigating the renormalization constant is an im-
portant motivation for the present work, exact solutions for
three interacting species, even if only for special cases, are
intrinsically interesting since they are limiting cases of gen-
eral solutions. Such limiting cases can indicate mathematical
properties of more general solutions. The E=0 solutions are
at the energy boundary where the L=0 scattering matrix
changes from a 1 X 1 matrix to an infinite-dimensional ma-
trix owing to the opening of the breakup channels. Exact
solutions near E=0 are therefore of particular significance
for tests of theory, generally. In addition, the special solution
for E=0 is the first term of an expansion in powers of Ea’.
Such expansions are asymptotic, but can be systematically
developed once the E=0 solutions are available. For these
reasons, the special solution at E=0 is presented in detail in
this report.

The analytic expressions for the zero-energy phase shifts
reported in this paper employ hyperspherical coordinates and
integral representations of the exact S-wave solutions [8].
The general method is reviewed in Sec. II. The basic equa-
tions are solved in Sec. III. The solutions are used in Sec. IV
to obtain the elastic scattering phase shift at zero energy. In
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that section we present an identity that is used to check the
accuracy of our solutions. The phase shift is also compared
with those obtained in the one-channel hyperspherical close
coupling and the adiabatic hyperspherical approximations.
Bound properties of these phase shifts are used to compare
these results with the exact solution. Section V summarizes
the investigations reported here.

II. REVIEW OF THE STURMIAN METHOD

In the shape-independent model all two-particle interac-
tions are replaced by boundary conditions such that the wave
function in the force-free region corresponds to an s wave
with the correct scattering length a [9]. This model is also
called the zero-range potential (ZRP) model. Since the free-
particle Schrodinger equation is separable in a large number
of coordinate systems, exact solutions are readily obtained
by separation of variables. In this case the wave function is a
product of functions of the coordinate variables. For three or
more particles, however, the boundary conditions are not
separable in any known coordinate system. This means that
acceptable solutions must be obtained by integrating the
separable solutions over the separation constants [10]. The
generally complex integration contour and the amplitude of
the product functions must then be chosen to satisfy the
boundary conditions.

There are no general methods to find the integration con-
tours nor to completely determine the amplitudes of the
product functions. Every case appears different. The main
accomplishment of the present work is that both the contours
and those amplitudes that satisfy physical and mathematical
conditions are determined uniquely. This allows us to com-
pute analytic expressions for the phase shifts in terms stan-
dard I" functions and the roots of simple transcendental equa-
tions.

In the hyperspherical Sturmian representation the coordi-
nates of three particles are denoted by one length coordinate,
the hyperradius R, and a set of five angles denoted collec-

tively by the five-dimensional unit vector R. The five angles
are taken to be three Euler angles specifying the orientation
of the triangle with the three particles at the vertices and two
additional angles. The set given by Fedorov and Jensen [11]
is used here, although, because only S waves are considered,
the three Euler angles factor out and can be ignored. Then it

is supposed that R represents the direction specified by
the two remaining angles. If r;, i= _1,2,3 is the relative
coordinate of any two particles and y3s;/2 is the coordinate
of the third particle relative to midpoint r;/2, then we set
r;=R sin «; and s5;=R cos «;. Any two of the angles «; can be

used to determine R, although it is convenient to employ all
three even though one is redundent.

In these coordinates, the arbitrary mass parameter w in the
definition of R,

,LLR2 = mrl-2 + ms?,

where m is the reduced mass of any pair of particles, is set
equal to m. For simplicity, it is supposed that all lengths are
scaled so that u=1.
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The angular functions are taken to be

3 .
Sy =S, ST a) (1)

=1 sin ¢; cos «;

These functions are simply solutions to the angular part of
the three-particle Schrodinger equation in hyperspherical co-
ordinates. In Ref. [8] they have been interpreted as Sturmian
eigenfunctions in the sense that they satisfy the ZRP bound-
ary conditions at specific values of R/a=p(v)/a—i.e., the
Sturmian eigenvalues:

p(v) _ vcos(va/2) = (8/\3)sin(v/6)

a sin(v7/2)

The radial function is R™2K(ICR), where K ,(ICR) is the
modified Bessel function with K=y-2E. The product

S( v,IA?)R‘zKV(ICR) is thereby a solution of the three-particle
Schrédinger equation with E=—2K2.

The product solution satisfies the Schrodinger equation
but does not satisfy the zero-range boundary conditions at
r;=0, i=1,2,3. In order to satisfy those conditions a general
solution of the form

(2)

U(R) = R”ﬁ f cfmA(V)s(y,ﬁ)Kv(/CR) v, (3)

where 0<<c<1 is a positive constant, is used. The expres-
sion has the form of a Kontorovich-Lebedev transform [12],
a feature that has been used previously [8], but plays no role
in the present application.

The expression in Eq. (3) is a solution only if the integral
converges, A(v) has no singularities on the strip 0 <Re(v)
<2, and A(v) satisfies the three-term reccurence relations [8]

[v+1+b(v+D)]JA(v+ 1) +[v=-1+b(r-1)]JA(v-1)

2v
=—A(v), 4
a (v) 4)
where
8 sin v7r/6
b(v)=———=—"—"—. 5
®) \E cos vr/2 ®)

The absence of singularities in A(v) on the strip 0 <Re(w)
=<2 is required in order to shift the contour +1 unit in the
derivation of Eq. (4).

For the special case that — 0 the Bessel function be-
comes %F(v)(%ICR)_V and Eq. (4) becomes a Barnes-type in-
tegral representation

c+ie

CT(v)(Rla)"S(v,R)dv. (6)

c—i%®

1
YR)=R>—
2
The amplitude A(v) becomes

mas(5)
C(V)=/1C1LI})A(V)§7 v, (7)

where C(v) satisfies the two-term recurrence relation
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v—1
v 1)_V—1+b(V— I)C(V)’ ®
which is solved in closed form in the next section. Note that
for the special case =0 the contour is only shifted by +1
unit in the derivation of the two-term recurrence relation. In
this case one can take ¢=0* and there must be no singulari-
ties of [v+b(v)]C(v) on the smaller strip 0 <Re(v)<1.

III. COMPUTATION OF EXPANSION COEFFICIENTS

If the quantity b(v) in Eq. (8) were a constant, then the
two-term recurrence relation would be trivially solved in
terms of the ratio of I' functions—namely, C(v)—TI'(v
+b)/T'(v). The quantity b(v) is, however, not a constant, but
is a periodic function with period 6—i.e., b(v+6)=b(v).

When b(v) is a periodic function with period k it is useful
to generalize the definition of the I" function according to

v+ 1,0)=[v+ b)) (v,D). 9)

The properties of this periodic I' function are discussed in
the Appendix. There it is shown that the periodic I" function
can be written as a product of ordinary I" functions [see Eq.
(AS)].

In terms of this new function C(v) is simply

I'e(v,b)
(1)) = —057
V()= T (10)
aside from a multiplicative periodic function with period 1.
The periodic function must be chosen so that ¢ of Eq. (3)
satisfies physical boundary conditions and C(v) has no sin-
gularities on the strip 0<v=1.

It is readily apparent from Eq. (5) that C'V(v) has essen-
tial singularities where cos vmr/2 vanishes. The singularities
of CY(v) are illustrated in Fig. 1(a). In this figure the func-
tion is plotted at values of v slightly shifted into the complex
plane. This smooths out the poles; however, essential singu-
larities still appear.

It is necessary to eliminate these singularities by multiply-
ing by a periodic function. As the periodic function we use a
product of I" functions similar to those that are used to con-
struct I'¢(v, D). If the argument v is replaced by a constant p,
the resulting function is periodic and has singularities similar
to those of I'¢(v,b). The function, thus obtained, is called

Ne(p.b(v)):

p+b(v+i)>’ an

5
Ng(p.b(1)) =T (p/6)T1 r( (
=0

where the function has been normalized to unity as
v— xio, With the choice p=3 the ratio I'¢(v,b)/N¢(3,b(v))
has no essential singularities on the interval —2 < v<2; thus,
we take for the coefficient

FG(V,b)

@(y) = —a6nb)
) = NG ()

(12)

This coefficient now has no essential singularities on the
strip 0 <Re(v) <2; however, it does have an infinite number
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FIG. 1. Plots of (a) CV(») and (b) CP(») vs Re(v) for
v=Re(v)+0.1i showing the singularities of these two coefficients.
The coefficient C(v) on the real axis (c) is seen to be smooth on the
interval =2 < v <2 with a pole at v=2.

of poles on the real v axis. This is illustrated in Fig. 1(b),
where C?(v) slightly shifted away from the real axis is plot-
ted. The smoothed-out poles are still evident. On the strip
0<w=<2 these poles are at v=v;—m where v; is a root of the
equation v+b(v)=0 and m is a positive or negative integer.

The roots v; come in pairs since both v; and —v; are roots.
Those with positive real parts are labeled v}, j=1,... . There
is also one pair of purely imaginary roots at v=+it, where
1o=1.006 237 825... . It is convenient to define the root
vy=+ity. Now the poles of C®(v) on the positive real axis
and at v, can be eliminated by multiplying by the periodic
function H;O sin (v— vj), but the coefficient thus obtained
does not give a convergent integral along the imaginary axis
owing to the exponential divergence of sin m(v—v;) as
v— =xice, This divergence can be remedied by multiplying by
yet another periodic function Hﬁ,l/ sin m(v—d;), with ap-
propriately chosen d;.
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FIG. 2. Plot of —b(v) (solid lines) and the functions f,(v)=6n
+3  (dot-dashed lines) and g,(v)=v+6n (dashed lines),
n=0,1,2,..., vs v on the interval 0<w<6. The curves f,(v), n
=1, intersect with —b(v) at d; and the curves g,(v) intersect at v;.
The curve go(v)=v intersects at two real points and at the imaginary
points +ity. The curve fy(v)=3 intersects at one real point on the
interval 0<v<1, but at two imaginary points on the interval 3
<Re(v)<5.

In order that this final C(») not have poles at d; it is
necessary that sin 7m(v—d;) vanish only at the points where
Ng(3,b(v)) has poles—i.e., where 3+b(v)=-6n. Thus the d;
are solutions of the equation

3+ b(d) =~ 6n, (13)

where 7 is a positive integer. For later reference it is useful to
note that Eq. (13) can be written as a cubic equation in the
quantity x=¢'™3:

N
W+ 1) 4 (2

333(1 +2n) ~9=0. (14)

Because the product of the three roots of Eq. (14) must equal
the constant term—i.e., unity—it follows that the sum of the
three d;’s for a given n must sum up to 6g where ¢ is an
integer. This property is used later to simplify the elastic
scattering phase shift.

Since only one of the complex roots of v+b(v)=0 is
taken, the roots v; and dj are matched one for one, as illus-
trated in Fig. 2 where the function —b(v) is plotted on the
interval 0<p=<6. Also plotted are the constant lines f(v)
=6n+3, n=0,1,2..., which intersect with b(») at V=dj, and
the sloping lines f(v)=6n+v, which intersect with b(v) at
v=v;. This figure shows that the first root ¥, of v+b(v)=0 is
complex, while two roots of 3+b(v)=0 are complex. For
sufficiently large n it is apparent that there is a root d; for
each v; and that d;— v; as n— 0. The one-for-one matching
of the roots means that lim,_, ., P(v)=1, as is required to
obtain a convergent integral.

The removal of the poles is accomplished by the choice of
v; and d; in the periodic function P(v) given by
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P(v) = H sin m(v — v;) (15)

o sinm(v—d )
The resulting C(v),

Ly(v,b)
[(v)Ne(3,b(v))

is a smooth function of v on the real axis for —2<<v<2 as
shown in Fig. 1(c). It is also analytic on the strip 0 <Re v
<2 and has poles on the boundary of this region at v=—y
=—ity and v=2. The poles at complex v play an important
role in selecting the renormalization constant, as will be
shown in the next sections.

Clv) = P(v), (16)

IV. PHASE SHIFT
A. Evaluation of the wave function at large R

The final suitable expression for C(v) is used in the
Barnes-type integral representation of Eq. (6) to write an
exact solution of the three-body Schrédinger equation at zero
energy—namely,

1 c+ioo

'7[/:_

o C(v)I'(v)S(v,R)R Vdv. (17)

c—i%®

The integral may be evaluated for large R by the method of
stationary phase. For this purpose we consider just one term
in the Sturmian function and represent it generically as
sin v(7/2—a)/(sin a cos a).

At large R only large values of v contribute significantly.
For large, purely imaginary, v the coefficient C(v) becomes

V—+io0

lim C(v)—exp|:+z772 (v; - :| (18)

Since the sum over dj is an even integer, the sum over d ;
could be omitted. Because v; approaches d; rapidly as j be-
comes large, this term is retained in the calculations. The
term with wpy=if, gives the magnitude of C(»), namely
exp(F mty). The remaining phase on the right hand side of
Eq. (18) is defined as &..:
6m—1
S.=—m lim X (v;—d)) + md,. (19)

m— |

The actual calculations of &, stop at finite values of 6m of
the order of 10*.

The stationary phase evaluation is now easily carried out.
Since there are two points of stationary phase, one for posi-
tive values of —iv and one for negative values, we find that

e—r/a m‘el(é‘m+s/a) . ‘e—t(5m+5/a)
l/l - = . e —-e 0 ’ (20)
2ir s s

where we have used R cos a=s and R sin a=r.

Note that this wave function represents a diboson bound
state with energy —1/2a” and a third particle moving freely
with respect to the diboson at an energy of 1/2a® so that the
total energy is indeed equal to zero. Even so, it is apparent
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that the function ¢ does not have the correct asymptotic form
to describe elastic scattering; however, the correct form can
always be obtained by combining the function and its com-
plex conjugate. This will be done after the behavior at small
R is extracted.

B. Wave function at small R

The Barnes-type integral can be evaluated exactly by
closing the integration contour around the circle at infinity in
the left half plane, where I'¢(v,b) is small except at its poles.
In this case one obtains a sum over terms in ascending pow-
ers of R and at small R the dominant term comes from the
pole at v=—it,. The contribution from this pole is

= (Rla)"0~2 Res[C(= ito) [T (= ito)S(~ ity,R)
= ¢*®(R/a)2Res[C(= ito) IT(= ity)|S(= ito,R), (21)

where Res[C(-ify)] denotes the residue of C(v) at v=—if,,
A(R) is the phase

A(R) = 50 + to ln(R/a), (22)

and & is the phase of Res[ C(—ify) ]T'(=ity).

The function R?y has a divergent phase at the origin,
consistent with the Thomas effect [13,14]. To use the ZRP
model for predictive purposes it is necessary to renormalize
the function to remove this divergence.

The renormalization is accomplished by noting that the
complex conjugate function ¢ is also a solution, so that a
linear combination of  and " which vanishes as some
small value of R=R, can be formed. The value of R, is not
known a priori and must be chosen by some criteria such
that the ZRP model is physically realistic. One choice will be
discussed below.

Since iS(~ity,R) is real, the function that vanishes at R, is

W= (e R0y 4 oA Ro)y), (23)

| =

The asymptotic form of W gives the phase shift at
E=0—namely,

e~2™0 sin 2A(R,)
1+e72™0 cos 2A(R,)

8= 6, - A(R) + arctan (24)
Equation (24) together with Egs. (18) and (22) represents a
completely analytic result for the elastic scattering phase
shift at zero energy.

The renormalization constant Ry, is identified as the radius
of a hard-core three-body potential since the wave function
vanishes on the hypersurface R=R,,. The value of R is cho-
sen so that the renormalized phase matches a measured phase
or the phase computed using realistic two-body potentials.
Once this constant is chosen other physical quantities can be
computed in the low-energy region using the ZRP model.

The renormalization is seen to affect the phase shift by
subtracting a term that diverges as Ry— 0 and adding a small
term that oscillates with R. The effect of this small term is
shown in Fig. 3(a) where &(R,)+1, In(Ry/a) is plotted versus
Ry/a. The phase is nearly constant except for a small oscil-
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FIG. 3. Plot of the phase shifts 5+1,log(Ry/a) vs Ry/a. (a) The
solid curve is the exact result, the dashed curve is the one-channel
close-coupling result, and the dot-dashed curve is the adiabatic
phase. The adiabatic phase in the WKB approximation is shown as
the dotted curve. In (b) the curves are shown on a finer scale and
moved to a common zero to compare the small oscillations in dif-
ferent approximations.

lation with amplitude e~>™ =~ 1.8 X 1073, Figure 3(b) shows
the small oscillation on a finer scale.

If this small oscillation is ignored, then extracting the
term 7, In(Ry/a) gives an elastic scattering phase that is es-
sentially equal to d..—&,. In general, however, the small os-
cillation should not be ignored and the elastic scattering
phase is taken to be 8(R,) of Eq. (24) with R, chosen so that
the phase matches an experimental value at precisely zero
energy.

A similar form for the elastic scattering phase shift
was obtained by Efimov in a model that considers a wave
incident at small R on an attractive (—t(z)— 1/4)/(2R?) hyper-
radial effective potential. This potential is cut off at
R= a\s’t(z)+ 1/4 after which it becomes a constant equal to the
energy eigenvalue —1/(2a%) of the two-body dimer. The
wave at the origin is reflected with amplitude s;; and trans-
mitted with amplitude s;,. The logarithmic derivative of the
wave at R, is a parameter of the model. This model connects
with our exact result if we set
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S = 6‘_2m0€_l260,

sp=V1- e—4moei5w—i50’ (25)
and introduce the renormalizing phase 6:
0=—toIn(R/a) + /2, (26)

where the factor of m/2 emerges because the logarithmic
derivative in our model becomes infinite, corresponding to a
wave that vanishes at R,. Of course we could use alternative

boundary conditions at R,; however, W(R,,R)=0 is chosen
because the adiabatic hyperradial potential always has a
hard-core 1/R? barrier equal to (4—1/4)/(2R?) for any real-
istic two-body or three-body interaction which is less singu-
lar than 1/72 at the origin [18]. For such hard cores, the
low-energy wave function sensibly vanishes as R? near
R=0. In any event, the form we obtain agrees exactly with
the form given in Ref. [7].

The phase shift at zero energy has also been computed
exactly using effective field theory [4,6]. The phase shift is
found to be 5=1,log(aA«)+1.94, where A is a renormaliza-
tion constant in momentum space. To connect with our result
one need only note that a conjugate renormalization constant
with dimensions of length is obviously R.=1/A« up to a
dimensionless multiplicative constant. This has the same
form as our result if small terms of order 2™~ 1.8 X 1073
are neglected.

C. Checks

Because the zero-energy solutions that we have found are
unusual in that they are exact solutions of a nontrivial three-
body problem that can be used to explore the renomalization
consants, it is useful to check the results as throughly as
possible. We have done this by verifying that a simple
Wronskian relation is satisfied by our solution and by com-
paring the exact phase with approximate calculations that
provide bounds on the exact values.

1. Hyperspherical Wronskian relation

Wronskian relations are standard properties of solutions to
one-dimensional second-order differential equations and
have long been used to relate properties of wave functions at
small distances to asymptotic properties and, e.g., are famil-
iar in the context of the Jost function formulation of colli-
sions and spectra [16]. Their use with multiparticle systems
is less familiar; thus, a brief derivation for any number N of
particles [17] is given and applied to the exact wave function
of Eq. (6) with Eq. (16).

Multiparticle Wronskian relations are most readily formu-
lated in hyperspherical coordinates, since these coordinates
employ one coordinate R with dimensions of length. All

other coordinates called hyperangles R are dimensionless
and are defined on finite intervals. More importantly, the
Schrodinger equation has no cross derivatives involving R
and the hyperangles. In these coordinates the free-particle
Hamiltonian is the sum of a hyperradial kinetic energy op-
erator Tx and an angular part Hy, equal to the generalized
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angular momentum operator divided by 2R?, so that [17]
H=Tr+Hp (27)

and all derivatives with respect to R are confined to T in the
coordinate representation of H.

If R-ONY2¢ and R-CN-Y2¢, are two solutions of the
Schrodinger equation for the same total energy E, then the
multiparticle Wronskian relation is

W(¢17¢2)=f(%(ﬁz—(ﬁl%)dﬁ:consu (28)

where we have used that

f ¢\ HidR = J bHidR. (29)

In the present case, the Wronskian is evaluated with the
function R¥?y of Eq. (6) and the linearly independent func-
tion R32¢" at large and small values of R. At large R use of
R4 and Ry from Eq. (20) in Eq. (28) gives the simple
result

3
W= IE sinh 271t = i3 sinh 71, cosh 7. (30)

Alternatively, evaluation of W at small R using Eq. (22)
gives

W = 2ito|Res[ C(— itg) IT(— ito)|? f |S(itg,R)[?dR, (31)

where Res[C(—it;)] may be written explicitly as

T(1 =ity b) 1
Ne(3,—ito)T (= ity) d[v+b(v)] ‘
dv

Res[C(- ify)] =

v=—il
(32)
The integral over angular coordinates has been evaluated by

Kartavtsev [15] in another context. In our notation his result
is

dlv+b(v)]
2vdv

f |S(ito,R)|*dR = — 3i sinh rt,

V=—l[0

(33)

Using Egs. (30) and (31) in Eq. (31) gives a second, com-
pletely analytic expression for W—namely,

2

_ i3sinh ‘F6(1—it0,b)P(—ilo) (34)

d[V+ b(V)] N6(3,b(— ito))
dv

VZIIO

The Wronskian relation requires that these two values be
identical; indeed, it should be possible to transform Eq. (34)
into the simple expression of Eq. (30). We have not been able
to do this, but numerical evaluation of both expressions
shows that they are identical to ten significant figures, which
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is near the limit of accuracy of the calculations. Thus, the
exact solution given by Eq. (6) is in accordance with the
multiparticle Wronskian relation.

2. Comparison with adiabatic and one-channel phases

A second check on our exact solution is to compare it
with other, more standard computations. The hyperspherical
close coupling method provides such a check. In this case the
exact wave function is approximated by an expansion in the
hyperspherical adiabatic basis set. It is known that if only
one term is employed the resulting approximate phase is a
lower bound to the exact phase shift [18,19].

The adiabatic potential energy curves U(R) are easily
computed from the single Sturmian eigenvalue p(v) of Eq.
(2). The adiabatic and Sturmian eigenvalues are related ac-
cording to

vj?(R) - 1/4
U/R)= T, (35)

where ;(R) is a solution of the equation
p(v)=R. (36)

Because p(v) is a cot-like function, it has an infinite number
of branches for —oo < 12 < oo thus, there are an infinite num-
ber of roots v; of Eq. (36). The root vy(R) is equal to
vo=ity in the limit R—0 and becomes equal to wy(R)
=iR/a in the limit that R—o. The 1/R? singularity at the
origin is consistent with the Thomas effect, while the large-R
limit ensures that this channel corresponds to elastic scatter-
ing from the bound diboson state.

The one-channel HCC method requires the second deriva-
tive diagonal term Q,, which adds to the adiabatic potential
Uy(R). Analytic expressions for Qgo(R) are given in Refs.
[15]. The one-channel close-coupling (HCC) phase has been
computed using the potential Uy(R) and the diagonal nona-
diabatic derivative matrix Qg ,(R) for the lowest adiabatic
state.

To obtain finite phases it is necessary to replace Uy(R) by
a hard-core hyperradial potential for R <R, to regularize the
solution. The one-channel HCC equation is then solved nu-
merically to obtain the phase shift 8" (Ry/a). The resulting
phase varies with Ry/a as —t,In(Ry/a). The dashed line in
Fig. 3 shows 8V +1,In(Ry/a) vs Ry/a. As expected it lies
below the exact phase.

The one-channel HCC phase shows the same oscillation
with R, seen in the exact phase. This slight oscillation,
shown on a finer scale in Fig. 3(b), allows us to find approxi-
mate values for J,, and &,. The phase 581) is found by fitting
the small oscillations to the expression arctan
[e72™0 sin 2AM(Ry)1/[1+e72™0 cos 2A(R,)], where A1)
X (Ry/ a):égl)ﬂo In(Ry/a). The phase 8. ) is then found by
computing 52 )=éﬂ)+A(l)(RO/a). These values are shown in
Table I, together with the exact results.

The adiabatic phase—i.e., the phase obtained when the
diagonal derivative matrix element Qg o(R) is omitted in the
one-channel HCC equation—is shown as the dot-dashed

PHYSICAL REVIEW A 72, 032709 (2005)

TABLE I. Computed phases 8., and &, in three approximations
compared with the exact values.

Approximation O & 8=
Exact 1.736 1.588 0.148
One-channel HCC 1.734 1.703 0.031
Adiabatic 1.795 1.702 0.093
EFT [6] 1.75

WKB adiabatic 0.1623

curve in Fig. 3. Spruch [20] has shown that this approximate
phase is an upper bound to the exact phase when the two-
body interactions are given by well-behaved local potentials.
It is apparent that the adiabatic phase in the present case is
not an upper bound to the exact phase. This does not contra-
dict the bound theorem, since our two-body potentials are
replaced by ZRP boundary conditions and an explicit infinite
three-body potential at small R has been introduced.

The WKB adiabatic phase plus 7, In(Ry/a) is also shown
in Fig. 3 since the small oscillatory term is absent in this
approximation. Remarkably, this phase is quite close to
0.— 0y. Since there is no explanation for this good agree-
ment, it must be regarded as accidental.

Using the fitting procedure described above we have ex-
tracted the two phases &Y and égad) given in Table L It
appears that &, is bounded by the two approximate phases,
as would be the case for well-behaved two-body potentials,
where &, vanishes because both the regular and irregular
functions are real near R=0 and the factors exp(xmt,) are
replaced by +1 at large R.

As a further check on the phase we note that the lower
bound is variational, but the upper bound is not. This means
that the error in the lower bound is quadratic in the error in
i, but that the error in the upper bound is linear in the error
in . If the error in the lower bound for &, is A2, then the
error in the upper bound should be of order 2A. It follows
that, to first approximation, the difference between the adia-
batic and one-channel HCC results for &, is of the order of
2A=0.061 while the error in the one-channel HCC is of the
order of A>~0.001. These error estimates are in qualitative
agreement with the entries in Table I; i.e., the variational
lower bound is much closer to the exact result than is the
nonvariational upper bound.

It must be emphasized that the proportionality constants
in the error estimates are not known. In addition, there is no
rigorous basis for using these estimates with &, rather than
S(R). For this reason the phase comparison check is only
reliable for verifying that 8"(R,) is a lower bound to the
exact phase. Even here it is understood that the bounds are
on the absolute phase, whereas the computed and exact
phases have been extracted from the asymptotic function and
are therefore known only modulo 7. It is important, how-
ever, to note that the small oscillations are present in the
exact result and both one-channel approximations as shown
in Fig. 3. They are possibly a general feature of phase shifts
for potentials with sufficiently strong —1/R? singularities as
suggested by Efimov’s analysis [7].
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Our renormalization constant R\ has a direct physical in-
terpretation as the radius of a hard-core three-body potential.
In the work of Refs. [4-6] a similar, but not necessarily
identical, renormalization constant emerges. In that work ac-
curate results are obtained by numerical solutions of integral
equations and are, in principle, exact in the sense that physi-
cal quantities can be computed as accurately as desired given
sufficient computational resources.

As discussed in Sec. IV B, the constant A of Ref. [4]is a
momentum and is therefore conjugate to a length R.. It ap-
pears that our R, is proportional to R. up to terms of the
order of e72"~1.8 X 107>, If the small oscillatory terms are
ignored, one finds R:=6.0R,, but owing to the small oscilla-
tory term that appears in our exact phase, the renormalization
constants may not be exactly proportional. Even so, the func-
tional dependences of the phases on R. and R, are very
nearly identical even though the phases are obtained using
completely different, essentially exact, methods. The main
differences, besides the methods used, are that our results are
limited to zero energy but the elastic scattering phase is
given in closed form so that an additional small oscillatory
term is identified.

With the interpretation of the phase shift given by Eq.
(27) and the relation between R. and R, it is possible to
extract a phase &, from the effective field theory results
given in Ref. 6. The difference in the phases 7, given in Egs.
(224) and vy in Eq. (227) of that paper is just our &,. Using
the explicit values at zero energy, namely y,=1.94 and
v=0.19, we obtain the value of d,.=1.75 given as the EFT
result in Table I. This number is exact within numerical er-
rors and agrees very well with ours to the precision of the
computed values.

The exact solution in the relatively simple analytic form
obtained here is specific to the energy E=0. At E#0 it is
always possible to solve the three-term recurrence relation
(4) numerically. Then a periodic function such that
A(v)cos mv/2 has no singularities on the strip 0<<Re(w)
=<2 must be constructed. Because the interval has length 2
rather than 1, two independent solutions of three-term recur-
rence relations [8] are employed. A full description of the
procedure is beyond the scope of the present report, although
the zero-energy solutions provides a useful guide for the
steps needed to find solutions at E # 0.

The zero-energy solutions may also be used to find solu-
tions at nonzero energies in terms of power series in (Ka)?.
This is accomplished by setting

A(v) = K'C(v)A(v,(Ka)?), (37)

where A(v,(Ka)?) is expanded in a power series in (Ka)?.
Again, the details of such calculations are beyond the scope
of the present report. The important point here is that the
analytic form for the zero-energy solution—namely,
C(v)—plays a central role.

V. SUMMARY

We have obtained an exact solution for the zero-energy
wave function of three particles interacting via zero-range
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potentials with positive scattering length. The solution is
given in the form of a Barnes integral which is shown to
diverge as R for small R,. An acceptable solution is found
by forming a linear combination that vanishes exactly at
R=R,, equivalent to modifying the original system by adding
an explicitly three-body hard-core potential. The phase shift
for elastic boson diboson scattering at zero energy is ob-
tained and its dependence upon R exhibited explicitly. The
constant R is interpreted as a renormalization constant and
can be chosen to match observed or computed zero-energy
phase shifts. With the chosen value for R, other properties of
the system can be computed.
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APPENDIX: A PERIODIC I' FUNCTION

The usual gamma function I'(v) is a solution of the defin-
ing equation

I'vy=(v-1DI'(rv-1).

Many generalizations of this function are employed in the
mathematical literature [21]; however, the generalization that
emerges naturally in the present application does not appear
in any standard references.

Our periodic gamma function I',(z,b) is defined as a so-
lution of the recurrence relation

I(z,b)=[z-1+b(z-1]T,(z-1,b), (A1)

where b(z) is a function with period n—i.e., b(z+n)=b(z).
To express this function in terms of the usual I'(z) first iterate
the recurrence relation n times

I (z,b)=[z=1+b(z=1)[z=-2+b(z-2)]---
X [z=n+b(z-n)l'(z-n,b)

n—1

=n"[] (“k-i-nﬂ - I)Fk(z—n,b).

k=0
(A2)

Using the periodicity of b(z), it is simple to show that the
expression

n—1
I,(zb)=N][T
k=0

<z+k+b(z+k)> (A3)
n

satisfies the iterated recurrence relation (A2). The constant N
is arbitrary, but comparison with Gauss’ multiplication for-
mula [22] for the gamma function, namely,
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n—1
T'(z) = (2m) -2 12] r(“_") ,
k=0 n

(A4)

shows that if we take N=(2m)1=21712 then I',(z,b)=I"(z
+b) when b is a constant or, more generally, when b(z) has
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period 1. Thus we take the definition of the periodic gamma
function I',(z,b) as

Fn(z9b) =

n= 12 ﬁ <z+k+b(z+k))’ (AS)

(2 ,n_)(n—l)/z pairs

where b(z) has period n.

[1] Eric Braaten, H.-W. Hammer, and Thomas Mehen, Phys. Rev.
Lett. 88, 040401 (2002).

[2] J. H. Macek, Few-Body Syst. 31, 241 (2002).

[3]J. Macek, Z. Phys. D: At., Mol. Clusters 3, 31 (1986).

[4] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Rev.
Lett. 82, 463 (1999).

[5] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys.
A 646, 444 (1999).

[6] Eric Braaten and H.-W. Hammer, e-print cond-mat/0410417,
vl.

[7] V. Efimov, Yad. Fiz. 29, 1058 (1979) [Sov. J. Nucl. Phys. 29,
546 (1979)].

[8] G. Gasaneo, S. Ovchinnikov, and J. H. Macek, J. Phys. A 34,
8941 (2001).

[9] Yu. N. Demkov and V. N. Ostrovsky, Zero-Range Potentials
and their Applications in Atomic Physics (New York, Plenum,
1988).

[10] P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), p. 498.

[11] D. V. Fedorov and A. S. Jensen, Phys. Rev. Lett. 71, 4103
(1993).

[12] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Trancendental Functions (McGraw-Hill, New York,

1953), Vol. 11, p. 75.

[13] L. H. Thomas, Phys. Rev. 47, 903 (1935).

[14] E. Nielsen, D. V. Fedorov, A. S. Jensen, and E. Garrido, Phys.
Rep. 347, 373 (2001).

[15] O. I. Kartavtsev, Few-Body Syst., Suppl. 10, 199 (1999).

[16] U. Fano and A. R. P. Rau, Atomic Collisions and Spectra (Aca-
demic Press, New York, 1986), pp. 84-85.

[17] U. Fano, D. Green, J. L. Bohn, and T. A. Heim, J. Phys. B 33,
R1 (1999).

[18] J. H. Macek, J. Phys. B 1, 831 (1968).

[19] Y. Hahn, T. F. O’Malley, and L. Spruch Phys. Rev. 134, B911
(1964).

[20] L. Spruch, in Lectures in Theoretical Physics-Atomic Collision
Processes, edited by S. Geltman, K. T. Mahanthappa, and W.
F. Brittin (Gordan and Breach, New York, 1969), Vol. 11-C, p.
57.

[21] V. S. Adamchik, Ramanujan J. 9, 271 (2005); Junesang Choi,
H. M. Srivastava, and V. S. Adamchik, Appl. Math. Comput.
134, 515 (2003); L. J. Slater, Generalized Hypergeometric
Functions (Cambridge University Press, London, 1966), p. 41.

[22] Handbook of Mathematical Functions, edited by Milton
Abramowitz and Irene A. Stegun (Dover, New York, 1972), p.
256.

032709-9



