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Abstract

Let 0 < γ < 1, b be a BMO function and Im
γ,b

the commutator of order m for the fractional integral.

We prove two type of weighted Lp inequalities for Im
γ,b

in the context of the spaces of homogeneous type.

The first one establishes that, for A∞ weights, the operator Im
γ,b

is bounded in the weighted Lp norm

by the maximal operator Mγ (Mm), where Mγ is the fractional maximal operator and Mm is the Hardy–
Littlewood maximal operator iterated m times. The second inequality is a consequence of the first one
and shows that the operator Im

γ,b
is bounded from Lp[Mγp(M[(m+1)p]w)(x)dμ(x)] to Lp[w(x)dμ(x)],

where [(m + 1)p] is the integer part of (m + 1)p and no condition on the weight w is required. From
the first inequality we also obtain weighted Lp–Lq estimates for Im

γ,b
generalizing the classical results of

Muckenhoupt and Wheeden for the fractional integral operator.
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1. Introduction

Let us consider a space of homogeneous type (X,d,μ) which is a set X endowed with a
quasi-distance d such that the balls B(x, r) = {y ∈ X: d(x, y) < r} are open sets and a positive
measure μ satisfying a doubling condition (we refer to Section 2 for a more complete definition).
In this context we define the fractional integral operator as

Iγ f (x) =
∫
X

Kγ (x, y)f (y) dμ(y), 0 < γ < 1,

where

Kγ (x, y) =
{ [μ(B(x, d(x, y)))]γ−1 if x �= y,

μ(x)γ−1 if x = y and μ(x) > 0.
(1.1)

Notice that when X = R
n, d(x, y) = |x −y| and μ is the Lebesgue measure, we recover the clas-

sical fractional integral operator. It is known that for the Muckenhoupt A∞ weights the fractional
integral is controlled in the p-norm, by the fractional maximal function

Mγ f (x) = supμ(B)γ−1
∫
B

∣∣f (y)
∣∣dμ(y), 0 < γ < 1, (1.2)

where the supremum is taken over all balls B such that x ∈ B (when we take γ = 0 in (1.2) we
get the Hardy–Littlewood maximal operator). More precisely, if 0 < p < ∞ and ω ∈ A∞ then
there exists a constant C > 0 such that∫

X

∣∣Iγ f (x)
∣∣pω(x)dμ(x) � C

∫
X

∣∣Mγ f (x)
∣∣pω(x)dμ(x). (1.3)

It was observed in [1] that the above inequality can be proved following the reasoning for R
n

in [14].
On the other hand, Pérez and Wheeden [20] obtained other kind of weighted inequality for Iγ .

They proved that if ω is a nonnegative measurable function and 1 < p < ∞, then there exists a
constant C > 0 such that∫

X

∣∣Iγ f (x)
∣∣pω(x)dμ(x) � C

∫
X

∣∣f (x)
∣∣pMγp

(
M [p]w

)
(x) dμ(x), (1.4)

where M [p] is the Hardy–Littlewood maximal operator M iterated [p] times ([p] meaning the
integer part of p). The interesting point in this two-weighted inequality is that non-a-priori as-
sumption on the weight ω is required. This estimate was previously proved in the Euclidean
context in [17] to improve some results on weighted Sobolev inequalities.

Inequality (1.4) was proved in [20] for integral operators which include the fractional integral
as a particular case. However, the spaces of homogeneous type considered in [20] satisfy that all
the annuli are nonempty. This restriction implies that the spaces are of infinite measure and they
have no atoms (i.e., points of positive measure).

The aim of this article is to study inequalities (1.3) and (1.4) for the commutators of the
fractional integrals in the setting of the spaces of homogeneous type. These operators are not
included in the integral operators considered in [20]. As far as we know, the results are new even
in the case of the Euclidean space R

n.
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For a function b ∈ BMO(X) (see the definition in Section 2) we define the commutator of
order m ∈ N for the fractional integral as

Im
γ,bf (x) =

∫
X

[
b(x) − b(y)

]m
Kγ (x, y)f (y) dμ(y), 0 < γ < 1. (1.5)

Actually, we shall obtain our results for the operators

Im
γ,bf (x) =

∫
X

∣∣b(x) − b(y)
∣∣mKγ (x, y)f (y) dμ(y), 0 < γ < 1. (1.6)

The operators Im
γ,b are bigger than the operators Im

γ,b in the sense that for all f � 0 and all x ∈ X,
|Im

γ,bf (x)| � Im
γ,bf (x). Concretely, we shall prove the following theorems.

Theorem 1.1. Let (X,d,μ) be a space of homogeneous type such that the continuous functions
are dense in L1(X), 0 < p < ∞, 0 < γ < 1 and m ∈ N ∪ {0}. If ω ∈ A∞ and b ∈ BMO(X) then
there exists a constant C depending on m and on the A∞ constant of ω, such that∫

X

∣∣Im
γ,bf (x)

∣∣pω(x)dμ(x) � C‖b‖mp

BMO

∫
X

[
Mγ

(
Mmf

)
(x)

]p
ω(x)dμ(x), (1.7)

for all f such that the left-hand side of the previous inequality is finite.

Theorem 1.2. Let (X,d,μ) be space of homogeneous type such that the continuous functions are
dense in L1(X), ω any weight on X, 0 < γ < 1, 1 < p < ∞ and m ∈ N ∪ {0}. If b ∈ BMO(X)

then there exists a constant C such that∫
X

∣∣Im
γ,bf (x)

∣∣pω(x)dμ(x) � C‖b‖mp

BMO

∫
X

∣∣f (x)
∣∣pMγp

(
M [(m+1)p]ω

)
(x) dμ(x). (1.8)

We require the density of the continuous functions to be able to apply the Lebesgue differen-
tiation theorem.

In order to prove Theorems 1.1 and 1.2, it is clear that we may replace the kernel Kγ by
any kernel Qγ equivalent to Kγ , in the sense that 1/cKγ � Qγ � cKγ for some positive con-
stant. We shall use an equivalent kernel having some smoothness properties that the fractional
kernel Kγ does not have.

Inequalities (1.7) and (1.8) inclose important information about the behavior of the commuta-
tor Im

γ,b . They show a higher order of singularity of the commutator when m increases since the
maximal functions on the right-hand side of both inequalities need more iterations to control the
left-hand side. This situation is similar to that of commutators for singular integral operators. For
this last kind of commutators, results analogous to Theorems 1.1 and 1.2 were obtained in [18]
on R

n and in [22] on spaces of homogeneous type.
As a consequence of Theorem 1.1 we can obtain the following weighted strong (p, q) in-

equality for Im .
γ,b



828 A. Bernardis et al. / J. Math. Anal. Appl. 322 (2006) 825–846
Corollary 1.3. Let (X,d,μ) be space of homogeneous type such that the continuous functions
are dense in L1(X). Given γ , 0 < γ < 1, and p, 1 < p < 1/γ , fix q so that 1/q = 1/p − γ . Let
ω a weight satisfying the following condition: there exists a positive constant C such that(

1

μ(B)

∫
B

ωq dμ

)1/q(
1

μ(B)

∫
B

ω−p′
dμ

)1/p′

� C,

for all balls B . Then, Im
γ,b satisfies the strong (p, q) inequality

(∫
X

∣∣Im
γ,bf (x)

∣∣qωq(x) dμ(x)

)1/q

� C‖b‖m
BMO

(∫
X

∣∣f (x)
∣∣pωp(x)dμ(x)

)1/p

.

The proof of the corollary follows easily from Theorem 1.1. Notice that the condition on the
weight is equivalent to ωq ∈ Aβ , β = 1 + q/p′ (therefore ωq ∈ A∞) and to the strong (p, q)

inequality for Mγ (see, for instance, [9]). The condition on the weight implies also that ωp ∈ Ap .
The corollary follows from these facts and (1.7).

Finally, we want to point out that our results improve the results in [20] for the fractional
integral (case m = 0) since we consider more general spaces. Corollary 1.3 improves also the
corresponding result in [3], where they obtain the result for m = 1, ω ≡ 1 and spaces of homo-
geneous type satisfying certain property (P) (see [3, Theorem 2.11]).

The article is organized in the following way: in Section 2 we give some definitions and
preliminary results about the spaces of homogeneous type. Section 3 is devoted to establish defi-
nitions of the Orlicz spaces and some preliminary results about the maximal function associated
to a Young function. In Sections 4 and 5 we state and prove two important previous lemmata. In
the proofs of these lemmata appear the main differences with respect to previous results. Finally,
by standard arguments, in Sections 6 and 7 we shall give the proofs of Theorems 1.1 and 1.2,
respectively.

2. Spaces of homogeneous type: definitions and preliminary results

Given a set X, a function d :X × X → R
+
0 is called a quasi-distance on X if the following

conditions are satisfied:

(i) for every x and y in X, d(x, y) � 0 and d(x, y) = 0 if and only if x = y,
(ii) for every x and y in X, d(x, y) = d(y, x),

(iii) there exists a constant K � 1 such that

d(x, y) � K
(
d(x, z) + d(z, y)

)
(2.1)

for every x, y and z in X.

We shall say that two quasi-distances d and d ′ on X are equivalent if there exist two positive
constants c1 and c2 such that c1d

′(x, y) � d(x, y) � c2d
′(x, y) for all x, y ∈ X. In particular,

equivalent quasi-distances induce the same topology on X.
Let μ be a positive measure on the σ -algebra of subsets of X which contains the d-balls

B(x, r) = {y: d(x, y) < r}. We assume that μ satisfies a doubling condition, that is, there exists
a constant A such that
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0 < μ
(
B(x,2r)

)
� Aμ

(
B(x, r)

)
< ∞ (2.2)

holds for all x ∈ X and r > 0.
A structure (X,d,μ), with d and μ as above, is called a space of homogeneous type. The

constants K and A in (2.1) and (2.2) will be called the constants of the space.
The balls in a general space of homogeneous type are not necessarily open, but the next result

of Macías and Segovia [10] shows that there is a continuous quasi-distance d ′ which is equivalent
to d for which every ball is open.

Theorem 2.1. [10] Let d be a quasi-distance on a set X. Then there exists a quasi-distance d ′
on X, a finite constant C and a number 0 < θ < 1, such that d ′ is equivalent to d and, for every
x, y and z in X∣∣d ′(x, y) − d ′(z, y)

∣∣ � Cd ′(x, z)θ
(
d ′(x, y) + d ′(z, y)

)1−θ
. (2.3)

Moreover, the balls corresponding to d ′ are open sets in the topology induced by d ′.

In this article we always assume that the quasi-distance d is continuous and the balls are open
sets.

On the space of homogeneous type, if B is a ball and B ′ is another ball with center in B and
radius smaller than that of B , the measure of B ∩ B ′ is not, in general, greater than a constant
fraction of the measure of B ′, as it is the case in R

n. In [11], Macías and Segovia, construct a
quasi-distance equivalent to the original one, such that the balls defined by the new quasi-distance
have the above property. We state the result in the following theorem.

Theorem 2.2. [11] Let (X,d,μ) be a space of homogeneous type. There exists a quasi-distance δ

on X which is equivalent to d such that, for some constant C > 0 depending only on the constants
of the space, if x ∈ X, 0 < r � 2KR and y ∈ Bδ(x,R) then

μ
(
Bδ(y, r) ∩ Bδ(x,R)

)
� Cμ

(
Bδ(y, r)

)
. (2.4)

Moreover,

δ(x, y) � d(x, y) � 3K2δ(x, y), (2.5)

for every x and y in X.
The balls Bδ(x,R) endowed with the restrictions of the quasi-distance δ and the measure μ

become bounded spaces of homogeneous type with constants K ′ and A′, satisfying (2.1) and (2.2)
respectively, independent of R > 0 and x ∈ X.

Remark 2.3. We notice that inequality (2.4) actually holds for 0 < r � 2K ′R, where K ′ = 3K3

is the constant in the quasi-triangular inequality for δ. In fact, if 2KR < r � 2K ′R, let n ∈ N

such that 2n−1 < 3K2 � 2n and r ′ = r/(3K2). Then

μ
(
Bδ(y, r) ∩ Bδ(x,R)

) = μ
(
Bδ

(
y,3K2r ′) ∩ Bδ(x,R)

)
� μ

(
Bδ(y, r ′) ∩ Bδ(x,R)

)
� Cμ

(
Bδ(y, r ′)

)
= Cμ

(
Bδ

(
y, r/

(
3K2))) � C

(A′)n
μ

(
Bδ(y, r)

)
.

We observe that in the third line, since 0 < r ′ � 2KR, we have used the result of Macías–Segovia
[11] and in the last inequality we have used the doubling property with constant A′.
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Our main results involve weighted strong type inequalities for the operators Im
γ,b defined

in (1.6). The argument that we shall use to prove them involves the estimate of the composition
of the sharp function with the commutators. This estimate requires some smoothness property
on the kernels of the operators. For that reason, we shall work with a suitable version of Im

γ,b

equivalent with the definition (1.6) for all f � 0.
In fact, notice that the function κ(x, y) defined as μ(B(x, d(x, y))) if x �= y and κ(x, x) = 0,

is not a quasi-distance because it might not be symmetric. However, it is easy to prove that the
function

ρ(x, y) =
{ 1

2 [μ(B(x, d(x, y))) + μ(B(y, d(x, y)))] if x �= y,

0 if x = y,

is a quasi-distance equivalent to κ(x, y). Now, let η be a continuous quasi-distance equivalent
to ρ (the existence of η is guaranteed by Theorem 2.1). Associated to η we define the kernel

Qγ (x, y) =
{

η(x, y)γ−1 if x �= y,

μ(x)γ−1 if x = y and μ(x) > 0,

and the operator

Im
γ,bf (x) =

∫
X

∣∣b(x) − b(y)
∣∣mQγ (x, y)f (y) dμ(y). (2.6)

It is clear that the above operator is equivalent to the one defined in (1.6). Consequently, we shall
work in the proofs of Theorems 1.1 and 1.2 with the operator defined in (2.6).

Now, we recall some definitions and give some notations. Let (X,d,μ) be a space of ho-
mogeneous type, B a ball in X and mB(f ) = μ(B)−1

∫
B

f dμ, we define the sharp function
as

M�f (x) = sup
B: x∈B

inf
CB∈R

mB

(|f − CB |) ≈ sup
B: x∈B

mB

(∣∣f − mB(f )
∣∣).

A function f belongs to the space BMO = BMO(X) of bounded mean oscillation functions if
M�f belongs to L∞(X). A semi-norm in this space is defined by ‖f ‖BMO = ‖M�f ‖∞.

We will also use the notation T(δ)(f ), 0 < δ < 1, for the operator [T (|f |δ)]1/δ , where T will
be a suitable operator.

Let us recall the definition of the Muckenhoupt class of weights Ap, 1 � p � ∞. A weight ω

is a nonnegative and locally integrable function on X. We say that ω ∈ A1 if there exists C > 0
such that

mB(ω) � Cω(x),

for all balls B and x ∈ B , except for x that belongs to a set with zero μ-measure. We say that
ω ∈ Ap , 1 < p < ∞, if there exists C > 0 such that

mB(ω)
[
mB

(
ω−1/(p−1)

)]p−1 � C,

for all balls B . Finally, we say that ω ∈ A∞(μ) if there are positive constants C and ε such that

ω(E)

ω(B)
� C

(
μ(E)

μ(B)

)ε

for every ball B and all μ-measurable sets E ⊂ B , where ω(E) means
∫

ωdμ.

E
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In the proofs of the theorems we shall need the next generalization of a result of Fefferman
and Stein about the relationship in Lp-norm of the Hardy–Littlewood maximal function and the
sharp function. The theorem was proved in [22] and is based on ideas of Aimar, who proved the
result without weights.

Lemma 2.4. Let (X,d,μ) be a space of homogeneous type such that the continuous functions are
dense in L1(X), 0 < δ < 1 and w ∈ A∞. Then, for every p, 1 < p < ∞, there exists a constant C

depending on the A∞ constant of ω such that

∥∥M(δ)(f )
∥∥p

p,ω
�

{
C‖M�

(δ)(f )‖p
p,ω if μ(X) = ∞,

Cw(X)[mX(|f |δ)]p/δ + C‖M�

(δ)(f )‖p
p,ω if μ(X) < ∞

for all f such that ‖M(δ)f ‖p,w < +∞.

3. Orlicz spaces and the maximal function associated: definitions and preliminary results

A function φ : [0,∞) → [0,∞) is called a Young function if it is continuous, convex, increas-
ing and satisfies φ(0) = 0 and φ(t) → ∞ as t → ∞. It follows that φ(t)/t is increasing and, in
particular, that

φ(st) � sφ(t) if s � 1 and t � 0. (3.1)

We shall say that φ is doubling if there exists C > 0 such that φ(2t) � Cφ(t) for all t � 0.
If φ is a Young function, we define the φ-average of a function f over a ball B by means of

the Luxemburg norm:

‖f ‖φ,B = inf

{
λ > 0:

1

μ(B)

∫
B

φ

( |f (y)|
λ

)
dμ(y) � 1

}
.

When φ(t) = t , we recover mB(|f |). Each Young function φ has an associated complementary
Young function φ̃ satisfying

t � φ−1(t)φ̃−1(t) � 2t,

for all t > 0. There is a generalization of Hölder’s inequality

1

μ(B)

∫
B

|fg|dμ � ‖f ‖φ,B‖g‖φ̃,B . (3.2)

A further generalization of Hölder’s inequality (see [15]) that will be useful later is the following.
If A,B and C are Young functions and

A−1(x)B−1(x) � C−1(x)

then

‖fg‖C,B � 2‖f ‖A,B‖g‖B,B . (3.3)

Associated to the φ-average of f is the following fractional maximal function defined for
0 � γ < 1 as

Mγ,φf (x) = sup μ(B)γ ‖f ‖φ,B,

B: x∈B
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where the supremum is taken over all balls containing x. When γ = 0 we denote it Mφf . Also,
when φ(t) = t , Mγ,φ = Mγ .

For a Young function φ, the maximal operator Mφ satisfies the following weak type inequality

μ
({

x ∈ X: Mφf (x) > λ
})

� C

∫
X

φ

( |f (x)|
λ

)
dμ(x). (3.4)

The proof of the above inequality is similar to that of the (1,1)-weak type inequality for the
Hardy–Littlewood maximal operator (see [4]). By standard arguments, it follows from (3.4) that

μ
({

x ∈ X: Mφf (x) > λ
})

� C

∫
{x∈X: |f (x)|>λ/2}

φ

(
2|f (x)|

λ

)
dμ(x), (3.5)

for some constant C, all λ > 0 and all measurable function f .
Let 1 < p < ∞. We say that a doubling Young function φ satisfies the Bp condition if there

exists a positive constant c such that

∞∫
c

φ(t)

tp

dt

t
∼=

∞∫
c

(
tp

′

φ̃(t)

)p−1
dt

t
< ∞.

Pradolini and Salinas [21] proved the following theorem for Mφ , generalizing a previous result
in [20].

Theorem 3.1. Let (X,d,μ) be a space of homogeneous type, 1 < p < ∞ and φ a doubling
Young function such that φ satisfies the condition Bp . Then, there exists a constant C such that∫

X

[
Mφf (x)

]p
dμ(x) � C

∫
X

∣∣f (x)
∣∣p dμ(x),

for all measurable functions f .

The necessity of the condition Bp holds only if μ(X) = ∞.

4. Equivalences between maximal functions

In this section we shall prove the next lemma.

Lemma 4.1. Let (X,d,μ) be a space of homogeneous type such that the continuous functions
are dense in L1(X), 0 � γ < 1, k ∈ N and φk(t) = t[log(e + t)]k . Then, there exist constants
C1,C2 > 0 such that

Mγ

(
Mkf

)
(x) � C1Mγ,φk

f (x) (4.1)

and

Mγ,φk
f (x) � C2Mγ

(
Mkf

)
(x), (4.2)

for every x ∈ X.
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This lemma was proved in [7] in the Euclidean context. In the framework of spaces of homo-
geneous type, inequality (4.1) was obtained in [5] in the case γ = 0 and k = 1. On the other hand,
inequality (4.2) was proved in [20] under the assumption that the annuli on X are nonempty.

In order to prove inequality (4.1) we shall need the following lemma.

Lemma 4.2. Let (X,d,μ) be a space of homogeneous type, φ a Young function, B = B(x,R)

a fixed ball and B̃ = B(x,2KR). Then, there exists a constant C > 0, depending only on the
constants of the space, such that

max
{
Mγ,φ(f χ

X\B̃ )(y),μ(B)γ Mφ(f χ
X\B̃ )(y)

}
� C inf

z∈B
Mγ,φ(f χ

X\B̃ )(z),

for all y ∈ B .

Proof. Let z and y be two points of B and let S = B(xS,RS) a ball such that y ∈ S and
‖f χ

X\B̃‖φ,S �= 0. Then S ∩ (X \ B̃) �= ∅ and B ⊂ S̃ where S̃ = B(xS,K(4K2 + 1)RS). Now, it
is easy to prove that

max
{
μ(S)γ ,μ(B)γ

}‖f χ
X\B̃‖φ,S � Cμ(S̃)γ ‖f χ

X\B̃‖
φ,S̃

� CMγ,φ(f χ
X\B̃ )(z),

and, since z is arbitrary, the inequality follows. �
On the other hand, to prove (4.2) we shall need a result about the Hardy–Littlewood maximal

function. Let (X,d,μ) be a space of homogeneous type. It is a well-known result that the Hardy–
Littlewood maximal operator M is of weak type (1,1) (see, e.g., [4]). It follows that there exists
C > 0 such that

μ
({

x ∈ X: Mf (x) > λ
})

� C

λ

∫
{x∈X: |f (x)|>λ/2}

∣∣f (x)
∣∣dμ(x).

To prove (4.2) we shall need a reverse inequality. The next lemma provides us a suitable version
of this reverse.

Lemma 4.3. Let (X,d,μ) be a space of homogeneous type such that the continuous functions
are dense in L1(X) and let δ be the quasi-distance defined in Theorem 2.2. Let Bδ = Bδ(x,R) be
a fixed ball on X. Then, there exist positive constants C and D, depending only on the constants
of the space, such that

1

λ

∫
{y∈Bδ : f (y)>λ}

f (y)dμ(y) � Cμ
({

y ∈ Bδ: Mf (y) > Dλ
})

,

for any λ > mBδ (f ) and all nonnegative integrable functions f on Bδ .

Proof. Given a nonnegative integrable f on Bδ and λ > mBδ (f ), we apply a Calderón–Zygmund
decomposition to f at the level λ on the space of homogeneous type (Bδ, δ,μ), of the type found
in [11]. That is, there exists a sequence {xi} ⊂ Bδ and disjoint δ-balls Si = Bδ(xi, ri) ∩ Bδ in this
space such that if S̃i = Bδ(xi,5(K ′)2ri) ∩ Bδ then

(a) m
S̃i

(f ) � λ < mSi
(f ), and

(b) f (x) � λ for almost every x ∈ Bδ \ ⋃
i S̃i .
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We claim that, there exists D > 0 such that for all i

Si ⊂ {
y ∈ Bδ: Mf (y) > Dλ

}
. (4.3)

Notice that the definition of Si = Bδ(xi, ri) ∩ Bδ and the fact that λ > mBδ (f ) imply that 0 <

ri � 2K ′R. To prove (4.3) let us consider y ∈ Si . By item (a), inequality (2.4), Remark 2.3,
inequality (2.5) and the doubling property of μ we get that

λ <
1

μ(Si)

∫
Si

f dμ � 1

Cμ(Bδ(xi, ri))

∫
Bδ(xi ,ri )

f dμ

� C′

Cμ(Bd(xi,3K2ri))

∫
Bd(xi ,3K2ri )

f dμ � C′

C
Mf (y),

and thus (4.3) holds with D = C′/C. Finally, by (4.3) and items (a) and (b) we get that

μ
({

y ∈ Bδ: Mf (y) > Dλ
})

�
∑

i

μ(Si) � C
∑

i

μ(S̃i) � C

λ

∑
i

∫
S̃i

f dμ � C

λ

∫
⋃

i S̃i

f dμ

� C

λ

∫
{y∈Bδ : f (y)>λ}

f (y)dμ(y).

Thus, the proof is done. �
Now, we are in condition to prove Lemma 4.1.

Proof of (4.1). Without loss of generality, we may assume that f � 0. We begin proving the
case γ = 0. We shall proceed by induction. As we mention above, the case k = 1 and γ = 0 was
proved in [5]. Let k > 1 and let us assume that (4.1) holds with γ = 0 and k − 1 instead of k. We
claim that

1

μ(B)

∫
B

Mkf (y)dμ(y) � C‖f ‖φk,B, (4.4)

for all f such that supp(f ) ⊂ B . In fact, by an homogeneity argument we may assume that
‖f ‖φk,B = 1 and, thus,

1

μ(B)

∫
B

f (y)
[
log

(
e + f (y)

)]k
dμ(y) � 1. (4.5)

On the other hand, by induction hypothesis, (3.5), integration and (4.5) it follows that

∫
B

Mkf (y)dμ(y) � C

∫
B

Mφk−1f (y)dμ(y) = C

∞∫
0

μ
({

x ∈ B: Mφk−1f (x) > λ
})

dλ

� Cμ(B) + C

∞∫
1

∫
{x∈X: f (x)>λ/2}

φk−1

(
2f (x)

λ

)
dμ(x)dλ

� Cμ(B) + C

∫
f (x)

[
log

(
e + f (y)

)]k
dμ(x) � Cμ(B).
B
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Then, (4.4) follows for f such that supp(f ) ⊂ B . For an arbitrary f � 0, let x ∈ X, B = B(z,R)

a ball such that x ∈ B and B̃ = B(x,2KR). We write f = f1 + f2 with f1 = f χ
B̃

. Then

1

μ(B)

∫
B

Mkf (y)dμ(y) � 1

μ(B)

∫
B

Mkf1(y) dμ(y) + 1

μ(B)

∫
B

Mkf2(y) dμ(y)

= I + II. (4.6)

By (4.4) and the doubling property,

I � C
1

μ(B̃)

∫
B̃

Mkf1(y) dμ(y) � C‖f ‖
φk,B̃

� CMφk
f (x).

On the other hand, by induction hypothesis and Lemma 4.2 we get that

II � C

μ(B)

∫
B

Mφk−1f2(y) dμ(y)

� C inf
z∈B

Mφk−1f2(z) � CMφk−1f2(x) � CMφk
f (x).

Thus, we obtain (4.1) in the case γ = 0. Now, the case 0 < γ < 1 can be proved easily. In fact,
let I and II be as in (4.6). Then, by (4.4),

μ(B̃)γ I � C
μ(B̃)γ

μ(B̃)

∫
B̃

Mkf1(y) dμ(y) � Cμ(B̃)γ ‖f ‖
φk,B̃

� CMγ,φk
f (x).

On the other hand, by (4.1) with γ = 0 and Lemma 4.2,

μ(B̃)γ II � C

μ(B)

∫
B

μ(B)γ Mφk−1f2(y) dμ(y)

� C inf
z∈B

Mγ,φk−1f2(z) � CMγ,φk−1f2(x) � CMγ,φk
f (x).

Then, taking into account (4.6) we get that

μ(B)γ

μ(B)

∫
B

Mkf (y)dμ(y) � CMγ,φk
f (x),

and (4.1) follows taking supremum on the balls B containing x. �
Proof of (4.2). The proof of (4.2) follows the lines of the one given in [20] (see [20, Lemma 8.5]),
but we shall not use the hypothesis of nonempty annuli. In order to avoid this hypothesis we shall
use Lemma 4.3 instead of [20, Lemma 8.1].

We may assume again that f � 0. Let B = B(z,R) be any ball on X such that x ∈ B and
B̃ = B(x,3K2R). Notice that it is enough to show that there is a constant C̃k such that

‖f ‖φk,B � C̃k

μ(B̃)

∫
˜

Mkf (y)dμ(y). (4.7)
B
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Let δ be the quasi-distance equivalent to d defined in Theorem 2.2. If Bδ = Bδ(z,R), let

λk = λk(f ) = 1

μ(Bδ)

∫
Bδ

Mkf dμ.

To prove (4.7) it will be enough to show that there is a constant Ck > 1 such that

1

μ(Bδ)

∫
Bδ

φk

(
f

Ckλk

)
dμ � 1. (4.8)

In fact, from (2.5) we get that B ⊂ Bδ ⊂ B̃ . On the other hand, μ(B̃) � C̃μ(B) for some universal
constant C̃ � 1. It follows from (3.1) that if (4.8) holds then

1

μ(B)

∫
B

φk

(
f

C̃Ckλk

)
� μ(B̃)

μ(B)

1

μ(Bδ)

∫
Bδ

φk

(
f

C̃Ckλk

)
� C̃

μ(Bδ)

∫
Bδ

φk

(
f

C̃Ckλk

)

� 1

μ(Bδ)

∫
Bδ

φk

(
f

Ckλk

)
� 1.

Thus,

‖f ‖φk,B � C̃Ckλk = C̃
Ck

μ(Bδ)

∫
Bδ

Mkf dμ � C̃2Ck

μ(B̃)

∫
B̃

Mkf dμ,

and we get inequality (4.7) with C̃k = C̃2Ck .
Let us then prove (4.8) by induction on k. Let k = 1, g = f

C1λ1
and φ(t) = t log(e + t). Then

1

μ(Bδ)

∫
Bδ

φ1

(
f

C1λ1

)
dμ = 1

μ(Bδ)

∫
Bδ

g
[
log(e + g)

]
dμ

= 1

μ(Bδ)

∞∫
1−e

1

e + λ

∫
{x∈Bδ : g(x)>λ}

g dμdλ

= 1

μ(Bδ)

( 1∫
1−e

+
∞∫

1

)
1

e + λ

∫
{x∈Bδ : g(x)>λ}

g dμdλ = I + II.

By the Lebesgue differentiation theorem,

I � log(1 + e)g(Bδ)

μ(Bδ)
= log(1 + e)

μ(Bδ)C1λ1

∫
Bδ

f (y) dμ(y)

= log(1 + e)
∫
Bδ

f (y) dμ(y)

C1
∫
Bδ

Mf (y)dμ(y)
� log(1 + e)

C1
< 1,

if we choose C1 > log(1 + e). On the other hand, by Lemma 4.3, since λ > 1 > mBδ(g) there
exists constants C and D independent of f such that
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II = 1

μ(Bδ)

∞∫
1

1

e + λ

( ∫
{x∈Bδ : g>λ}

g dμ

)
dλ

� C

μ(Bδ)

∞∫
1

λ

e + λ
μ

({x ∈ Bδ: Mg > Dλ})dλ

� C

Dμ(Bδ)

∞∫
0

μ
({x ∈ Bδ: Mg > λ})dλ � C

Dμ(Bδ)

∫
Bδ

Mg dμ

� C

Dλ1C1μ(Bδ)

∫
Bδ

Mf dμ = C

DC1
< 1,

by choosing C1 > C/D. Thus we have proved the case k = 1. Suppose that k > 1 and the result
holds for k − 1. If g = f/(Ckλk) then

1

μ(Bδ)

∫
Bδ

φk

(
f

Ckλk

)
dμ = 1

μ(Bδ)

∫
Bδ

g
[
log(e + g)

]k
dμ

= k

μ(Bδ)

∞∫
1−e

[log(e + λ)]k−1

e + λ

∫
{x∈Bδ : g(x)>λ}

g dμdλ

= k

μ(Bδ)

( e∫
1−e

+
∞∫
e

)
= I + II.

By the Lebesgue differentiation theorem,

I � [log(2e)]k
μ(Bδ)

g(Bδ) = [log(2e)]k
Ck

∫
Bδ

Mkf

∫
Bδ

f � [log(2e)]k
Ck

< 1,

if we choose Ck > [log(2e)]k . Notice that by this election of Ck , mBδ (g) = g(Bδ)/μ(Bδ) � 1.
Then, applying Lemma 4.3 we get

II = k

μ(Bδ)

∞∫
e

[log(e + λ)]k−1

e + λ

∫
{x∈Bδ : g(x)>λ}

g dμdλ

� kC

μ(Bδ)

∞∫
e

λ[log(e + λ)]k−1

e + λ
μ

({x ∈ Bδ: Mg > Dλ})dλ

� kC

μ(Bδ)

∞∫
e

[
log(e + λ)

]k−1
μ

({x ∈ Bδ: Mg > Dλ})dλ

� kC

μ(Bδ)

∞∫
φ′

k−1(λ)μ
({

x ∈ Bδ: D−1Mg > λ
})

dλ
0
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� kC

μ(Bδ)

∫
Bδ

φk−1
(
D−1Mg

)
dμ � kC

μ(Bδ)

∫
Bδ

φk−1

(
Mf

DCkλk(f )

)
dμ

� kC′

μ(Bδ)

∫
Bδ

φk−1

(
Mf

Ckλk(f )

)
dμ.

Since λk(f ) = λk−1(Mf ), by the induction hypothesis and the fact that φk−1(t)/t is increasing
we obtain that

II � C′kCk−1

Ck

1

μ(Bδ)

∫
Bδ

φk−1

(
Mf

Ck−1λk−1(Mf )

)

� C′kCk−1

Ck

< 1

if we choose Ck > C′kCk−1. In this way, inequality (4.8) is proved and also inequality (4.2). �
5. A pointwise estimate

As in the case of commutators of singular integrals, a key-point in the proof of Theorem 1.1
is the following pointwise estimate.

Lemma 5.1. Let (X,d,μ) be a space of homogeneous type, 0 < γ < 1, b ∈ BMO, m ∈ N,
φm(t) = t[log(e + t)]m and 0 < δ < ε < 1. Then there exists a constant C such that

M
�

(δ)

(
Im

γ,bf
)
(x) � C

(
m−1∑
k=0

‖b‖m−k
BMOM(ε)

(
Ik

γ,bf
)
(x) + ‖b‖m

BMOMγ,φmf (x)

)
,

for all x ∈ X and all f � 0.

The above lemma was proved in [7] and in [6] for m = 1 in the Euclidean context. The
corresponding estimate for commutators of singular integrals was obtained in [19] (Euclidean
case) and in [5] (space of homogeneous type and m = 1).

In order to prove Lemma 5.1 we shall need two previous results. The first one is the following
result due to Macías and Torrea (see [13, Lemma 2.5]) and the other one is a technical lemma.

Lemma 5.2. [13] Let (X,d,μ) be a space of homogeneous type. For r > 0 we denote

E(x, r) = {
y ∈ X: μ

(
B̄

(
x, d(x, y)

))
� r

}
,

where B̄(x,R) = {y: d(x, y) � R} and let Rx
r = sup{d(x, y): y ∈ E(x, r)}. Then

(i) B(x,Rx
r ) ⊂ E(x, r) ⊂ B̄(x,Rx

r ),
(ii) μ(E(x, r)) � r , and

(iii) μ(B̄(x,Rx
r )) � Cr , where C is a constant depending only on the constants of the space.

We observe that if we denote by Bκ(x, r) the set {y ∈ X: κ(x, y) � r} (recall that κ(x, y) =
μ(B(x, d(x, y))), if x �= y and κ(x, x) = 0) we can easily prove that

Bκ(x, r/A) ⊂ E(x, r), (5.1)
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for all r � μ({x}), where A is the constant in (2.2). The following properties of the sets Bκ(x, r)

were proved in [12]:

(i) A−2r � μ(Bκ(x, r)), if r < μ(X), and
(ii) Bκ(x, r) = X, if μ(X) � r .

These properties and (5.1) imply that

A−1r � μ
(
E(x, r)

)
, if μ

({x}) � r < Aμ(X), and (5.2)

E(x, r) = X, if r � Aμ(X). (5.3)

Now, we state and prove the technical lemma.

Lemma 5.3. Let (X,d,μ) be a space of homogeneous type, 0 < γ < 1, b ∈ BMO, m ∈ N and
c,λ ∈ R. Then there exists a constant C = C(m) such that

∣∣Im
γ,bf (y) − c

∣∣ � C

m−1∑
k=0

∣∣b(y) − λ
∣∣m−kIk

γ,bf (y) + ∣∣Iγ

(|b − λ|mf
)
(y) − c

∣∣, (5.4)

for all f � 0 and y ∈ X.

Proof. If λ is an arbitrary constant, we write (see [19])

Im
γ,bf (x) =

m−1∑
k=0

Ck,m

(
b(x) − λ

)m−k
I k
γ,bf (x) + Iγ

(
(λ − b)mf

)
(x), (5.5)

where Ck,m are constants proceeding from the Newton’s formula.
Clearly, Im

γ,bf (x) = Im
γ,bf (x) for even m. Then (5.4) follows from (5.5). Now, let us assume

that m is odd. Writing b(x) − b(y) = (b(x) − λ) + (λ − b(y)) it is easy to show that

Im
γ,bf (x) � Im−1

γ,b

(|b − λ|f )
(x) + ∣∣b(x) − λ

∣∣Im−1
γ,b f (x) (5.6)

and

Im
γ,bf (x) � Im−1

γ,b

(|b − λ|f )
(x) − ∣∣b(x) − λ

∣∣Im−1
γ,b f (x). (5.7)

Since m − 1 is even, using (5.5) we get that

Im−1
γ,b

(|b − λ|f )
(x) �

m−2∑
k=0

|Ck,m|∣∣b(x) − λ
∣∣m−1−kIk

γ,b

(|b − λ|f )
(x) + Iγ

(|b − λ|mf
)
(x).

On the other hand, we get that

Ik
γ,b

(|b − λ|f )
(x) �

∣∣b(x) − λ
∣∣Ik

γ,bf (x) + Ik+1
γ,b f (x). (5.8)

Then, from the above inequalities we get that

Im
γ,bf (x) �

m−1∑
k=0

C̃k,m

∣∣b(x) − λ
∣∣m−kIk

γ,bf (x) + Iγ

(|b − λ|mf
)
(x), (5.9)

where C̃k,m are positive constants that also come from the Newton’s formula. Now, notice that
from (5.5) we also have that
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Im−1
γ,b

(|b − λ|f )
(x) � −

m−2∑
k=0

|Ck,m|∣∣b(x) − λ
∣∣m−1−kIk

γ,b

(|b − λ|f )
(x)

+ Iγ

(|b − λ|mf
)
(x).

Then, using (5.8) we get that from (5.7) and the above inequality that

Im
γ,bf (x) � −

m−1∑
k=0

C̃k,m

∣∣b(x) − λ
∣∣m−kIk

γ,bf (x) + Iγ

(|b − λ|mf
)
(x). (5.10)

Now, (5.4) follows for the case m odd from (5.9) if Im
γ,bf (x) − c > 0 and from (5.10) if

Im
γ,bf (x) − c < 0. �

Proof of Lemma 5.1. Let B = B(z, r) be an arbitrary ball containing x. Since 0 < δ < 1 implies
||a|δ − |c|δ| � |a − c|δ for a, c ∈ R, it is enough to show that for some constant CB there exists
C > 0 such that(

1

μ(B)

∫
B

∣∣Im
γ,bf (y) − CB

∣∣δdμ(y)

)1/δ

� C

(
m−1∑
k=0

‖b‖m−k
BMOM(ε)

(
Ik

γ,bf
)
(x) + ‖b‖m

BMOMγ,φmf (x)

)
.

Let B∗ = B(z,2Kr). First, we shall assume that μ(B∗ \ B) > 0. Let f = f1 + f2, where f1 =
f χB∗ , λ = mB∗(b) and CB = mB(Iγ (|b − mB∗(b)|mf2)). Then applying Lemma 5.3 we get that(

1

μ(B)

∫
B

∣∣Im
γ,bf (y) − CB

∣∣δdμ(y)

)1/δ

� I1 + I2 + I3, (5.11)

where

I1 = C

m−1∑
k=0

(
1

μ(B)

∫
B

∣∣b(y) − mB∗(b)
∣∣(m−k)δ∣∣Ik

γ,bf (y)
∣∣δ dμ(y)

)1/δ

,

I2 = C

(
1

μ(B)

∫
B

∣∣Iγ

(∣∣b − mB∗(b)
∣∣mf1

)
(y)

∣∣δ dμ(y)

)1/δ

, and

I3 =
(

1

μ(B)

∫
B

∣∣Iγ

(∣∣b − mB∗(b)
∣∣mf2

)
(y) − mB

(
Iγ

(∣∣b − mB∗(b)
∣∣mf2

))∣∣δ dμ(y)

)1/δ

.

Using Hölder’s inequality with exponents r and r ′ so that 1 < r < ε/δ and the John–Nirenberg
theorem (see [4]) it follows that

I1 � C

m−1∑
k=0

(
1

μ(B)

∫
B

∣∣b − mB∗(b)
∣∣(m−k)δr ′

)1/δr ′(
1

μ(B)

∫
B

∣∣Ik
γ,bf (y)

∣∣δr)1/δr

� C

m−1∑
‖b‖m−k

BMOM(δr)

(
Ik

γ,bf
)
(x) � C

m−1∑
‖b‖m−k

BMOM(ε)

(
Ik

γ,bf
)
(x).
k=0 k=0
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Now, we estimate II. Since Iγ is of weak type (1, (1−γ )−1) (see [2, Lemma 2.1]), Kolmogorov’s
inequality and (3.2) yield

I2 � C

μ(B)1−γ

∫
B∗

∣∣b − mB∗(b)
∣∣mf (y)dμ(y)

� Cμ(B)γ
∥∥∣∣b − mB∗(b)

∣∣m∥∥
φ̃m,B∗‖f ‖φm,B∗ ,

where φ̃m(t) = φ̃(t1/m) with φ̃ = exp(t). On the other hand, by John–Nirenberg Theorem it is
easy to see that there is C > 0 such that ‖b −mB(b)‖φ̃,B � C‖b‖BMO, for all balls B in X. Then

I2 � C
∥∥b − mB∗(b)

∥∥m

φ̃,B∗Mγ,φmf (x) � C‖b‖m
BMOMγ,φmf (x).

To estimate I3 we shall use Lemma 5.2 following the ideas in [2]. Notice that, by using Jensen’s
inequality I3 is dominated by

1

μ(B)2

∫
B

∫
B

∫
X\B∗

∣∣Qγ (y,w) − Qγ (v,w)
∣∣∣∣b(w) − mB∗(b)

∣∣mf (w)dμ(w)dμ(v)dμ(y).

It follows from the definition of Qγ , the Mean Value Theorem and condition (2.3) that∣∣Qγ (y,w) − Qγ (v,w)
∣∣ = ∣∣η(y,w)(γ−1) − η(v,w)(γ−1)

∣∣
� C

|η(v,w)(1−γ ) − η(y,w)(1−γ )|
η(z,w)2(1−γ )

� C
η(y, v)θ

η(z,w)1−γ+θ
� C

μ(B)θ

μ(B(z, d(z,w)))1−γ+θ

for every y, v ∈ B and every ω ∈ X \ B∗, where z is the center of B and C is independent of B .
Then

I3 � Cμ(B)θ
∫

X\B∗

|b(w) − mB∗(b)|mf (w)

μ(B(z, d(z,w)))1−γ+θ
dμ(w).

Let us write R0 = μ(B) = μ(B(z, r)). With the notation of Lemma 5.2 we define Ei(z) =
E(z,2iR0) and Bi = B(z,Rz

2i+1R0
). Then, since μ(B∗ \ B) > 0, by the definitions of the sets

Ei(z) we get that

I3 � Cμ(B)θ
∫

X\E0(z)

|b(w) − mB∗(b)|mf (w)

μ(B(z, d(z,w)))1−γ+θ
dμ(w)

� Cμ(B)θ
∞∑
i=0

∫
Ei+1(z)\Ei(z)

|b(w) − mB∗(b)|mf (w)

μ(B(z, d(z,w)))1−γ+θ
dμ(w).

From Lemma 5.2(iii) we get that μ(Bi) � C2i+1R0 and if w /∈ Ei(z) we have that

μ
(
B

(
z, d(z,w)

))
� μ(B̄(z, d(z,w)))

A
� 2iR0

A
� μ(Bi)

2CA
� μ(2Bi)

2CA2
,

where 2Bi = B(z,2Rz
i+1 ). Thus, by Lemma 5.2(i)
2 R0
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I3 � Cμ(B)θ
∞∑
i=0

(2iR0)
−θ

μ(2Bi)1−γ

∫
2Bi

∣∣b(w) − mB∗(b)
∣∣mf (w)dμ(w)

= C

∞∑
i=0

2−iθ μ(2Bi)
γ

μ(2Bi)

∫
2Bi

∣∣b(w) − mB∗(b)
∣∣mf (w)dμ(w)

� C

∞∑
i=0

2−iθ μ(2Bi)
γ

μ(2Bi)

∫
2Bi

∣∣b(w) − m2Bi
(b)

∣∣mf (w)dμ(w)

+ C

∞∑
i=0

2−iθ μ(2Bi)
γ

μ(2Bi)

∣∣m2Bi
(b) − mB∗(b)

∣∣m ∫
2Bi

f (w)dμ(w)

� C

∞∑
i=0

2−iθμ(2Bi)
γ
∥∥b − m2Bi

(b)
∥∥m

φ̃,2Bi
‖f ‖φm,2Bi

+ C

∞∑
i=0

2−iθ
∣∣m2Bi

(b) − mB∗(b)
∣∣mMγ f (x). (5.12)

Let us observe that for all i � 1∣∣m2Bi
(b) − m2Bi−1(b)

∣∣ � 1

μ(2Bi−1)

∫
2Bi−1

∣∣b(y) − m2Bi
(b)

∣∣dμ(y)

� μ(2Bi)

μ(2Bi−1)

(
1

μ(2Bi)

∫
2Bi

∣∣b(y) − m2Bi
(b)

∣∣dμ(y)

)
.

Now, from Lemma 5.2, (5.2) and (5.3) (notice that μ({z}) � R0) we get that∣∣m2Bi
(b) − m2Bi−1(b)

∣∣ � C
μ(Ei+1(z))

μ(Ei−1(z))
‖b‖BMO � C‖b‖BMO. (5.13)

On the other hand, we have that B ⊂ 2B0. Then∣∣m2B0(b) − mB∗(b)
∣∣ �

∣∣m2B0(b) − mB(b)
∣∣ + ∣∣mB(b) − mB∗(b)

∣∣
� 1

μ(B)

∫
B

∣∣b(y) − m2B0(b)
∣∣ + 1

μ(B)

∫
B

∣∣b(y) − mB∗(b)
∣∣

� C‖b‖BMO. (5.14)

Thus, using (5.13) and (5.14) in (5.12) and the inequality ‖b − m2Bi
(b)‖m

φ̃,2Bi
� C‖b‖m

BMO we

get that

I3 � C

∞∑
i=0

2−iθ‖b‖m
BMO

(
Mγ,φmf (x) + iMγ f (x)

)
� C‖b‖m

BMOMγ,φmf (x),

which finishes the proof in the case μ(B∗ \ B) > 0. Now, let us assume that μ(B∗ \ B) = 0 and
μ(X \ B∗) �= 0 (if μ(X \ B∗) = 0 then the term I3 in (5.11) is equal to zero and the terms I1
and I2 can be estimated as before). Then, we can chose a ball B ′ such that μ(B ′) = μ(B) and
μ((B ′)∗ \ B ′) > 0. Now, the proof of the lemma follows as in the previous case taking the con-
stant CB ′ in (5.11) instead of CB . �
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6. Proof of Theorem 1.1

Without loss of generality we may assume that f � 0. We shall prove the theorem by using
an induction argument. First, notice that (1.7) for the case m = 0 is the inequality

‖Iγ f ‖p,ω � C‖Mγ f ‖p,ω,

which already holds as it was observed in Section 1. Suppose now that (1.7) is true for 0,1, . . . ,

m − 1. Then applying the Lebesgue Differentiation Theorem and Lemma 2.4 we get for δ > 0
that ∥∥Im

γ,bf
∥∥p

p,ω
�

∥∥M(δ)

(
Im

γ,bf
)∥∥p

p,ω

�
{

C‖M�

(δ)(Im
γ,bf )‖p

p,ω if μ(X) = ∞,

Cw(X)(mX(|Im
γ,bf |δ))p/δ + C‖M�

(δ)(Im
γ,bf )‖p

p,ω if μ(X) < ∞.

Applying Lemma 5.1 we get for δ < ε that

∥∥M
�

(δ)

(
Im

γ,bf
)∥∥p

p,ω
� C

m−1∑
k=0

‖b‖(m−k)p

BMO

∥∥M(ε)

(
Ik

γ,bf
)∥∥p

p,ω
+ C‖b‖mp

BMO‖Mγ,φmf ‖p
p,ω.

Since ω ∈ A∞ then there exists r > 1 so that ω ∈ Ar . Choosing ε with 0 < ε < p/r , it follows
that ω ∈ Ap/ε and M(ε) is bounded in Lp(ω). From this fact, applying Lemma 4.1, the induction
and the inequality Mγ (Mkf ) � Mγ (Mmf ) for k � m, we get that

∥∥M
�

(δ)

(
Im

γ,bf
)∥∥

p,ω
� C

m−1∑
k=0

‖b‖(m−k)p

BMO

∥∥Ik
γ,bf

∥∥p

p,ω
+ C‖b‖mp

BMO

∥∥Mγ

(
Mmf

)∥∥p

p,ω

� C‖b‖mp

BMO

∥∥Mγ

(
Mmf

)∥∥p

p,ω
.

Now, we estimate the term w(X)(mX(|Im
γ,bf |δ))p/δ when μ(X) < ∞. It is known that

μ(X) < ∞ implies that X is bounded, i.e., there exists a ball B such that X = B . Applying
(5.5) with λ = mX(b) and proceeding as in the proof of Lemma 5.1 (see boundedness of I1 and
I2 in (5.11) with X instead of B∗) we get that for 0 < δ < ε < 1

mX

(∣∣Im
γ,bf

∣∣δ) � C

m−1∑
k=0

(
1

μ(X)

∫
X

∣∣b(y) − mX(b)
∣∣(m−k)δ∣∣Ik

γ,bf (y)
∣∣δ)

+ C

(
1

μ(X)

∫
X

∣∣Iγ

(∣∣b − mX(b)
∣∣mf

)
(y)

∣∣δ dμ(y)

)

� C

m−1∑
k=0

‖b‖(m−k)δ
BMO

1

μ(X)

∫
X

[
M(ε)

(
Ik

γ,bf
)
(x)

]δ
dμ(x)

+ Cμ(X)γ δ‖b‖mδ
BMO‖f ‖δ

φm,X. (6.1)

Choosing ε as in the boundedness of the term ‖M�

(δ)(Im
γ,b)f ‖p,ω, by Hölder’s inequality and the

fact that ω ∈ Ap/ε implies ω ∈ Ap/δ for δ < ε, we have that
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ω(X)δ/p

μ(X)

∫
X

∣∣M(ε)

(
Ik

γ,bf
)
(x)

∣∣δ dμ(x)

� ω(X)δ/p

μ(X)

(∫
X

w−p/(p−δ)

)1−δ/p(∫
X

∣∣M(ε)

(
Ik

γ,bf
)
(x)

∣∣pω(x)dμ(x)

)δ/p

� C

(∫
X

∣∣Ik
γ,bf (x)

∣∣pω(x)dμ(x)

)δ/p

. (6.2)

On the other hand, by definition we have that

ω(X)δ/pμ(X)γ δ‖f ‖δ
φm,X �

(∫
X

|Mγ,φmf |pw

)δ/p

. (6.3)

Replacing (6.2) and (6.3) in (6.1), using the induction hypothesis and Lemma 4.1 we have

w(X)
[
mX

(∣∣Im
γ,bf

∣∣δ)]p/δ � C

m−1∑
k=0

‖b‖(m−k)p

BMO

∥∥Ik
γ,bf

∥∥p

p,ω
+ C‖b‖mp

BMO‖Mγ,φmf ‖p
p,ω

� C‖b‖pm

BMO

∥∥Mγ

(
Mmf

)∥∥p

p,ω
.

Thus the proof of the theorem is finished. �
7. Proof of Theorem 1.2

First, let us observe that if γp � 1 then the inequality (1.8) holds trivially. In fact, if γp > 1
then for all g �= 0 we have that Mγpg(x) = ∞ up to a set of μ-measure zero. The same holds if
γp = 1 and g /∈ L1(X) which is the case when g = M [(m+1)p]ω. Then, we shall only consider
the case γp < 1. By a duality argument, it is enough to show that∫ ∣∣Im

γ,bf (x)
∣∣p′[

Mγp

(
M [(m+1)p]ω

)
(x)

]1−p′
dμ(x) � C

∫ ∣∣f (x)
∣∣p′

ω(x)1−p′
dμ(x).

Notice first that for 0 < γ < 1, 0 � δ < 1 the function (Mγ g)δ belongs to the Muckenhoupt
class of weights A1. The proof of this fact follows as in the case γ = 0 (see, for example, [8])
by using that Mγ is of weak type (1, (1 − γ )−1) and Lemma 4.2. Thus, choosing r > p′ and
δ = (p′ − 1)/(r − 1),

[
Mγp

(
M [(m+1)p]ω

)
(x)

]1−p′ = {[
Mγp

(
M [(m+1)p]ω

)
(x)

] p′−1
r−1

}1−r ∈ Ar ⊂ A∞.

Applying Theorem 1.1 we get∫ ∣∣Im
γ,bf (x)

∣∣p′[
Mγp

(
M [(m+1)p]ω

)
(x)

]1−p′
dμ(x)

� C

∫ [
Mγ

(
Mmf

)
(x)

]p′[
Mγp

(
M [(m+1)p]ω

)
(x)

]1−p′
dμ(x), (7.1)

and then, by Lemma 4.1, it is enough to show that∫ [
Mγ,φmf (x)

]p′[
Mγp,φ[(m+1)p]ω(x)

]1−p′
dμ(x) � C

∫ ∣∣f (x)
∣∣p′

ω(x)1−p′
dμ(x).
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By defining g = f ω−1/p , the above inequality may be stated as∫ [
Mγ,φm

(
gω1/p

)
(x)

]p′[
Mγp,φ[(m+1)p]ω(x)

]1−p′
dμ(x) � C

∫ ∣∣g(x)
∣∣p′

dμ(x).

Now, as in the case of commutators of singular integral operators (see [18]), we get for φm(t) =
t[log(e + t)]m and for large t that

φ−1
m (t) ≈

t

[log(e + t)]m = t1/p

[log(e + t)]m+(p−1+ε)/p
t1/p′[

log(e + t)
](p−1+ε)/p

= ψ−1(t)ϕ−1(t),

where ψ(t) ≈ tp[log(e + t)](m+1)p−1+ε and ϕ(t) ≈ tp
′ [log(e + t)]−(1+(p′−1)ε) (see [16]). Thus,

by (3.3),

μ(B)γ
∥∥gω1/p

∥∥
φm,B

� μ(B)γ ‖g‖ϕ,B

∥∥ω1/p
∥∥

ψ,B
.

Choosing ε > 0 so that (m + 1)p − 1 + ε = [(m + 1)p] we have that

μ(B)γ
∥∥gω1/p

∥∥
φm,B

� ‖g‖ϕ,B

[
μ(B)γp‖ω‖φ[(m+1)p],B

]1/p
,

so that

Mγ,φm

(
gω1/p

)
(x) � Mϕg(x)

[
Mγp,φ[(m+1)p]ω(x)

]1/p
.

Moreover, since ϕ satisfies condition Bp′ we apply Theorem 3.1 to get∫ [
Mγ,φm

(
gω1/p

)
(x)

]p′[
Mγp,φ[(m+1)p]ω(x)

]1−p′
dμ(x) � C

∫ ∣∣Mϕg(x)
∣∣p′

dμ(x)

� C

∫ ∣∣g(x)
∣∣p′

dμ(x),

and we are done.
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