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ABSTRACT. The study of random graphs and networks had an explosive development in
the last couple of decades. Meanwhile, techniques for the statistical analysis of sequences
of networks were less developed. In this paper we focus on networks sequences with a fixed
number of labeled nodes and study some statistical problems in a nonparametric framework.
We introduce natural notions of center and a depth function for networks that evolve in time.
We develop several statistical techniques including testing, supervised and unsupervised
classification, and some notions of principal component sets in the space of networks. Some
examples and asymptotic results are given, as well as two real data examples.

1. INTRODUCTION

In the last fifteen years, applications of random networks have expanded beyond math-
ematics, physics, and computer science. Many climatologists, neuroscientists, biologists,
sociologists, and economists are becoming more interested in the subject. Networks provide
useful representations for many experimental and artificial phenomena.

A large number of research lines in random networks are developed each year. Most
of these developments can be classified in one (or both) of the following two categories:
probabilistic modelling or statistical analysis. In the former, the focus is on developing
new models or deepen the knowledge of an existing model capable of reproducing some
network properties. Some important results among these lines include the existence of
stationary measures in dynamic models (Watts and Strogatz, 1998) or static but growing in
size (Barabasi and Albert, 1999; Fraiman, 2008), characterizations of thresholds for giant
components and connectivity (Bollobás et al., 2007; Devroye and Fraiman, 2014), and
analysis of the spread of epidemics over fixed networks. In the latter category, the main
goal is to develop mathematical tools for obtaining a precise characterization or descrip-
tion of real networks. Examples of this category include the development of modularity
measures (Newman, 2006; Bickel and Chen, 2009), network motifs, community detec-
tion (Newman and Girvan, 2004; Zhao et al., 2012, 2011), spectral network analysis (Rohe
et al., 2011; Karrer and Newman, 2011) among others. Our contribution belong to this
category of statistical characterization. The literature concentrates mostly on individual
network analysis. However, we are rather interested in studying a set of networks. We
propose a new way to describe, classify, perform principal components and testing for
dependent sequences of networks with distinguible nodes.

Recently, the study of a sequence of networks has gained more attention. Most of
the empirical and theoretical work comes from social media and communication network
analysis. Several approaches have been developed to study these dynamical networks,
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including techniques for networks visualization (Kumar and Garland, 2006), as well as
techniques to describe temporal changes in local and global network properties (Tang et al.,
2010; Peixoto, 2015; Yang et al., 2011; Guigoures et al., 2015) See Holme (2015) for
a recent review. In regard to modelling, there are proposals which adapt the stochastic
block model for evolving networks (Xing et al., 2010; Xu and Hero, 2013). There is a
great amount of literature presenting empirical data about time dependent networks (see
for example Adar et al., 2004; Kumar et al., 2005; Jo et al., 2012). Nevertheless, as far as
we know, the statistical inference of time evolving network has received little attention. A
relevant reference in this direction is Kolar et al. (2010) where they estimate parametric
time varying networks. In contrast, one of the main interesting aspects of our proposal is
being non-parametric. In this paper, we discuss how some multivariate statistical methods
can be adapted to analyze a random sample of networks or the stochastic dynamics of an
evolving network with distinguishable nodes.

In many networks, such like those modelling brain connections, financial markets, the
internet, or protein interactions, the label that identifies each node appears naturally and
is relevant. For example, a node can represent a particular region of the brain with its
own characteristics. Despite this fact the theory of random networks is dominated by
models where node labels are not important for the kind of properties studied. In this work
we consider the space of networks where each node is distinguishable. In this case, the
mathematical tools are simpler mainly because we do not have to deal with identifying
isomorphic networks. Specifically, we address the following questions:

(a) Given a random network G.
1. How to define measures of centrality and variability?
2. How to define a depth function in the space of networks?

(b) Given a sample of networks G1,G2 . . . ,G`.
1. How to calculate their empirical measures of centrality and variability?
2. How to perform hypothesis testing for the one and the two sample problem?
3. How to define a notion of principal components?
4. How to perform supervised and unsupervised classification?

This short list includes several of the most commonly used techniques in applications in
statistics. Our approach provides a way to deal with statistical problems using only the
metric structure of the space where the random elements are defined.

We present some answers based on the definition of a depth function, which is defined by
a distance in the space of networks, that has the nice property of determining the distribution
of a random network. We develop some statistical analysis tools based on it, and show that
many standard problems in multivariate analysis can be easily adapted to our framework.

One major issue when working with network data is the implementation of the proposed
techniques for large scale networks. For all the problems addressed in the manuscript we find
explicit algorithms which allow to implement our methods with a computational complexity
of order n2 (in fact, linear in the number of links), where n is the number of nodes, so we
can deal with large scale networks and big datasets. We show several results regarding
consistency and asymptotic distribution, and two real data applications. We also exhibit
simple and explicit formulae to calculate depth, center and principal components. All the
results we describe can be easily adapted for random Boolean functions f : {0,1}n→{0,1}
if we forget about the graph representation via the adjacency matrix. However, we are
interested in the graph structure obtained from the links between nodes. All proofs are given
in the Appendix.
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2. PROBABILITY AND GRAPH THEORY FRAMEWORK

A network, denoted by G = (V,E), is described by a set V of nodes (vertices) and a
set E ⊂ V ×V of links (edges) between them. In what follows, we consider families of
networks defined over the same fixed finite set of n nodes and m = n(n−1)/2 stands for
the total number of possible links. Then, a network is completely described by its adjacency
matrix A ∈ {0,1}n×n, where Ai j = 1 if and only if the link (i, j) ∈ E.

2.1. Metrics on the space of networks. Describing the similarity of two networks is a
relevant question that arised more than 40 years ago (see Livi and Rizzi, 2013, for a recent
review.) The problem of inexact graph matching considers graphs with indistinguible nodes
and/or different number of nodes. In this context, graphs kernels (Vishwanathan et al., 2010;
Gauzere et al., 2012) and the edit distance (Gao et al., 2010) have been shown to be a good
way of extracting information of similarities between graphs. The graph edit distance is one
of the most flexible distance measures that have been proposed.

For unlabeled networks, the graph edit distance between two networks is defined as
the cost of the least expensive sequence of edit operations that are needed to make one
network isomorphic to another one. The edit operations may include insertion, deletion or
substitution of links and nodes. In general it is not easy to calculate this distance and several
algorithms have been proposed to implemented. See for instance Gao et al. (2010) for a
survey. However, in our setup, since the number of nodes n is fixed and nodes are labeled, it
becomes much easier. In particular, the edit operations are reduced to insertion or deletion
of a link, and no isomorphisms are needed.

Given two networks, G and H an edit path T = T1T2 · · ·Tk between them is a sequence
of edit operations that takes G into H. Let Γ(G,H) the set of edit paths between G and H.
A cost is given to each edit operation, c(Ti), representing whether or not the edit operation
is a strong modification of the network. Then, the edit distance is defined as

d(G,H) = min
T ∈Γ(G,H)

k

∑
i=1

c(Ti).

If the cost of adding or deleting a given link is the same, the edit operations are flips Ti j of
the link (i, j), which exchanges 1 with 0 on the (i, j) entry of the adjacency matrix of the
network, and the costs can be assigned to the links. In this case

(1) d(G,H) = ∑
i< j
|Ai j−Bi j|ci j = ∑

Ai j 6=Bi j

ci j,

where ci j is the cost of adding or deleting the link (i, j), and A,B are the adjacency matrices
of the networks G and H respectively. In particular, if all the costs are equal to 1, then
it is just the L1 distance between the adjacency matrices A and B. In order for d to be a
distance, we assume that all costs ci j > 0. In what follows, the space of networks with n
nodes endowed with the metric (1) is denoted by G .

Another interesting distance, but computationally very expensive, have been recently
introduced by Pignolet et al. (2015) that takes into account the order in which the edit
operations are executed. More precisely, the distance is defined as follows. Consider the
subset of pairs of networks M ⊂ G ×G of the form (G,T (G)), i.e., those which can be
converted into each other with only one graph edit operation. To each pair (G,T (G)) ∈M
assign a cost, given by c : M → R+. Then, the distance is defined as

d(G,H) = min
T ∈Γ(G,H)

k−1

∑
i=0

c(Ti(G),Ti+1(G)),



4 DANIEL FRAIMAN1,2, NICOLAS FRAIMAN3, AND RICARDO FRAIMAN4

where T0(G) = G and Ti = T1 · · ·Ti. The inconvenience of this distance is that the number
of costs that must be known is #M = m2m. For this reason, it is important in this case to
have an explicit formula for c, but in general it is not clear what would be adequate for real
network data.

All the results that follow can be developed using any distance between networks.
However, we work with the edit distance (1) for which we obtain explicit algorithms of low
computational cost (of order n2) to develop the statistical problems addressed.

2.2. Centers, and scale measure. The notions of center and variability around it are
fundamental to describe the distribution of a set of networks. Given that we have a metric in
the space of networks there is a simple way to define them. In what follows we describe
how to calculate this two important summarizing quantities.

We use boldface typeface for random elements. Let pG = P(G = G). The expected
distance from a network H to a random network G can be computed as

E(d(G,H)) = ∑
G∈G

d(G,H)pG.

Definition 1. The central (or median) set C of a random network G is the Frechet center
with respect to the metric d, that is the subset of networks

(2) C := argmin
H∈G

E(d(G,H)) .

The notion of median subset corresponds to minimizing the expected L1–distance. A
notion of mean subset can be defined by minimizing the expected L2–distance. In the Eu-
clidean setup they correspond to the L1–median and to the usual expected value respectively.
Given a sample G1, . . . ,G` of random networks in G , applying definition (2) to the empirical
distribution, the notion of empirical center is obtained. More precisely,

Definition 2. The empirical central set Ĉ` is defined as the subset of networks fulfilling

(3) Ĉ` = argmin
H∈G

1
`

`

∑
i=1

d(Gi,H).

In general, the sets C and Ĉ` contain only one network, i.e., there exists a unique network
that minimizes equations (2) and (3) respectively. In this case, we call the unique central
network the skeleton network and we denote it by S (or Ŝ` in the empirical case). Note that
in contrast to what is usually called the empirical average network (the sum of the adjacency
matrices divided the number of networks) the skeleton belongs to the space of networks.

The following proposition gives necessary and sufficient conditions for uniqueness of
the central network, together with a complete characterization of the skeleton network and
the subsets C , Ĉ` when we have more than one solution. In the last case, the elements of
the set form a lattice and there is a network in C (respectively in Ĉ`) with the minimum
number of links and another one with the maximum number of links. These are called the
minimal and maximal centers respectively.

Proposition 1 (Characterization of the central set).
a) C has a unique network if and only if P(Ai j = 1) 6= 1/2 ∀i, j. The adjacency

matrix of S satisfies AS
i j = 1 if and only if P(Ai j = 1)> 1/2.

b) Ĉ` has a unique network if and only if (1/`)∑
`
k=1 Ak(i, j) 6= 1/2 ∀i, j. The adja-

cency matrix of Ŝ` satisfies AS
i j = 1 if and only if (1/`)∑

`
k=1 Ak(i, j)> 1/2.
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c) Otherwise, for some pair (i, j) we have P(Ai j = 1) = 1/2. Define the minimal and
maximal centers, S and L, to be the networks whose adjacency matrices respectively
satisfy that AS

i j = 1 if and only if P(Ai j = 1) > 1/2, and AL
i j = 1 if and only if

P(Ai j = 1)≥ 1/2. Then, the set C contains exactly all subnetworks of L for which
S is a subnetwork. The same is true for the empirical version mutatis mutandis.

The relevance of this last result is that it avoids finding the minimum by exhaustive
search. If the empirical central network is unique then it contains only the links that are
observed more than half of the time. Moreover, since the space of networks G is finite, the
law of large numbers follows immediately (see for instance Breiman (1968), page 113 for
the ergodic theorem for stationary sequences).

Theorem 1. Let G be a random network with law µ such that the central set C has only
one element S. Let {Gt , t ≥ 1} be a stationary and ergodic sequence of random networks
with law µ . If Ŝ` is any element of the empirical central set Ĉ`, then almost surely

lim
`→∞

d(S, Ŝ`) = 0.

In other words, the set of empiric central networks coincides with the skeleton network if `
is large enough. If the central set C has more than one element, we have that Ŝ` ∈ C .

We are interested in a measure of the “homogeneity” (variability) of a random network.
The most natural notion of dispersion associated with our problem is the following.

Definition 3. Let S∗ ∈ C . The scale of the random network G is defined as

σ := E(d(G,S∗)) .

The corresponding empirical scale measure σ̂` based on the sample G1, . . . ,G`, is ob-
tained by replacing the expected distance by (1/`)∑

`
i=1 d(Gi,S∗) in Definition 3. We can

derive strong consistency of σ̂` to σ from Theorem 1, using the inequality

1
`

`

∑
i=1
|d(Gi, Ŝ`)−d(Gi,S)| ≤max

H∈G
|d(H, Ŝ`)−d(H,S)|.

We finish this section presenting two examples to illustrate the proposed framework.

Example 1. An important distribution that arises in the space of networks G is the (double)
exponential type distribution given by

(4) P(G = H) = ze−λd(H,S0).

If all costs are equal, the normalizing constant z = eλm(1+ eλ )−m, λ > 0 is a parameter,
and S0 is a particular network. As in the real double exponential distribution, this law is
symmetric, it has an explicit symmetry center and mode (S0), and has an exponential decay.
It is a particular case of the so called Exponential Random Graph Model ( Chatterjee and
Diaconis (2013); Robins et al. (2007)), and presents a unique central network (2). It is easy
to show that it verifies S = S0, and σ = m/(1+ eλ ).

Note that the empirical center given in (3) can be seen as a maximum likelihood estimate
of the center of the previous distribution. Indeed, if G1, . . .G` are i.i.d. random networks with
this µ distribution, the empirical center coincides with the maximum likelihood estimate of
S0.

Example 2. In the Erdős–Rényi model each link is present with a fixed probability p,
independently. Unlike the previous example, the well known Erdős–Rényi model does
not favor the presence of any link (nor a group a links), it is an homogeneous model. All
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networks with k links are equally likely in the sense that they have the same probability. If
p < 1/2 the network is sparse. On the contrary, if p > 1/2 there exists a giant component,
while p = 1/2 is the critical value. Our notion of center captures the homogeneity and
symmetry of the model, and provides a natural notion of center. The central network is
the empty network G /0 (the network with no links) if p < 1/2, in the case p > 1/2 it is the
complete network GΩ, and if p = 1/2 we get the entire space of networks.

For this model, the scale is σ = (1/2−|p−1/2|)m which has its maximum at p = 1/2,
and it is zero for p equal 0 and 1. This result is intuitive since the entropy is maximum at
this value.

Remark 1. A different empirical notion of center has been introduced in Jiang et al.
(2001), assuming that all costs are equal. It restricts the search of the minimizer to the
networks in the sample, i.e., the center M̂` is argmin j(1/`)∑

`
i=1 d(Gi,G j). The population

version corresponds to minimizing the expected distance over the support of the underlying
distribution µ of G, that is the center is defined as argminH∈supp(µ) E(d(G,H)). If the
support of µ is the whole space of networks G both notions coincide. However, like in
the case of high dimensional data, maximizing just over the sample is not a good strategy.
Indeed, for example, it is easy to verify (using Hoeffding’s inequality) that for the Erdős–
Rényi model with parameter p < 1/2,

P
(
Ŝ` 6= G /0

)
≤ 1−

(
1− e−2`(p−1/2)2

)m
,

P
(
M̂` 6= G /0

)
≥

`

∏
i=1

P(Gi 6= G /0) = (1− (1− p)m)`.

Thus, Ŝ` converges at a much better rate.

3. DEPTH FUNCTION

In this section we first introduce a notion of depth in the space of networks. A depth
function is a function that orders the space in terms of center-outward position. The idea has
been introduced in the robust statistics literature. The most well known depth notions for
the Euclidean space are the half–space depth (Tukey, 1975), simplicial depth (Liu, 1988),
the L1–depth (Brown, 1983; Small, 1996) and Mahalanobis depth (Mahalanobis, 1936).
Several important applications to different statistical problems based on depth concepts
have been developed in the last years.

Given a fixed network H and a sample of random networks G1, . . . ,G` with the same
distribution we consider the L1–depth notion with respect to the metric d, which in particular
defines the central network (also called spatial median) in our setup. The central set
corresponds with the set where this depth is maximized. More precisely,

Definition 4. We define the empirical depth at the network H ∈ G , as

D̂`(H) = m− 1
`

`

∑
i=1

d(Gi,H),

which corresponds to the population depth given by D(H) = m−E(d(G,H)).

Observe that both the empirical and population depth are non–negative, and fulfill the
main properties of a depth function given in Zuo and Serfling (2000). Moreover, we have
a simple explicit solution for the median center maximizing D(H) given by Proposition 1.
On the contrary in the Euclidean space, an optimization method is required to maximize the
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L1–depth. In fact, a fast monotonically convergent algorithm to calculate the L1–median of
a data set in Rd has been proposed in Vardi and Zhang (2000).

An important property of Definition 4 is that the depth function determines the network
law. This result, that follows from the invertibility of distance matrices given by Auer
(1995), has an important impact in statistics and in particular in our setup since it allows
to develop statistical methods based on the depth D and obtain results for the space of
networks G .

Proposition 2. Given two distributions µ,ν on G . Write Dµ(H) = m−Eµ(d(G,H)) to
explicitly note the dependency. Then, µ = ν if and only if Dµ(H) = Dν(H) for all H ∈ G .

In general, depths do not determine distribution, the only known result is for Tukey’s
half space depth when the measure is discrete and can be found in Cuesta-Albertos and
Nieto-Reyes (2008). The empirical depth function D̂(H) converges almost surely to the
population version D(H) uniformly. Indeed, as a consequence of the ergodic theorem we
have the following theorem.

Theorem 2 (Uniform convergence of the depth function). Given a stationary ergodic
sequence of random networks {Gt : t ≥ 1} with common law µ . Then, almost surely as
`→ ∞, maxH∈G |D̂`(H)−Dµ(H)| → 0.

Moreover, the asymptotic distribution of the depth process is Gaussian.

Theorem 3 (Asymptotic normality of the depth process). Given a strictly stationary α–
mixing sequence of networks {Gt : t ≥ 1} in G with common distribution µ fulfilling
∑

∞
n=1 α(n)< ∞. Fix an ordering (G j) j=1,...,2m of the elements of the space G and define

Z` =
(
D̂`(G j)−Dµ(G j)

)
j=1,...,2m , Yk =

(
d(Gk,G j)−E(d(Gk,G j))

)
j=1,...,2m .

If in addition ∑
∞
k=1 β T

0 E
(
YT

1 Yk
)

β0 > 0, for all β0 with ‖β0‖= 1,, then,
√
`β T

0 Z` converges
weakly as `→ ∞ to a normal distribution with mean zero and with the same variance as
β T

0 Y1.

4. HYPOTHESIS TESTING: TEST BASED ON RANDOM PROJECTIONS.

In this section we study the one and two samples hypothesis testing problem. Here we
are interested in comparing for example two samples of networks and determine if they
belong to the same population. A naive approach is to test directly the two distributions
(or their corresponding depths, see Proposition 2) with a Chi-square or a Kolmogorov type
test based on the statistic maxH∈G |D̂`(H)−Dµ(H)|. However, the computational cost is
of order 2m and it requires a huge sample size in order to have a large power. On the other
side, tests based on random projections for the one and two samples problems, as those
considered in Cuesta-Albertos et al. (2006, 2007), can be implemented in our setup since the
space of networks G = {0,1}m is contained in Rm. They are based on the use of Corollary
3.2 in Cuesta-Albertos et al. (2007), which we describe briefly. Let µ be a Borel probability
measure on Rm (m≥ 2). Given a direction h∈Rm , let 〈h〉 be the one–dimensional subspace
spanned by h and µ〈h〉 the distribution of the orthogonal projection of Rm onto 〈h〉, i.e.,
µ〈h〉(B) = µ(π−1

〈h〉 (B)), for Borel B⊂ R.

Proposition 3 (Cuesta-Albertos et al., 2007, Corollary 3.2). Let µ,ν be Borel probability
measures on Rm, where m≥ 2. Then µ = ν if

a) the absolute moments Θn =
∫
‖x‖nxdµ(x) are finite and satisfy the Carleman

condition ∑n≥1 Θ
−1/n
n = ∞,
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b) the set E (µ,ν) = {h ∈ Rm : µ〈h〉 = ν〈h〉}, has positive Lebesgue measure.

It is clear that any distribution in Rm supported on {0,1}m fulfills Carleman condition
and the previous result holds. For statistical purposes this means that in order to address the
one sample problem H0 : µ = µ0 vs HA : µ 6= µ0, or the two samples problem H0 : µ = ν

vs HA : µ 6= ν , where µ , µ0, and ν are distributions in the space of networks, a standard
one dimensional test is enough. For example, a Kolmogorov–Smirnov test based on the
projected data onto one randomly chosen (for instance uniformly on the unit sphere) is
able to test the null hypothesis presented above (see Cuesta-Albertos et al., 2006, for more
details).

To improve the power, we may use many random projections onto i.i.d. uniformly
distributed directions h1, ...,hq. For the two samples the procedure is as follows (the one
sample problem is completely analogous).

Given two independent iid sequences of networks G1 = {G1
1, ...,G

1
`1
}, G2 = {G2

1, ...,G
2
`2
}

and q random directions {h1, ...,hq} on Rm, define for each i = 1, . . . ,q

Xi j = 〈hi,G1
j〉, j = 1, . . . , `1; Yi j = 〈hi,G2

j〉, j = 1, . . . , `2.

For each i consider the samples {Xi j j = 1, ..., `1}, {Yi j j = 1, ..., `2} and define the binary
random variable Zi taking value one if the two samples Kolmogorov–Smirnov test of level α

reject the null hypothesis and zero otherwise. Let Z=∑
q
i=1 Zi. Under the null assumption, Z

has a Binomial(q,α). Therefore, the exact p–value= P(Z > a) can be computed. If instead
of two independent iid sequences of networks we have two independent stationary and
ergodic sequences, the Glivenko–Cantelli Theorem still holds (see for instance Theorem 1.1
on page 4, in (Mikosch and M., 2002) ), and we can use the bootstrap results for stationary
and ergodic sequences given in Ahmed et al. (2001) to approximate the critical value of the
Kolmogorov–Smirnov test of level α , or for stronger results assuming mixing conditions
or even weaker dependence conditions, see for instance Dehling and Wendler (2010) and
Doukhan and Neumann (2008) respectively for the bootstrap validity.

5. SPARSE PRINCIPAL COMPONENTS

Principal components is an important statistical tool when analyzing data, particularly
for high dimensional and functional data. The objective of this technique is to reduce
the dimension p of the data using linear combinations of the variables. This is done by
projecting the data onto the k� p dimensional subspace which minimizes the distance
to the original random vector. Equivalently, the principal components can be defined
iteratively. The first is the direction on which the projection of the random element has
maximal variance. The next one, maximizes the variance of the projection on the orthogonal
subspace to the first one and so on. The absence of projections in metric spaces makes the
extension non trivial. Since the space of networks is very large we want a sparse notion of
principal components. In what follows we introduce some methods in such direction for
random elements in the space G .

Let G /0 be the empty network and write |H|= d(H,G /0) for the sum of the costs of links
in H. Given G,H ∈ G define the intersection network G∧H as the network with only the
common links to both. Note that |G∧H| is the weighted inner product, given by the costs,
between the adjacency matrices of G and H. Recall that, given a,b,x arbitrary points in a
metric space, we say that x belongs to a geodesic from a to b if d(a,b) = d(a,x)+d(x,b).
So, if d(G,H) = k then there are k! geodesics between them. Given a network H we
define the set S (H) of all geodesics curves in the space G joining H with the complete
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network, denoted by GΩ. In other words, S (H) is the set of all networks which have H as
a subnetwork.

Given a random network G, we define the first principal component as the set of networks
Q1 that maximize the variance of the following “projection”

(5) Q1 = argmax
Q∈G

var
(
|G∧Q|
|Q|

)
.

If Q1 = {Q1, . . . ,Qp} then the principal component space is S1 = ∪p
i=1S (Qi). Typically

the set Q1 is a single network. The analogue of having more than one network in Q1 in the
classical Euclidean case is having eigenvalues of the covariance matrix with multiplicity
greater than one.

To define the second principal component Q2 we consider the same problem, but now
we maximize the variance within the “orthogonal” subset G \S1.

Observe that H ∈ G \S1 iff H has no links in common with any element in Q1, i.e.,
it has no link in common with the network Q̃1 := Q1∨ . . .∨Qp, which contains all links
present in at least one Q j, j = 1, . . . p. In this sense we refer to G \S1 as the orthogonal
subset. This particular network, Q̃1, can be considered as the most informative network to
visualize S1. The set G \S1 has cardinality 2m−|Q̃1|. The next principal components are
defined analogously. To define the corresponding empirical version of (5) let

∆`(Q) =
1
`

`

∑
i=1

(
|Gi∧Q|−Λ`(Q)

)2

|Q|2
,

where Λ`(Q) = (1/`)∑
`
k=1 |Gk ∧Q|. The empirical first principal component is the set of

networks that maximizes the empirical variance (∆`(Q)), and the empirical first principal
component space is the set of networks that have the links of the first principal networks, i.e.
Ŝ1 = ∪p

i=1S (Qi) where Qi verifies ∆`(Qi) is maximum.

Proposition 4 (Characterization of the sparse principal component sets). Let Ei j be the
network consisting of only the (i, j) link and pi j = P(Ai j = 1). If

M1 = {(i, j) : 1≤ i < j ≤ n} and L1 = argmin
(i, j)∈M1

|pi j−1/2|,

then S1 = ∪(i, j)∈L1S (Ei j). Analogously, if

Mk = {(i, j) : AH
i j = 0 ∀H ∈ ∪k

i=1Si} and Lk = argmin
(i, j)∈Mk

|pi j−1/2|,

then Sk = ∪(i, j)∈Lk
S (Ei j).

Based on the previous proposition, a simple algorithm of order n2 is presented below.

• Step 1: Compute W (Qi) := |var(|G∧Qi|/|Qi|)−1/2| for all Qi with a single link.
• Step 2: Let W (Q(1))≥ . . .≥W (Q(M)) be the order statistics.
• Step 3: If there are no ties, the first principal space is the set of networks with Q(1)

as a subnetwork, the second one is the set of networks for which Q(2) is a subnetwork
and Q(1) is not, and so on. If there are ties, say for instance W (Q( j1)) =W (Q( jp)), the
principal space is just the union of the principal spaces of each Q( jr), for r = 1, . . . , p.
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Remark 2. Our definition of sparse principal components normalize the data by |Q|. The
same normalization is used when dealing with directional data, and we believe it is adequate
in our context. Indeed, if in definition (5) we normalize by

√
|Q| instead of |Q|, that is

(6) Q1 = argmax
Q∈G

var

(
|G∧Q|√
|Q|

)
,

we obtain a less sparse version of the principal components.

Proposition 5 (Consistency of Principal Components). Given a stationary and ergodic
sequence of random networks {Gt , t ≥ 1}, the empirical principal components as well as
the principal components sets converge a.s. to their corresponding population versions.

Example 3. Distributions with spherical symmetry satisfy do not have a principal direction,
since all directions are equally informative. The distribution given in (4) is one such example.
However, a mixture of two or more distributions of that form breaks the symmetry. Here we
consider a mixture of 3 exponentials with the same λ , whose centers are shown in Figure 1
(A), to generate a sample of size 1000. We consider equal costs for each link. The measure
is

(7) µ(H) = P(G = H) =
3

∑
i=1

pice−λd(H,Si),

where (p1, p2, p3) = (0.4,0.3,0.3).
In this model it is easy to see that

lim
λ→∞

P(A12 = 1) = 0.7, lim
λ→∞

P(A13 = 1) = 0.6, lim
λ→∞

P(Ai j = 1) = 0 with i j /∈ {13,12}.

Also it easy to see that for fixed λ these probabilities verify

|P(A13 = 1)−0.5|< |P(A12 = 1)−0.5|< |P(Ai j = 1)−0.5| for i j /∈ {13,12}.
Therefore the first principal component space is generated by the one link network S3, and
the second principal component space is generated by the S1 network. For λ = 10 these
probabilities become P(A12 = 1) = 0.69998, P(A13 = 1) = 0.5999909, P(Ai j = 1) =
0.0000454 for i j /∈ {13,12}, and for λ = 1 the values are 0.5924234, 0.5462117, and
0.2689414 respectively.

Figure 1 (B) shows the projection of a network sample of size one thousand generated
from the exponential model (7) with λ equal 10 (left panel) and 1 (right panel). For
both λ values we compute the dot products |Gi ∧ S3| and |Gi ∧ S1| for i = 1, . . . ,1000.
These dot products only take the values 0 or 1 depending on whether the network contains
the corresponding link or not. The height in the z-axis shows the number of networks
(frequency) in the sample projected at each of the four possibilities. Note that if we just
observe the data in the first component the frequencies of ones and zeros are closer to each
other than when the data is observed in the second component. Similar frequency values for
ones and zeros corresponds to a greater variance. Both empirical components coincide with
the population version. For λ = 10, the proportion of networks in the sample containing
the link (1,3) is 0.598 while for (2,3) is 0.706. For λ = 1, the proportion of networks in
the sample containing the link (1,3) is 0.54 while for (2,3) is 0.574. These proportions are
very similar to their theoretical values. Figure 1 (C) shows the empirical variance, ∆`(Q),
of the projected sample of networks over each network Q. The networks are represented in
the x-axis and they are sorted by the appearance of the components. The first component is
the network S3 and this one generates all the first principal space S (S3) (red points). The
second component is S1 and it generates all the second principal space S (S1) (green points).
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FIGURE 1. (A) Networks used in the definition of µ . (B) Projected data
on the first (S3) and second principal components (S1) are shown for a
one thousand sample generated by eq. 7 with λ equal 10 (left panel),
and 1 (right panel). (C) Empirical variance, ∆`(Q), of the sample of
networks projected on each network Q. Red (Green) points represent all
the networks that belong to the first (second) principal component space
S (S3) (S (S1)). On the left we show the results for λ equal 10 (left
panel), and 1 (right panel).

The figure shows the results for λ equal 10 (left panel), and 1 (right panel). Note that as
λ goes to zero the first, second and the subsequent components degenerate. Therefore
in the empirical case, we have to deal with the problem of identifying if the differences
observed, for example between ∆`(S1) and ∆`(S3), are a product of randomness or the are
really different. For a sample size `, it is possible to define ε` such that the first principal
component networks are those that verify

Q̂1 = {Q ∈ G : ∆
max
` −∆`(Q)< ε`},

where ∆max
` = maxQ∈G ∆`(Q).
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6. OTHER MULTIVARIATE TECHNIQUES BASED ON DISTANCES

In this section we briefly discuss some other important multivariate methods. It is
clear that extending to our setup other techniques that only rely on distances such as
clustering, classification, multidimensional scaling and nonparametric regression is mainly
straightforward. The choice of the distance d for these methods is very important. In
applications we may be interested in taking into account some “features” of the network to
improve the performance of the procedure. A pseudo-metric d f typically is considered to
capture closeness with respect to the selected “features”. These features can be global, such
as the diameter or average degree, or can be local, for example the degree of each node. A
simple solution to take into account features is to work with the distance

d̃ = αd +(1−α)d f (for 0 < α < 1),

which is still a metric. Asymptotic results for this distance still hold, while this is not
the case if we just use a pseudometric. To illustrate we emphasize two main problems:
clustering and classification of networks. The classical k-means algorithm for clustering, as
well as k-nearest neighbor, for supervised classification can be applied directly.

6.0.1. Unsupervised classification. Let us suppose that the probability measure µ is such
that k groups or clusters of networks can be identified. Two networks in the same group are
close together (similar), while networks that belong to different groups are far apart. We
want to identify each of the k groups. The most well known clustering methods are k–means
or k–medioids, which are only based on the distances between the random elements. More
precisely, the algorithm looks for the centers of the groups and then assign each data to its
nearest center.

In our setting, what is important is to identify in a good way each of the k center networks,
that we denote by S∗1,S

∗
2, . . . ,S

∗
k . The strategy proposed here is the same to that of k-means

(k-medioids in our case). We look the k networks that maximize the depth of order k defined
as:

Dk(H1, . . . ,Hk) = m−E
(

min
i=1,...,k

d(Hi,G)

)
,

i.e., we look for subsets {S∗1, . . . ,S∗k} that satisfy

Dk(S∗1, . . . ,S
∗
k) = max

H1,...,Hk
Dk(H1, . . . ,Hk).

Then, each network is assigned to its nearest center and we obtain a partition of the space.
The asymptotic results for k–means and k–medioids given in Pollard (1981) are valid for
compact metric spaces, which covers our setup. In the empirical case we look for the
empirical center networks Ŝ∗1, Ŝ

∗
2, . . . , Ŝ

∗
k that maximize the empirical depth of order k,

D̂k(H1, . . . ,Hk) = m− 1
`

`

∑
j=1

min
i=1,...,k

d(Hi,G j).

6.0.2. Supervised classification. In this case we have a training sample (Y1,G1), . . . ,(Y`,G`)
where {Gt : t ≥ 1} is a sequence of random networks and {Yt : t ≥ 1} stands for the labels
that indicates to which subpopulation (group) the individual belongs. For binary classifica-
tion Yt ∈ {0,1} indicating sick or healthy for instance. The problem consist on predicting
the label of a new observation only based on G`+1 and the training sample.

The most simple and well known nonparametric classification method is k–nearest
neighbors. The method just looks for the k nearest neighbors of G`+1 among the sample
{Gt : 1≤ t ≤ `} and assigns the label by majority vote within the labels of the k–nearest



NON PARAMETRIC STATISTICS OF DYNAMIC NETWORKS WITH DISTINGUISHABLE NODES 13

neighbors. It can be applied in our setup as it is just based on distances. The method is
asymptotically optimal as long as k = k(`)→ ∞ and k/`→ 0 as `→ ∞ (see for instance
Devroye et al., 1996).

7. CASE STUDIES

In this section we apply the results from the previous sections to data from two real
networks. We present examples in two categories: networks of level 1 (L1 networks), which
corresponds to the case where the data are directly a sequence of networks in time, and
networks of level 2 (L2 networks), which are build up from a stochastic process given at
each node. For instance, a link between two nodes is present if the correlation between the
corresponding stochastic processes of the two nodes is greater than a given threshold. In this
case, we lose information while trying to get a simpler model that still retains the relevant
characteristics. Level 2 networks are a common tool in functional Magnetic Resonance
Imaging (fMRI) studies where they are called functional networks.

7.1. A L1 network example: Social Network. How a disease or information propagates
in a population is a very relevant question. For many diseases face-to-face interactions are
decisive in the propagation process. Mastrandrea et al. (2015) collected very interesting
data to study face-to-face social interaction. By using wearable sensors they were able to
describe how do French high school students socially interact (see Mastrandrea et al., 2015,
for details). Each of the 327 students involved in the study had a sensor. The sensors ex-
change packets only when within 1–1.5 meters of one another, thus allowing to know which
students are socially interacting in time. The data is publicly available at http://www.
sociopatterns.org/datasets/high-school-contact-and-friendship-networks/, and
corresponds to the face-to-face interactions (links between students) every 20 seconds
during five days. For the application shown here we analyze only the last day studied by the
authors (Friday) during all the school day. In the analysis we divide the day in four equal
periods, which we label as Morning 1, Morning 2, Afternoon 1 and Afternoon 2. We do not
consider the times of “arrival” (8:00–8:30) and “departure” (16:30–17:00) from school, and
we assume all costs are equal.

For each time interval of 20 seconds we have a network, obtaining a sequence of 360
networks G1,G2, ...,G360. We compute the empirical Central Graph (Figure 2 (A)) and the
Graph Variability σ (Figure 2 (B)) for each sequence. The central networks for the periods
AM1, AM2, PM1 and PM2 have few links, 12, 11, 0 and 1 respectively. Some of the links
that join two students are present in both AM1 and AM2 periods (vertical links). Looking
at the central networks it seems that the students interact in a different way between the
morning and the afternoon.

More precisely, the network variability decreases with time as it is shown in Panel (B).
To understand how different are the network probability laws between the time intervals
we test it by the random projection procedure described above. One hundred tests were
performed, and the proportion of rejected tests (at the level of significance 0.05) is shown
in Panel (C) for each pair of periods. In all cases, the proportion of rejected tests is much
greater than the critical value (dashed line). The test is able to detect differences even in
scenarios where there are few links in comparison with its maximum number (in this case
53301). Namely, the face-to-face interactions are different and this is detected because the
law changes along the day.

Next, we compute the central networks, the network variability and the corresponding
tests for a sequence of networks generated artificially. More precisely, a link is randomly
assigned to one the 1440 time steps, and the same time categories are analyzed. The central

http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
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FIGURE 2. (A) Empirical Central Graph and (B) Variability for each of
the four time intervals AM1, AM2, PM1, and PM2. (C) Proportion of
rejected tests, at a significance level of 0.05. The results for a random
network are shown in red.

network is the null network in the four intervals, and the variability (red crosses in Panel
(B)) takes a constant value approximately equal to 20. It is easy to show that this value
is the one expected for the Erdős-Renyi model, σ = (1/2−|p−1/2|)53301, for p given
by the average density of links in a time step (21.58/53301). Finally, in Panel (C) we
show the proportion of rejected tests with red bars (which is clearly below the significance
level) verifying that these randomly “shuffled” networks have the same distribution, as it is
expected.

7.2. A L2 network example: Correlation Network. Network techniques based on statis-
tical associations between climate parameters at different points on Earth have been used
recently (see for example Donges et al., 2015; Tsonis and Swanson, 2008). Networks are
also used to characterize climate dynamics, and phenomena such as the El Niño/Southern
Oscillation (Gozolchiani et al., 2008). As far as we know, most results in this area use
statistical data to generate a unique network rather than analyzing a sample of networks.
Here we analyze climate data with the methodology developed in Sections 2-5.

The data consist on daily thermal amplitude values from six Dutch meteorological
stations located across the country (North, North-West, North-East, Middle, West, South-
West, South-East). Figure 3 (A) shows the location of each station studied. Figure 3 (B)
shows the daily thermal amplitude (temperature range) for each station during the year
2013. For each month we compute the (Spearman) rank correlation matrix between the
series, as shown in Figure 3 (C) (by symmetry only the upper values are depicted). We
consider rank correlations in order to avoid sensitivity to a few days with extreme values.
Finally, a network is obtained by keeping the links with statistically significant correlations,
corrected by multiple comparisons (p–values using a t-test for correlations < 0.05/15).
Two meteorological stations are connected if they share similar thermal behavior. Figure 3
(D) and (E) show the network obtained for September 2013. This method is a standard
technique for constructing correlation or functional networks mostly used in Neuroimaging
(Bullmore and Sporns, 2009) and Finance (Bonanno et al., 2004).
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FIGURE 3. (A) Location of the meteorological stations. (B) Thermal am-
plitude series for the year 2013. The segment on the right end represents
10 degrees Fahrenheit. (C) Correlations between the thermal amplitudes
for September 2013. (D) Adjacency matrix obtained using a threshold of
0.48. (E) Associated network.

Using the method described above we construct a network for each month from 1973
to 2013. The data can be obtained at http://www.ncdc.noaa.gov. We study the evolution
over the last 41 years. Figure 4 (A) shows the central network for each month. The months
of March, April, May, June, July, August and September share the same central network
which is the complete network. Some of the links connecting geographically distant stations
disappear during the coldest months. Moreover, each year the networks observed at each
month are different. Figure 4 (B) shows the scale or variability for each month. Low
temperature months present networks with more variability. Climate networks for months
with colder temperatures (October to February) have in average less links and are more
varying.

As a next step, we construct a sequence of networks Gi for the month of May from 1973
to 2013. In Figure 5 (A) the empirical expected depth (m− D̂(Gi)) for each year is shown.
The month of May was selected because in this month there exists four outlying years (1975,
1984, 1994 and 2012) and the latest has occurred recently. The corresponding networks are
shown in Figure 5 (B). All four of them have fewer links than the central network which is
complete in this case. In order to understand the outlying behavior, in Panel (C) we show
the thermal amplitude time series for the six meteorological stations at two normal years
(2011 and 2013) and at the outlying year 2012. It can be observed that in normal years all
stations present very similar behavior, however at 2012 the most South-West station at the
city of Vlissingen (station e) shows some departure from this general behavior. The thermal
amplitude from station e at may of 2012 has a small dependence with the other stations.
This last fact generates a climate network with the station e disconnected with the others
stations, as it is shown in Panel B (middle network). Probably, the absence of links of station

http://www.ncdc.noaa.gov
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FIGURE 4. (A) Central networks. (B) Scale values.

e at may 2012 is related to particular changes in the air currents from the sea. Vlissingen is
the only of the six cities that has a temperate oceanic climate that is milder than the rest
of the Netherlands. It is one of the sunniest cities in the Netherlands, and has the lowest
rainfall. The other five stations are located at Amsterdam, De Bilt, Leeuwarden, Twente, and
Zuid-Limburg and are far (at least 20km) from the sea. Although further analysis is needed
to confirm this hypothesis, it seems that the the proximity to the sea can be a plausible
scenario for explaining the phenomena observed in May of 2012 at Vlissingen.

Next, we perform principal component analysis. In this case we study 492 graphs each
corresponding to a month of the 41 years in the sample. We look for the interactions
between meteorological stations that present large variability. The unique first and second
principal components are shown in Fig. 6 (A) and (B) respectively. In this case the variances
of the projected data in both principal components are close. Note that there exist a peak
at (1,1) on Fig. 6 (C) that reflects the fact that the links (e,c) and (c, f ) tend to be present
together. Note that these two components links the more distant meteorological stations, i.e.
the variability of the “interaction” between two stations is greater between distant stations.

Finally, we perform the test proposed in Section 4 to compare two samples of networks.
We compare the sample of networks from the month of January with other months. Each
sample has a size of 41 (the numbers of years studied). The network distribution from
February or December should be very similar to the one from January because an obvious
continuity effect. However, when comparing January to June or July marked differences
should appear. We tested the null hypothesis of equal distribution between January and each
month of the year, i.e. µJan = µx for each month x using five hundred random projections.
Even with a small sample size the test has an excellent performance. In particular, extremely
small p–values were obtained for the months of March through September (see Table 1).
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FIGURE 5. (A) Empirical expected distance for each year at the month
of May. Black points correspond to outliers. (B) Atypical networks. (C)
Thermal amplitude series for the six stations. The segment represents 10
degrees Fahrenheit.

February March April
0.035 < 1×10−50 < 1×10−50

May June July August
0 < 1×10−50 0 < 1×10−50

September October November December
< 1×1−50 0.61 0.67 1

TABLE 1. P-values for each of the test comparisons (H0 : µJan
G = µx

G).

8. DISCUSSION

We propose a non parametric framework to study dynamic random networks with a fixed
number of distinguishable nodes. Some classical statistical problems such as clustering
and principal component analysis are addressed. All the statistics we define have been
constructed using a natural distance between networks and its corresponding L1–depth
notion. All the results presented here can be easily adapted for another distance. From a
theoretical point of view, we believe that the framework we present can be the building
block to construct more sophisticated statistical parametric and non parametric techniques.

One major issue when working with network data is the implementation of theoretical re-
sults for large scale networks. While many of the definitions we present involve maximizing
over the entire space of networks, we find explicit simple algorithms for the optimization
problems which allow to implement our methods for large scale networks and big datasets
since the complexity is of order n2 (linear in the number of possible links).

There are lots of possible applications for the results we present. We analyze two real data
examples: the first one corresponds to a face–to–face social interaction network evolving
in time, while the second one is an example of the so called correlation networks, for
climate data. The results are quite encouraging. It is important to remark that the analysis
of functional networks is becoming a standard procedure in the areas of finance (Bonanno
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FIGURE 6. (A) First (B) Second principal component. (C) 2D map of
the projected data on the first and second principal components.

et al., 2004; Aparicio and Fraiman, 2015) and neuroscience (Fraiman et al., 2014, 2009;
Bullmore and Sporns, 2009).

Another very important application in Neuroscience is related to the development of new
diagnostic methods based on brain network data. This is directly related to the problem of
classification of patients (e.g., high or low-risk to have a particular cognitive disorder) for
example from their (fMRI, MEG, or EEG) resting state functional networks.

APPENDIX A. PROOFS

A.1. Characterization of the central set.

Proof of Proposition 1. We have that the expected distance from a network H to a random
network G is

(8) E(d(G,H)) = ∑
G∈G

d(G,H)pG.
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Let A(G) be the adjacency matrix of the network G and A the adjacency matrix of the
random network G. Then (8) can be written as

∑
G∈G

∑
i> j
|A(G)i j−A(H)i j|pG = ∑

i> j
∑

G∈G
|A(G)i j−A(H)i j|pG

= ∑
i> j

P(Ai j 6= A(H)i j) ,

which is minimized by any network H with adjacency matrix A(H)i j = 1 if and only if
P(Ai j = 1)≥ 1/2. Moreover, if for all i, j

(9) P(Ai j = 1) 6= 1/2,

there is a unique network S that minimizes (8) and the adjacency matrix satisfies A(S)i j = 1
if and only if P(Ai j = 1)> 1/2.

On the other hand, if condition (9) does not hold, there are many solutions. The maximal
center L is the network whose adjacency matrix fulfills A(L)i j = 1 when P(Ai j = 1)≥ 1/2
and the set C contains exactly all subnetworks of L for which S is a subnetwork.

The proof for the empirical version is completely analogous. �

A.2. Depth determines measure.

Proof of Proposition 2. Let µ = (µ1, . . . ,µM) and ν = (ν1, . . . ,νM) be two distributions on
G where M = 2m is the cardinal of the space of networks. For any H ∈ G , let d(H) =
(d(H1,H), . . .d(HM,H)). Then, the population depth is

Dµ(H) = m−d(H)T
µ.

Therefore, the depth determines the measure if and only if

(10) d(H)T
µ−d(H)T

ν = 0 for all H ∈ G implies µ = ν .

Denote by M the matrix with rows given by d(H1), . . .d(HM). Then (10) is equivalent
to M(µ − ν) = 0, having a unique solution. The result follows from the invertibility of
distance matrices. This result was initially proved by Micchelli (1986) and later on by Auer
(1995), who provided an elementary proof, that the only uses the triangle inequality. In
particular, our metric is just the L1 distance between the adjacency matrices and the result
holds. For the sake of completeness we now state the result in Auer (1995) for distance
matrices.

Theorem A. Let P1, . . . ,Pn be distinct points in Rk, and di, j = ‖Pi−Pj‖. If Mn is the
distance matrix with entries di, j, then

a) The detMn is positive if n is odd and negative if n is even, in particular Mn is
invertible.

b) The matrix Mn has one positive and n−1 negative eigenvalues.

Applying Theorem A to our setup, we get that the matrix M is invertible. �

A.3. Convergence of empirical depth.

Proof of Theorem 2. From the Ergodic Theorem we have that D̂`(H)→D(H) almost surely
as `→ ∞ for each H ∈ G . Since G is finite we get uniform convergence. �

Proof of Theorem 3. Recall that a sequence of random elements X := (Xt , t ≥ 1) is a strong
mixing sequence if it fulfills the following condition. For 1≤ j < `≤ ∞ , let F `

j denote the
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σ -field of events generated by the random elements Xk, j ≤ k ≤ ` (k ∈ N) . For any two
σ -fields A and B, define

α(A ,B) := sup
A∈A ,B∈B

|P(A∩B)−P(A)P(B) |.

For the given random sequence X , for any positive integer n, define the dependence
coefficient

α(n) = α(X,n) := sup
j≥1

α(F j
1 ,F

∞
j+n).

The random sequence X is said to be “strongly mixing”, or “α -mixing”, if α(n)→ 0 as
n→ ∞. This condition was introduced by Rosenblatt (1956). By assumption, we have that
the sequence of random networks {Gt : t ≥ 1} is a strongly mixing sequence. In order to
prove the theorem we use the following result (see for instance Peligrad, 1986).

Theorem B. Let {Xt : t ≥ 1} be a strictly stationary centered α–mixing sequence, and let
S` = ∑

`
t=1 Xt . Assume that for some C > 0

|X1|<C almost surely, and
∞

∑
n=1

α(n)< ∞.

Then,

σ
2 := E

(
X2

1
)
+2

∞

∑
k=2

E(X1Xk) ,

is absolutely summable. If in addition σ2 > 0, then S`/
√
`σ converges weakly to a standard

normal distribution.

First observe that

β
T Z` =

1
`

`

∑
k=1

Wk, with Wk =
2m

∑
j=1

β j (d(H j,Gk)−E(d(H j,G1))) ,

where {Wt : t ≥ 1} is a strictly stationary, bounded, centered α–mixing sequence, fulfilling
∑

∞
n=1 α(n)< ∞. On the other hand, we have that

E
(
W2

1
)
= β

TE
(
YT

1 Y1
)

β and E(W1Wk) = β
TE
(
YT

1 Yk
)

β ,

and the result follows from Theorem B. �

A.4. Characterization of principal components.

Proof of Proposition 3. Note that

var
(
|G∧Q|
|Q|

)
=

1
|Q|2 ∑

G∈G

(
∑
i> j

ci jA(G)i jA(Q)i j− ∑
H∈G

∑
i> j

ci jA(H)i jA(Q)i j pH

)2

pG.

We first consider the case when the network Q has only one link (k, `), and find within
this family the one that maximizes the objective function. Next we prove that for any other
network Q the objective function is bounded by the maximum restricted to the former family.
Finally, we show that the principal component space is generated by the one link networks.
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Let Q1 such that A(Q1)k1`1 = 1, and 0 otherwise. Also, let G+
Q1

= {G∈ G : A(G)k1`1 = 1}
and G−Q1

= {G ∈ G : A(G)k1`1 = 0}. When we search within the one link networks, the
objective function reduces to

var
(
|G∧Q|
|Q|

)
=

1
c2

k1`1

∑
G∈G

(
ck1`1A(G)k1`1 − ∑

H∈G
ck1`1A(H)k1`1 pH

)2

pG

= ∑
G∈G

(
A(G)k1`1 −P

(
Ak1`1 = 1

))2 pG

= ∑
G∈G+

(
1−P

(
Ak1`1 = 1

))2 pG + ∑
G∈G−

P
(
Ak1`1 = 1

)2 pG

= (1−P
(
Ak1`1 = 1

)
)2P
(
Ak1`1 = 1

)
+P

(
Ak1`1 = 1

)2P
(
Ak1`1 = 0

)
= P

(
Ak1`1 = 1

)
(1−P

(
Ak1`1 = 1

)
),

and the solution is the one link graph for which P
(
Ak1`1 = 1

)
is closest to 1/2.

In the general case, we want to find Q that maximizes

var
(
|G∧Q|
|Q|

)
=

1
|Q|2 ∑

G∈G

(
∑

(i, j)∈Q
ci jA(G)i j− ∑

H∈G
∑

(i, j)∈Q
ci jA(H)i j pH

)2

pG

= ∑
G∈G

∑
(i, j)∈Q

wi j (A(G)i j−P(Ai j = 1))2 pG,

where wi j = ci j/∑(p,q)∈Q cpq. Now, since the weights wi j add to one, we have

var
(
|G∧Q|
|Q|

)
≤ ∑

(i, j)∈Q
wi j max

(i, j)
P(Ai j = 1)(1−P(Ai j = 1))

= max
(i, j)

P(Ai j = 1)(1−P(Ai j = 1)) ,

which corresponds to the one link optimum.
If there exist a unique one link graph (Q1) that verifies P

(
Ak1`1 = 1

)
is closest to

1/2, then the principal component space is generated just by Q1, i.e S1 = G+
Q1

. If there
exist multiple one link graphs, Q1,Q2, . . . ,Qp, that minimize |P(Ak` = 1)− 1/2|. then
the principal component space is S1 = ∪p

i=1G
+
Qi

. The second principal component space
verifies the same. In this case the maximization of the variance is over {G ∈ G : G /∈S1}.
Analogous for the rest of the components, for example for finding the k− esima principal
component space just maximizes the variance over {G ∈ G : G /∈S1,G /∈S2,G /∈Sk−1}.

�

A.5. Consistency of Principal Components.

Proof of Proposition 4. For each Q ∈ G from the Ergodic Theorem we have the following.

a) Λ`(Q) =
1
`

`

∑
k=1
|Gk ∧Q| → E(|G∧Q|), almost surely as `→ ∞.
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b) ∆`(Q) = v̂ar
(
|G∧Q|

Q

)
=

1
`

`

∑
k=1

(
|Gk ∧Q|−Λ`(Q)

|Q|

)2

=
1
`

`

∑
k=1

|Gk ∧Q|2

|Q|2
+

∆2
`(Q)

|Q|2
− 2

`

`

∑
k=1

|Gk ∧Q|
|Q|2

Λ`(Q),

which converges almost surely to

(11) E
(
|G∧Q|2

|Q|2

)
+E

(
|G∧Q|
|Q|2

)2

−2E
(
|G∧Q|
|Q|2

)2

= var
(
|G∧Q|
|Q|

)
.

c) Since the space G is finite (11) entails that Q̂1→Q1 almost surely, i.e., Q̂1 = Q1
for ` large enough almost surely, which entails that the principal components
converge because the geodesics coincide eventually.

For the next principal component the proof is analogous. �
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