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ABSTRACT
The aim of this paper is to explore the peculiar case of infectious
logics, a group of systems obtained generalizing the semantic
behavior characteristic of the {¬,∧,∨}-fragment of the logics of
nonsense, such as the ones due to Bochvar and Halldén, among
others. Here, we extend these logics with classical negations, and
we furthermore show that some of these extended systems can be
properly regarded as logics of formal inconsistency (LFIs) and logics
of formal undeterminedness (LFUs).
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1. Introduction

From some time now, work in non-classical logics has brought to the light the possibility of
having special operators –which can justifiably be called ‘recovery’ operators– conceived
as means to mark pieces of language which can indeed be used to infer classically.1

In particular, da Costa’s work with paraconsistent logics led to the possibility of having
consistency operators, understood asmeans tomark pieces of languagewhich can be used
to infer consistently, and is therefore fundamental in this literature.

Later, the project of having an operator that helps recover classical reasoning was
implemented beyond the realm of just paraconsistent logics. In Marcos (2005) the case
of paracomplete logics equipped with a determinedness operator is considered. This task
can be understood as being continued by Martínez (2007) and more explicitly by Corbalán
(2012). Also extending this idea to paraconsistent and paracomplete logics, da Costa
and Loparic (1984), Omori and Waragai (2011), and Carnielli and Rodrigues (2015, 2016)
considered paraconsistent and paracomplete logics endowed with a classicality operator.

Carnielli and Marcos (2002) and Carnielli, Coniglio, and Marcos (2007) carried out this
project with a brand new perspective. They produced a foundational study of paraconsis-
tent logics that include a consistency operator –called hereafter logics of formal inconsis-
tency (LFIs). Furthermore, they classified some paraconsistent logics between those where
such an operator is definable and those where such an operator is not definable and has,
therefore, to be introduced as a primitive connective. This division can be applied to logics
having an undeterminedness operator –called hereafter logics of formal undetermined-
ness (LFUs)– and also to logics having both kind of operators –called logics of formal
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inconsistency and undeterminedness (LFIUs) or logics of formal classicality (LFCs). In this
paper, we will focus on the first two cases, i.e. on LFIs and LFUs.

The aim of the present paper is to define consistency and undeterminedness operators
–and therefore to define LFIs and LFUs– in extensions of some peculiar non-classical logics,
which will be called infectious logics.2 These logics can be understood as a group of systems
obtained by generalizing the semantic behavior present in the {¬,∧,∨}-fragment of logics
of nonsense, such as Bochvar’s logic from Bochvar (1938, 1981) and Halldén’s logic from
Halldén (1949). At the end of the present essay we will suggest that in this paper we built a
huge collection of LFIs (and LFUs) that might be orthogonal to the hierarchy construed on
top of the weakest LFI investigated so far, i.e.mbC.3

It is important to clarify which steps we will be following to define LFIs and LFUs in
extensions of infectious logics. It is known that in many LFIs and LFUs the consistency
or determinedness operators can be implemented to further define a classical negation.
However, the reverse direction (that is, supplementing non-classical logics with a classical
negation, and later defining consistency or undeterminedness operators with its help) is
also worth investigating. It is this last path that concerns us here.

In detail, the route we will be following to fulfill the aim of this paper is as follows. In
Section 2 we give a few technical preliminaries that will be useful for reading the paper.
Then, in Section 3 we will give a precise definition of what infectious logics are, considering
afterwards a large collection of infectious logics. Later, in Section 4 we will extend these
infectious logics with a classical negation and we will moreover try to implement some
definitions available in the literature4 (or some subtle modifications of them) to define the
consistency and undeterminedness operators. Finally, in Section 5wewill assesswhether or
not these infectious logics extended with classical negation can be genuinely regarded as
LFIs and/or LFUs, providing some insight and examples for generating sound and complete
proof-systems for them. We conclude in Section 6 mentioning some issues for further
research.

2. Preliminaries

Throughout this paper we will handle logics mainly from a semantic point of view.5 This
implies that we will understand logical systems L as pairs 〈L,�〉 of an uninterpreted
language L and a semantic consequence relation � induced, in turn, by a semantic
structure M, intended to interpret the language L. As is common practice, we work with
propositional languages L composed of a denumerable set of propositional variables Var
and a set of connectives C, usually containing ¬,∧,∨, where ¬ is a non-classical negation.
We denote the set of well-formed formulae of the languageL as FormL, formulae ofLwith
Greek letters α,β ,ϕ,ψ , etc., and set of formulae of the language with capital Greek letters
�,�,�, etc.

We now consider a first approximation to giving a semantic interpretation to a propo-
sitional language. This approach will be generalized later, and it is this generalization that
will provide us with the broader framework that we will be employing in this essay.

Definition 1: Amatrix for a language L is a structure M = 〈V ,D,O〉 where
• V is a non-empty set of truth values
• D is a non-empty proper subset of V
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• O is a set that contains for every n-ary connective � ∈ L, a n-ary truth-function
f � : Vn −→ V

Notice that 〈V ,O〉 is an algebra of the same similarity type as L, with universe V and a
set of operations O.

Definition 2 (Humberstone, 2011): A matrix M is a submatrix of a matrix M′ (notation
M 
 M′) if and only if 〈V ,O〉 is a subalgebra of 〈V ′,O′〉 and D = D′ ∩ V .
Definition 3: A valuation based on a matrix is a mapping v : FormL −→ V such
that for every n-ary connective � and every ϕ1, . . . ,ϕn ∈ FormL: v( � (ϕ1, . . . ,ϕn)) =
f �(v(ϕ1), . . . , v(ϕn))

In the context of a deterministic matrix, we say that the truth-value of a given formula
has to be chosen deterministically out of a set of given options.6

It will be useful, however, to generalize the concept of a matrix to obtain the more
general notion of a non-deterministic matrix or Nmatrix, taking the former (deterministic
case) to be a limit case.7

Definition 4 (Avron & Zamansky, 2011): A Nmatrix for a language L is a structure M =
〈V ,D,O〉 where

• V is a non-empty set of truth values
• D is a non-empty proper subset of V
• O is a set that contains for every n-ary connective � ∈ L, a n-ary truth-function
f � : Vn −→ 2V − ∅

Definition 5: A valuation based on a Nmatrix is a mapping v : FormL −→ V such
that for every n-ary connective � and every ϕ1, . . . ,ϕn ∈ FormL: v( � (ϕ1, . . . ,ϕn)) ∈
f �(v(ϕ1), . . . , v(ϕn))

In the context of a Nmatrix, we say that the truth-value of a given formula can be chosen
non-deterministically out of a set of given options.

In what follows, we will talk of deterministic matrices and Nmatrices without any dis-
tinction, for in most cases the context will provide disambiguation. However, if needed,
we will be explicit about the kind of structure at play. Notice also that sometimes we will
need to add a subscript or superscript to the functions f �, the (N)matrices M and their
corresponding sets V ,D,O, and to the consequence relations �, referring correspondingly
to the system at play, in order to indicate that they are as in the intended semantics for the
logic L.

With these details in mind, we define now the corresponding notion of semantic conse-
quence.

Definition 6: Let M be a matrix or Nmatrix. The single-conclusion consequence relation
� induced by M is defined in the following way.

A formulaϕ is a consequence of a set of formulae� (notation� � ϕ) if for every valuation
v, if v(γ ) ∈ D for every γ ∈ �, then v(ϕ) ∈ D.

It is useful, however, to consider the more general case where an argument can be
regarded as having multiple conclusions, taking the single conclusion case to be a limit
case of the latter.
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Definition 7: Let M a matrix or Nmatrix. Themultiple-conclusion consequence relation �
induced by M is defined in the following way.

A set of formulae � are the multiple consequences of a set of formulae � (notation
� �+ �) if for every valuation v, if v(γ ) ∈ D for every γ ∈ �, then v(δ) ∈ D, for some δ ∈ �.

Finally, and since we are going to study potential LFIs and LFUs defined in extensions of
infectious logics, we define LFIs and LFUs next.

Definition 8 (Carnielli et al., 2007): A logic L is a Logic of Formal Inconsistency if and only
if there is some possibly empty set of formulae ◦(α) depending on α such that the following
conditions are met:

There are some some �,α,β such that:

(1) �,α,¬α � β

(2) �, ◦(α),α � β

(3) �, ◦(α),¬α � β

And for all �,α,β :

(4) �, ◦(α),α,¬α � β

Definition 9 (Corbalán, 2012): A logic L is a Logic of Formal Undeterminedness if and only
if there is a possibly empty set of formulae ★(α) depending on α, such that the following
conditions are met.

There are some some �,α such that:

(1) � � α,¬α
(2) � � ★(α),α
(3) � � ★(α),¬α

And for all �,α:

(4) � � ★(α),α,¬α
Along these lines, when the sets ◦(α) and ★(α) are singletons, they are usually called a

consistency operator and an undeterminedness operator, respectively. The literature has it
that consistency and inconsistency operators (respectively, determinedness and undeter-
minedness operators) can, or should, be obtained as some sort of negation of the other
–where this negation is sometimes present in the object language, and sometimes is a
negation of the meta-theory (see Carnielli & Coniglio, 2016).

3. Infectious logics

Our aim in this paper is to determine if infectious logics extended with a classical negation
render systems where consistency and/or undeterminedness operators are definable, such
that the resulting systems can be properly regarded as a LFIs or LFUs.8

But,what are infectious logics? Intuitively, infectious logics canbeunderstood as systems
where there is a certain semantic value that infects every operation in which it takes part.
Therefore, infectious values act according to the motto ‘one bad apple spoils the whole
barrel’.9



290 D. E. SZMUC

Yet, what might be a good reason for some semantic value to be transmitted or spread
to the whole formula, once one of its parts has such semantic value? There have been, in
fact, some cases in the literature where philosophers thought of conceptual motivations
for some values to behave in this manner. We do not claim that this is a ‘desirable’ feature
of logical systems, but nevertheless we will review some of these motivations in Section 3.3
below. But first, it will be helpful to discuss the technical definition of an infectious logic.10

3.1. Technical definitions

Definition 10: We say that a logic L = 〈L,�〉, where � is induced by an Nmatrix M =
〈V ,D,O〉 is infectious if and only if there is a z ∈ V such that for every n-ary connective �
with an associated truth-function f � ∈ O and for all v1, . . . , vn ∈ V it holds that:

if z ∈ {v1, . . . , vn}, then f �(v1, . . . , vn) = {z}

When it is clear from the context, we will refer to the truth-values themselves as
infectious. For example, in the context of the paraconsistent logic PWK below we will
say that the truth-value b′ is infectious.
Remark: Notice that the definition of an infectious logic, whose corresponding infectious
value is z, requires the output of (the truth-function for) every n-ary connective to be a
singleton, only when the infectious value z is included in the set of input values. In this
sense, it might be said that the definition of infectious logic and infectious value, requires
some sort of ‘deterministic’ behavior of the underlying matrices.

However, it should be noticed that when z is not included among the set of input values
(the truth-function for) every n-ary connective is allowed to be as non-deterministic as one
wants it to be. Therefore, it can be legitimately said that the definition of infectious logic
and infectious value is compatible with non-deterministic semantics –and, hence does not
depend on the semantics being deterministic.11

Various remarkable infectious logicswere presented in the history of non-classical logics.
Perhaps the most famous are the {¬,∧,∨}-fragments (hereafter, the classical fragment(s))
of the paracomplete logic of nonsense (referred here asB3) due to Bochvar (1938, 1981) and
the paraconsistent logic of nonsense (referred here as H3) due to Halldén (1949).12 These
infectious logics are intended to determine formally how logics of nonsense should work.
Thus, in general, for both Bochvar and Halldén, if an input is meaningless there is no way,
no operation where that input appears, where the output can be regarded as meaningful.
Nonsense, in this kind of frameworks, infects everything it touches.13

It should be clear that, even if infectious logics are obtained as formal generalizations of
the semantic behavior present in the classical fragment of logics of nonsense, working with
the former does not make it mandatory to understand infectious values as nonsensical.
Thus, we motivate the study of infectious logical formalisms as the study of systems that
present a semantic behavior (though not a philosophical justification) reminiscent of the
one that is characteristic of logics of nonsense. As we said before, for a philosophical
discussion of what motivated scholars to embrace these formalisms, the reader is referred
to read Section 3.3 and the references thereof.

Infectious logics form a vast collection that has ramifications in the realm of non-classical
logics. As an example as to how wide this collection of distinct infectious logics can be,
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Table 1. Truth-tables for Kw
3 and PWK.

we consider here two basic infectious logics that will serve as the basis for generating
more infectious systems –in fact, more than a dozen of them. These basic systems are
the classical fragment of Bochvar’s and Halldén’s logics of nonsense. They constitute,
respectively, different infectious logics –one of which is paracomplete, one of which is
paraconsistent.

These fragments have been studied and presented in the literature independently, as
Weak Kleene Logic Kw

3 and Paraconsistent Weak Kleene Logic PWK, respectively. We spell
out their semantics below. It is easy to check that these logics are indeed infectious logics,
according to Definition 10.

Definition 11: Weak Kleene Logic Kw
3 = 〈L,�Kw

3
〉 and Paraconsistent Weak Kleene Logic

PWK = 〈L,�PWK〉 are obtained by supplementing the same language with a different
consequence relation, induced also by different logical matrices. The semantic structures
MKw

3
= 〈VKw

3
,DKw

3
,OKw

3
〉 and MPWK = 〈VPWK ,DPWK ,OPWK〉 are obtained in the following

way:

• VKw
3

= {t, e, f} and VPWK = {t, b′, f}
• DKw

3
= {t} and DPWK = {t, b′}

• OKw
3

= {f¬Kw
3
, f∧Kw

3
, f∨Kw

3
} these functions being as detailed in Table 1when u is interpreted

as e

• OPWK = {f¬PWK , f
∧
PWK , f

∨
PWK} these functions being as detailed in Table 1 when u is

interpreted as b′

It can be reasonably argued that these systems, and their subsystems therefore, consti-
tute logically weak frameworks, given that some classically valid inferences that are usually
taken to be very basic and non-problematic, fail in them. We portrait next the case of the
failure of conjunction-elimination and disjunction-introduction.

Remark: Let L be a paraconsistent infectious logic, such that its infectious value z is
designated. Therefore, α ∧ β � β is not valid. For a counterexample, let v(α) = z and
v(β) /∈ D. Thus, since z is infectious v(α ∧ β) = z ∈ D, which suffices to witness the
failure.14

Remark: Let L be a paracomplete infectious logic, such that its infectious value z is
undesignated. Therefore, β � α ∨ β is not valid. For a counterexample, let v(α) = z
and v(β) ∈ D. Thus, since z is infectious v(α ∨ β) = z /∈ D, which suffices to witness the
failure.

Thus, if LFIs and LFUs are to be built on top of these logics, it will be reasonable to expect
that the resulting systems constitute logically weak LFIs and LFUs, in a sense that will be
clarified by Propositions 8 and 9.

In what follows we will consider extending several infectious logics with a classical
negation, in order to define consistency and determinedness operators with its aid, so that
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Table 2. Truth-tables for K3 and LP.

the resulting systems can be properly regarded as LFIs and LFUs defined in extensions of
infectious logics. To do so, we will present a comprehensive collection of infectious logics
that we will be working with. They will be, in fact, infectious subsystems of Kw

3 and PWK.

3.2. Amyriad of infectious logics

In order to generate a huge collection of infectious logics, we will start from a base of four
logics, two of which are our paradigmatic infectious logics just mentioned and the other
two are the widely known paracomplete Strong Kleene Logic K3 and the paraconsistent
logic LP.15 Let us recall the semantic presentation of the latter non-infectious systems.

Definition 12: Strong-Kleene Logic K3 = 〈L,�K3〉 and Priest’s Logic of Paradox LP =
〈L,�LP〉 are obtained by supplementing the same language with a different consequence
relation, induced also by different logical matrices. The corresponding semantic structures
MK3 = 〈VK3 ,DK3 ,OK3〉 and MLP = 〈VLP,DLP,OLP〉 are obtained in the following way:

• VK3 = {t, n, f} and VLP = {t, b, f}
• DK3 = {t} and DLP = {t, b}
• OK3 = {f¬K3 , f∧K3 , f∨K3} these functions being as detailed in Table 2 when i is interpreted
as n

• OLP = {f¬LP, f∧LP, f∨LP} these functions being as detailed in Table 2 when i is interpreted
as b

Below, we present 15 systems, 14 of which are infectious, and spell out their semantics
in the next paragraphs. We state, in the case of each logicwhich are the non-classical values
characteristic of it.

For the sake of clarity, it should be pointed out that when some logic L is such that two
allegedly infectious values belong to its set of truth values, for it to be an actual infectious
logic, some of these values has to be infectious properly speaking, i.e. it has to be infectious
over all the other values, and in particular over the other alleged infectious value.16 This
is the case, for example, of a logic intended to be a subsystem of e.g. Kw

3 and PWK. In
this example, this implies that there are (at least) two infectious logics that have these
values: one where b′ is infectious over e, and another where e is infectious over b′. In fact,
some systems appearing in the following list fall under these descriptions. When a logic
has two values that are allegedly infectious, we will write as the last element the one that is
infectious properly speaking, in order to highlight this fact.

We should also highlight that the style of the presentation here is inspired by the one
given in Priest (2014), where many of these logics are generated and listed in a similar way.
As suggested by an anonymous referee, these logics are endowed with names that point
to the non-classical values included in them –something that might bemore helpful for the
reader than a mere arbitrary enumeration of these logics.
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Table 3. Truth-tables for the logic Lnbb′e.

• ∅: CL, Classical Logic.
• n: K3, Strong-Kleene Logic.
• b: LP, Priest’s Logic of Paradox.
• e: Kw

3 , Weak-Kleene Logic.
• b′: PWK, Paraconsistent Weak-Kleene Logic.
• bn: FDE, First-Degree Entailment Logic from Belnap and Dunn.
• b′e: Lb′e, a sublogic of K

w
3 and PWK, where e is infectious over b′.

• ne: Lne

• be: Sfde, a variant of FDE, where n is replaced by e. It was presented in Deutsch (1984),
but has previously received alternative denominations in Deutsch (1977, 1981).17

• nb′: Lnb′ , a variant of FDE, where b is replaced by b′.18
• bb′: Lbb′
• eb′: Leb′ , a sublogic of Kw

3 and PWK, where b′ is infectious over e.
• nb′e: Lnb′e
• nb′e: FDEϕ , a logic presented in Priest (2010).19

• bb′e: Lbb′e
• neb′: Lneb′
• nbb′: Lnbb′
• beb′: Lbeb′
• nbb′e: Lnbb′e
• nebb′: Lnebb′

For the sake of exhaustivity, we give a detail of the characteristic matrices of these logics,
in Definition 13. These can be read in a rather mechanical way and are spelled out here only
to be rigorous. We also outline the relations between these systems in the Hasse diagram
of Figure 1.

Definition 13: Wedefineall the characteristicmatricesof the logics aboveas sub-matrices
of at least one of the matrices MLnbb′e = 〈VLnbb′e ,DLnbb′e ,OLnbb′e〉 and MLnebb′ =
〈VLnebb′ ,DLnebb′ ,OLnebb′ 〉, which are characteristic of the two incomparable systems
Lnbb′e and Lnebb′ , respectively.20

• VLnbb′e = VLnebb′ = {t, b, b′, n, e, f}
• DLnbb′e = DLnebb′ = {t, b, b′}
• OLnbb′e = {f¬Lnbb′e

, f∧Lnbb′e
, f∨Lnbb′e

} these functions being as detailed in Table 3

• OLnebb′ = {f¬Lnebb′ , f
∧
Lnebb′ , f

∨
Lnebb′ } these functions being as detailed in Table 4

We now define the rest of the matrices as submatrices of some or both of the incompa-
rable matrices MLnbb′e and MLnebb′ .
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Table 4. Truth-tables for the logic Lnebb′ .

Some of these submatrices include only one allegedly infectious value and are, thus,
submatrices of both of the incomparable matrices MLnbb′e and MLnebb′ . In particular,
MFDEϕ is their {t, b, n, e, f}-submatrix,MLnbb′ is their {t, b, b′, n, f}-submatrix,MSfde is their
{t, b, e, f}-submatrix,MLnb′ is their {t, b′, n, f}-submatrix,MLbb′ is their {t, b, b′, f}-submatrix
and MLne is their {t, n, e, f}-submatrix.

Moreover, some of these submatrices include two allegedly infectious values, whence
–as we said before– for it to induce an actual infectious logic, some of these values has
to be infectious properly speaking, i.e. it has to be infectious over all the other values, and
in particular over the other alleged infectious value. We, thus, have two family of matrices
counting with the values e and b′: on the one hand, those matrices where e is infectious
over b′, these will be submatrices of MLnbb′e but not of MLnebb′ ; on the other hand,
those matrices where b′ is infectious over e, these will be submatrices of MLnebb′ but not
of MLnbb′e .

In particular, MLbb′e is the {t, b, b′, e, f}-submatrix, MLnb′e is the {t, b′, n, e, f}-submatrix
and MLb′e is the {t, b′, e, f}-submatrix of MLnbb′e but not of MLnebb′ . Finally, MLbeb′ is
the {t, b, b′, e, f}-submatrix, MLneb′ is the {t, b′, n, e, f}-submatrix of MLnebb′ and MLeb′ is
the {t, b′, e, f}-submatrix but not of MLnbb′e .

However, infectious logics are not the most famous logical systems and thus, some
readers might be interested in knowing whether or not it has been argued there are
independent reasons for entertaining these systems. It shouldbenevertheless remembered
that this essay is not intended to represent a defense of the philosophical justification for
embracing infectious logics, but a technical exploration of the possibility of defining LFIs
and LFUs in extensions of infectious logics. In any case, we hope to provide some insight on
this conceptual matter in the following section.

3.3. Philosophical motivations for infectious logics found in the literature

In this section we will briefly review two conceptual routes that led philosophers, logicians
and mathematicians in the past to the study and application of infectious logics. With
regard to both routes, paracomplete infectious logics have more or less monopolized the
attention. However, wewill point out, in each case, that paraconsistent infectious logics can
be thought as enjoying dual properties.

The first route that led scholars in the past to focus their attention in infectious logics,
concerns the study of the so-called ‘cut-down’ operators and operations, analyzed by
Fitting (1994) and Ferguson (2015a), and of the dual case of what we call here ‘track-
down’ operators and operations. Fitting has proposed an epistemic interpretation of some
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Figure 1. Hasse diagram of the inclusion ordering of the logics mentioned so far. Infectious logics are in
grey.

subsystemsofWeakKleene logicKw
3 , i.e. systemswhere theparacomplete value is infectious,

in which groups of experts expressing their opinion on formulae serve as truth-values. In
this vein, the truth-value of e.g. a conjunction ϕ ∧ ψ is understood as a pair whose first
element is the set of experts who assent to both ϕ and ψ , and the second element of the
pair is the set of experts who oppose either ϕ or ψ .

In this reading, the indeterminate value should correspond to the casewhere experts lack
anypositiveor negativeopinion towards a certain formula. Thus, hegoesonto say that some
logics having infectious indeterminate values can be seen as systems adopting a ‘cut-down’
policy, i.e. as embracing the idea that with regard to a certain formulae e.g. ϕ∧ψ , wemight
want to ‘cut down’ by only considering people who have actually expressed an opinion
(i.e. a positive or negative opinion) on both ϕ and ψ . This point of view can be rephrased
by saying that adopting a cut-down policy amounts to the idea that no positive or negative
opinion can arise from a set that includes an indeterminate opinion. It is shown in Ferguson
(2015a) that embracing this approach induces the adoption of an infectious paracomplete
logic that is equivalent to Sfde. Similar reasoning, with different truth-values at the starting
point, might render cut-down interpretations for other paracomplete infectious logics that
we presented here, but we do not discuss this issue in its full extent here, for it will take us
too far afield.

Dualizing Fitting and Ferguson’s proposal, an epistemic interpretation can be given
for some subsystems of Paraconsistent Weak Kleene logic PWK, i.e. systems where the
paraconsistent value is infectious. In Fitting’s epistemic reading, the inconsistent value
corresponds to the casewhere experts have both a positive and a negative opinion towards
a certain formula. Thus,we think it is possible that some logics having infectious inconsistent
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values can be seen as systems adopting a ‘track-down’ policy, i.e. as embracing the idea that
with regard to a certain formulae e.g. a conjunction ϕ ∧ ψ , we might want to ‘track down’
people who have actually expressed an inconsistent opinion (i.e. a positive and a negative
opinion) on either ϕ or ψ . This point of view can be rephrased by saying that adopting a
track-down policy amounts to the idea that no consistent opinion can arise from a set that
includes an inconsistent opinion. It is shown in Szmuc (n.d.) that embracing this approach
induces the adoption of an infectious paraconsistent logic that is equivalent to Lnb′ . Again,
similar reasoning, with different truth-values at the starting point, might render track-down
interpretations for other paraconsistent infectious logics that we presented here, but we
do not discuss this issue in its full extent here, for it will take us too far afield.

To sum up, if someone actually agrees with the reasons provided before for adopting
either a cut-down or a track-down policy, then these infectious logics might be useful to
express their commitments.

The second route that led scholars in the past to focus their attention in infectious logics,
concerns the study of containment logics, some of which were proposed in Parry (1933),
analyzed in Anderson and Belnap (1975) and remarkably in Ferguson (2015b). Containment
logics are logics where some inference holds only if certain containment (i.e. set-theoretic
inclusion) principle between the set of propositional variables appearing in the premises
� –call it At(�)– and the set propositional variables appearing in the conclusion ϕ –call it
At(ϕ)– is respected.

On the one hand, the logics Sfde and FDEϕ were discussed in Ferguson (2014a, 2015a) as
logics with an analytic, conceptivist or proscriptivist consequence relation (see Parry, 1933),
v.g. logics where all arguments are such that all the propositional variables appearing in
the conclusion of an argument must have appeared in the premises. To this phenomenon
we refer to as �-Proscriptive Containment. We say, moreover, that a certain inference� �L ϕ

carried out in the logic L enjoys the �-Proscriptive Principle whenever

� �L ϕ only if At(ϕ) ⊆ At(�)

Concomitantly, we say that a logic L itself enjoys the�-Proscriptive Principle only if every
argument that is valid in it enjoys this principle. In light of Observation 1 appearing in
Ferguson (2016), it could also be claimed that logics such as Lb′e, Lnb′e, Lbb′e and Lnbb′e
are systems of this kind.

On the other hand, containment systems where the �-Proscriptive Principle is reversed
can also be studied, in order to obtain a different containment principle, which we will call
�-Permissive Principle. That is to say, systems where variable inclusion between premises
and conclusions is reversed, andwhat is required is not that every concept in the conclusion
is mentioned in the premises, but that there is at least a nonempty subset of the premises
such that every concept appearing in it appears in the conclusion.21 The conclusion might
feature other concepts, not present in any of the premises, though. To this phenomenonwe
refer to as �-Permissive Containment.22 We say, moreover, that a certain inference � �L ϕ

carried out in the logic L enjoys the �-Permissive Principle whenever

� �L ϕ only if ∃�′ ⊆ �, �′ �= ∅, At(�′) ⊆ At(ϕ)
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Concomitantly, we say that a logic L itself enjoys the �-Permissive Principle only if
every argument that is valid in it enjoys this principle. Generalizing the containment results
obtained for PWK in Ciuni and Carrara (2016) and Coniglio and Corbalán (2012) among
others (see e.g. Theorem 3.8 of Ciuni & Carrara, 2016), a dual of Observation 1 appearing
in Ferguson (2016) can be obtained. Establishing this result will allow us to say that certain
paraconsistent infectious logics –among them the logics Leb′ , Lnb′ , Lneb′ , Lnbb′ , Lbeb′
and Lnebb′– are systems with a reverse-analytic or permissivist consequence relation (as is
proved in Szmuc, n.d.), v.g. there is some nonempty subset of the premises such that all of
its propositional variables also appear in the conclusion.23

Having reviewed this conceptual issues24 wewill next consider theprospect of extending
infectious logics with appropriate connectives so that consistency and undeterminedness
operators become definable. We will do this hoping to define proper LFIs and LFUs in
extensions of infectious logics.

4. Defining consistency and undeterminedness operators in extensions of
infectious logics

Let us no go back to our main aim: to define consistency and undeterminedness operators
–and, thus, to define proper LFIs and LFUs– in extensions of infectious logics. In our
discussion below we will be following closely the attempts made by da Costa and his
collaborators to provide definitions for the consistency, inconsistency, determinedness and
undeterminedness operators in da Costa and Arruda (1976), da Costa and Alves (1977) and
da Costa and Loparic (1984).

We should emphasize that we are not after new alternative definitions of the consistency
or undeterminedness operators. Our aim is rather different.Wewant to apply the previously
given definitions or some suitable modifications thereof in a new context where they have
not been discussed yet, i.e. in the context of infectious logics.

Were these attempts to succeed in these new contexts, this will support the claim that
there is a huge collection of LFIs (and LFUs) built on top of infectious logics, that might be
orthogonal to the hierarchy construed on top of the weakest LFI investigated so far –e.g. in
Carnielli and Coniglio (2016)– namely,mbC.

4.1. Following da Costa and Loparic

In his works da Costa embraces the idea of defining a normality operator, which was later
understood as a consistency operator and studied on its own by e.g. Carnielli et al. (2007)
and more recently in the comprehensive monograph (Carnielli & Coniglio, 2016). In this
Section wewill try to follow this definition both in letter and in spirit, whenwe try to extend
infectious logicswith a classical negation todefine a consistency operator, in order to obtain
new LFIs based on infectious logics.

The normality or consistency operator is defined by da Costa and his collaborators e.g.
for the system C1 as ¬(α ∧ ¬α). A good question is whether or not this definition defines
a consistency operator in the infectious logics described in Section 3.2. As is easy to check,
when the symbol¬ is taken to be the non-classical negation of the logics above, the formula
¬(α ∧ ¬α) does not define a consistency operator in e.g. PWK and its subsystems presented
above, or any infectious paraconsistent logic whatsoever.
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Why does the formula ¬(α ∧ ¬α) define a consistency operator in da Costa’s case and
not in our infectious case? To understand this, we must clarify how the negation ¬ being
employed works in the case of da Costa, and how it works in our case. Thus, even though
the paraconsistent negation ¬ of da Costa’s systems has a non-classical behavior, it is one
of a non-deterministic kind. Carnielli and Coniglio give us a more detailed explanation of
this

da Costa and Arruda (1976) and da Costa and Alves (1977) proposed an original valuation
semantics for C1 over {t, f}(...) However, the paraconsistent negation¬ has a non-deterministic
behavior w.r.t. this semantics: in general, if one of such valuations assigns the value t to a
formula α, then the formula ¬α can receive either the value f or the value t (but not both)
under the same valuation. That is: the truth value of α does not uniquely determine the truth-
value of ¬α. (Carnielli & Coniglio, 2016, p. 54, notation adjusted to fit ours)

Moreover, as remarked in e.g. (Carnielli & Coniglio, 2016, p. 147), the paraconsistent
negation in da Costa’s systems is not only non-deterministic, but in fact it is of a particularly
strong non-deterministic kind. This is remarkably witnessed by the fact that the value of the
formula ¬(α ∧ ¬α) does not depend only on the value of the formula α ∧ ¬α, as it does in
most logics. In da Costa’s case, the value of the formula ¬(α ∧ ¬α) is false if and only if the
formulae α and¬α have the same value, i.e. if they are in the non-classical case where they
are both true.25

Thus, da Costa’s systems allow the formula ¬(α ∧ ¬α) to define a consistency operator
because its semantics are indeed very strong algebraically speaking –when compared to
finite matrix semantics. This has in fact been noticed not only by Carnielli and Coniglio
(2016), but also previously by Avron and Zamansky (2011) among others.

On the other hand, the basic infectious logicswe are dealingwith are equippedwith very
simple finite matrix semantics, as discussed in Section 3.2. In the context of these simple
matrices, the flexible behavior that the non-classical negation ¬ has in da Costa’s systems
cannot bemimicked –as proved in Avron (2007, Theorem 11). In fact, none of the infectious
logics presented in Section 3.2 can define a consistency operator, neither with da Costa’s
definition, nor with any other definition. This is why, in order to define consistency and
undeterminedness operators we need to extend these logics with suitable connectives –i.e.
with a classical negation– in order to achieve this goal.

Nevertheless, even if we are not able to use the exact definition that da Costa’s gave for
the consistency operator, it certainly seems to us that his identification of non-contradiction
with consistency constitutes the right approach to define this kind of operator. Thus, we
shall look for a slight variationon this definition, that shouldhonor its conceptualmotivation
and look as similar as possible to it.

To do this, our proposal below will be to use the formula ∼(α ∧ ¬α) to define a
consistency operator ◦α, where∼ represents a classical negation. It is no surprise that there
is an obvious syntactical resemblance of this definition and that of da Costa’s. Moreover,
using a classical negation as themain connective of the definiens seems to be in phase with
the spirit of da Costa’s definition. For, as is remarked in Omori and Sano (2014), sometimes
in the literature on LFIs when the formula ¬(α ∧ ¬α) is given a special role to control the
behavior of contradictions (just as the consistency of α), this formula can be proved to be
equivalent to the formula ∼(α ∧ ¬α), where ∼ is taken to be a classical negation.

Therefore, it seems fair to say that our definition of the consistency operator is not
intended to be a new one, but instead is merely intended as a reformulation of da Costa’s
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definition in a new context, i.e. the context of an infectious logic, extended with a classical
negation.

Strictly analogous remarks apply to the case of the undeterminedness operator defined
in da Costa and Loparic (1984) as ¬(α ∨ ¬α) and defined by us below as ∼(α ∨ ¬α).
Thus, it also seems fair to say that our definition of the undeterminedness operator is not
intended to be a new one, but instead is merely intended as a reformulation of da Costa’s
and Loparic’s definition in a new context, i.e. the context of an infectious logic, extended
with a classical negation.

Now, if we are about to extend infectious logics with a classical negation in order to
define consistency and undeterminedness operators and if –moreover– classical negation
is going to play an essential role in these definitions, it will be reasonable to spell out
technically and conceptually what a classical negation is.

4.2. What is a classical negation?

To answer what a classical negation is, we draw inspiration from the recent discussion
carried out in De and Omori (2015). There, the authors’ first attempt is to consider a classical
negation as being a unary operator ∼ that satisfies the next requirement:

Contra The sentence α ∧ ∼α is always false and not true, and the sentence α ∨ ∼α is
always true and not false

Nevertheless, this approach is quickly discarded, as it turns out to be unsuccessful. The
reason is that it cannot be applied with full generality to all non-classical logics. Omori and
De acknowledge that this criterion allows to uniquely determine anoperation in the context
of the well known four-valued logic FDE of Belnap and Dunn (see e.g. Belnap, 1977), but
they also highlight the fact that it imposes an unsatisfiable requirement to any three-valued
logic –be it paraconsistent or paracomplete. This is the case of the well-known systems LP
and K3 (see Asenjo & Tamburino, 1975; Kleene, 1952; Priest, 2008) and of course of two of
its subsystems, the (infectious) logics PWK and Kw

3 .
26

Given this lack of generality of Contra as an adequate constraint for defining classical
negations, a second attempt is made: embracing a more liberal approach. A classical
negation is taken to be a unary operator ∼ that allows to form classical contradictions.
This requires, of course, defining what classical contradictions are, which is done by means
of the following definitions:

Classical contraries α and β are classical contraries if and only if: if α is true, then β is
untrue; if β is true, then α is untrue.

Classical subcontraries α and β are classical subcontraries if and only if: if α is untrue,
then β is true; if β is untrue, then α is true.

Classical contradictories α andβ are classical contradictories if andonly if they are classical
contraries and classical subcontraries.

In a nutshell, this second attempt boils down to the idea that a classical negation is a
unary operator ∼ that satisfies the next requirement

Liberal The sentence α is true if and only if the sentence ∼α is untrue; the sentence α is
untrue if and only if the sentence ∼α is true.27



300 D. E. SZMUC

Table 5. Truth-table for non-deterministic classical negation.

Since Liberal is a semantic (as opposed to a syntactic28) approach to what a classical
negation is, what should be discussed is how should a semantic behavior of this sort of
operation be formalized. In this section we explore how to give a general extensional
semantics for it, by means of non-deterministic matrices.

Before moving further, let us comment, first, that we prefer to analyze such semantics
from the point of view of non-deterministic frameworks, not because we think that there
is some inherent philosophical understanding of classical negation that should only be
represented by this formalism and not by its deterministic counterpart. However, as we
clarified above, non-deterministic matrices generalize the case of deterministic matrices.
We think that in logic, mathematics and philosophy there is a certain affinity for generality,
and thus this approach honors that affinity.29

Moreover, recall that since deterministic matrices are just particular cases of Nmatrices,
whenwegive belowa formal semantic constraint for an operation tobe a classical negation,
it would help to give it in a non-deterministic fashion, for the deterministic case can be seen
as a limit case of the more general setting. For a full account of non-deterministic classical
negation, its technical and philosophical motivations, see Omori and Szmuc (n.d.).

Remark: Wewill refer, regardless ofM = 〈V ,D,O〉 being amatrix or a Nmatrix, to the set
U = V − D as the set of undesignated values. Additionally, for any M we will say that the
set D is the set of truth-values representing the notion of ‘truth’ in M, and the set U is the
set of truth-values representing the notion of ‘untruth’ in M.

As a consequenceof this remarks,wenowgiveanaccountof Liberal in anon-deterministic
fashion, formally defining next how a classical negation should work.

Definition 14: Let a logic L be identified with the pair 〈L,�〉, where � is induced by
a matrix (Nmatrix) M = 〈V ,D,O〉 such that |D| = n and |U | = m, for n,m ∈ N. A (non-
deterministic) classical negation for L is a unary operator∼with an associated truth-function
f∼ : V −→ 2V − ∅, such that the following holds:

f∼(x) ⊆ D if and only if x ∈ U
f∼(x) ⊆ U if and only if x ∈ D

These facts can be represented more graphically in the (non-deterministic) truth-table
of Table 5

Given this definition, an operation of this sort can be either fully (non-)deterministic or
(non-)deterministic to some degree.30 It would be interesting to generalize this remarks to
infinitely-valued logics (e.g. fuzzy logics) but for the sake of brevity we do not comment on
this case here.
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Remark: Let a logic L be as in Definition 14. Let the set CN of classical negations for M
be the union of the sets of deterministic classical negations and non-deterministic classical
negations for L, denoted respectively by detCN and ndetCN. Then, |CN| = (2n − 1)m(2m −
1)n, |detCN| = mnnm, |ndetCN| = [(2n − 1)m(2m − 1)n] − (mnnm).

Before moving forward, let us consider some concerns that might be raised by the
previous discussion of classical negation.

An anonymous referee suggests that that every many-valued logic is by principle not
classical and hence, if a negation belongs to a many-valued logic it should not be called a
classical negation. But, on the one hand, not all many-valued logics are non-classical. For,
it is a well-known fact that any Boolean algebra characterizes classical logic, even those
Boolean algebras that havemore than two elements. Thus, a logic based on amatrix whose
underlying algebra is a Boolean algebra of more than two elements would still characterize
classical logic. Moreover, since this many-valued Boolean algebra has –by definition– a
Boolean complement, this very Boolean complement can be legitimately thought as a
classical negation, even if it appears in a many-valued setting.

Another take on the previous objection could be that it sounds odd to say that a logic
that drops bivalence has a negation that deserves to be called classical. But, as Roman
Suszko stated in Suszko (1977), every structural Tarskian many-valued propositional logic
can be provided with a bivalent semantics. This is done, roughly, by mapping every truth-
value x that belongs to the set of designated values –i.e. x ∈ D– to the value ‘true’, and
every truth-value x that belongs to the set of undesignated values –i.e. x /∈ D– to the value
‘false’. Thus, every structural Tarskian many-valued propositional logic enjoys this sort of
generalized bivalence.

Furthermore, everymany-valuedpropositional logic that is inducedby amatrix (Nmatrix)
is a structural Tarskian many-valued propositional logic (see e.g. Avron & Zamansky, 2011).
Given all the logics discussed in this paper are many-valued propositional logics induced
by some matrix (Nmatrix), then Suszko’s reduction holds for all the logics discussed in this
paper. As a consequence, all the logics presented in this paper enjoy this formof generalized
bivalence.

To finally dissolve the aforementioned concern let us notice that if Suszko’s reduction is
applied to the logics in this paper, the semantic clauses for classical negation –as they are
presented above in this section– will look exactly like the semantic clauses for negation in
two-valued (bivalent) classical logic.

Thirdly, it might be thought that although Liberal is an appealing characterization of a
classical contradictory-forming operator, it does not seem to be compatible with a non-
deterministic semantics.31 To this we shall reply as follows. Liberal says that if α is true, then
∼α is untrue. But in non-classical settings there are many ways for a formula to be untrue.
An untrue formula can be just false (and not true), it can be neither true nor false, etc. Thus,
when we say that if α is true, then its classical negation ∼α is untrue, this does not entail
that the formula in question must be untrue in this or that way (i.e. that it is just false, or
that it is neither true nor false, etc.). As such, Liberal allows all these possible ways of being
untrue and, therefore, is compatible with choosing the way in which a classical negation is
untrue out of a certain number of possibilities.

An analogous argument applies for the case of untrue formulae α whose classical
negation ∼α is, therefore, true. In non-classical settings there are many ways for a formula
to be true. A true formula can be just true (and not false), it can be both true and false, etc.
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Thus, when we say that if α is untrue, then its classical negation ∼α is true, this does not
entail that the formula in question must be true in this or that way (i.e. that it is just true,
or that it is both true and false, etc.) As such, Liberal allows all these possible ways of being
true and, therefore, is compatible with choosing the way in which a classical negation is
true out of a certain number of possibilities. This establishes our conclusion, that Liberal is
compatible with a non-deterministic semantics.

A fourth remark about classical negation is that, as showed in De and Omori (2015),
there are in fact many operations satisfying Liberal for many-valued non-classical logics.
This is not, however, a consequence of the introduction of non-deterministic semantics. As
is noted in De and Omori (2015), Liberal does not uniquely determine a classical negation
even in the case of non-classical three or four-valued logics such as K3 or LP. However,
this is not taken as something that precludes the operations satisfying Liberal from being
actual classical negations, but rather something that (philosophical and technical reasons
for choosing one of them over the other aside) makes all of them equally considerable, in
principle.

Finally, let us arrive at a more technical and controversial matter. It is usually considered
that the standard way to express the ‘toggle’ between truth and untruth, i.e. the mutually
exclusive and jointly exhaustive character of truth and untruth with regard to classical
negation, is via the logical principles of Ex Contradictione Quodlibet and the Law of Excluded
Middle.

(ECQ) α ∧ ∼α � β (LEM)β � α ∨ ∼α
Thus, in a non-classical logic extended with a classical negation, it should be required

for the sentence α ∧ ∼α to be always untrue and for the sentence α ∨ ∼α to be always
true. We will show that the there are some difficulties with regard to this, in the context of
extensions of infectious logics with classical negation.

Proposition 1: If L = 〈L,�〉, where � is induced by a matrixM = 〈V ,D,O〉 is an infectious
logic, such that z ∈ D is its infectious value, and L is extended with a classical negation∼, then
ECQ is invalid.

Proof: Assume z ∈ D, i.e. z is designated. Assume v(α) = z and v(β) /∈ D. Given z is
infectious, if v(α) = z then v(α ∧ ∼α) = z, no matter what the undesignated value of
v(∼α) is. Hence, α ∧ ∼α � β , ECQ is invalid.

Proposition 2: If L = 〈L,�〉, where � is induced by a matrixM = 〈V ,D,O〉 is an infectious
logic, such that z ∈ U = V−D is its infectious value, andL is extendedwith a classical negation
∼, then LEM is invalid.

Proof: Assume z /∈ D, i.e. z is undesignated. Assume v(α) = z and v(β) ∈ D. Given z is
infectious, if v(α) = z then v(α ∨ ∼α) = z, no matter what the designated value of v(∼α)
is. Hence, β � α ∨ ∼α, LEM is invalid.

Given the previous shortcomings of representing the exclusive and exhaustive character
of classical negation at the object language, we will now propose a natural solution that
solves the problemby expressing it in themeta-language.32 To do so, wewill need to adopt
the multiple conclusion approach, outlined by Definition 7 of Section 2.

Secondly,wewill propose to shift fromexpressing the exclusive andexhaustive character
of truth anduntruthwith ECQ and LEM to expressing themwith theirmeta-theoretical versions
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in a multiple conclusions setting. We will call these versions of these principles (ECQ+) and
(LEM+).33

(ECQ+) α,∼α � β (LEM+)β � α,∼α
Remark: If L = 〈L,�+〉, where �+ is induced by a matrix M = 〈V ,D,O〉 is an infectious
logic, such that z ∈ D is its infectious value, and L is extended with a classical negation ∼,
then ECQ+ is valid.

Proof: Follows in light of Definition 14.

Remark: If L = 〈L,�+〉, where �+ is induced by a matrix M = 〈V ,D,O〉 is an infectious
logic, such that z ∈ U = V − D is its infectious value, and L is extended with a classical
negation ∼, then LEM+ is valid.

Proof: Follows in light of Definition 14.

It could be argued that it seems strange to say that a negation for which e.g. ECQ

is not valid is classical. To this we shall reply, on the one hand, that ECQ is not invalid
because of the semantics of the negation, but because of the semantics of conjunction.
As we showed above this feature can be explicitly highlighted by looking at the validity of
the meta-theoretical version of ECQ, i.e. ECQ+. As remarked by an anonymous referee, the
assymetry between the invalid character of ECQ and the valid character of ECQ+ lies in the
non-adjunctive nature of paraconsistent infectious logics, not in the non-explosiveness of
the extended systems. Similar remarks apply, mutatis mutandis, to the case of LEM and its
meta-theoretical version LEM+.

Having discussed these issues, we nowproceed to consider the prospect of extending in-
fectious logicswith classical negation, in order to define consistency andundeterminedness
operators, to finally obtain LFIs and LFUs.

4.3. Defining the operators

Proposition 3: Let L be a paraconsistent logic that has some infectious value. Let L be
extended with a classical negation ∼.34 Then, in the context of the extended system, the
formula ∼(α ∧ ¬α) defines a consistency operator ◦α and the formula ∼∼(α ∧ ¬α) defines
an inconsistency operator •α. As a consequence, such an extension of L is a Logic of Formal
Inconsistency defined in an extension of an infectious logic.

Proof: We have two cases: either (i) v(α) ∈ D and v(¬α) ∈ D, whence v(α ∧ ¬α) ∈ D; or
(ii) at least one of v(α) /∈ D or v(¬α) /∈ D, whence v(α ∧ ¬α) /∈ D.

For the case of the consistency operator the only important case is the first, where v(α)
is such that v(α) ∈ D and v(¬α) ∈ D. Then, v(α ∧ ¬α) ∈ D and thus v(∼(α ∧ ¬α)) /∈ D. If
we set ◦α =def ∼(α ∧ ¬α), then ◦α,α,¬α � β . We leave the other case to the reader.

For the inconsistency operator, as above, it can be the case that (i) v(α∧¬α) ∈ D, or that
(ii) v(α∧¬α) /∈ D. In the former case, v(∼(α∧¬α)) /∈ D and therefore v(∼(∼(α∧¬α)) ∈ D.
In the latter case, v(∼(α ∧ ¬α)) ∈ D and therefore v(∼(∼(α ∧ ¬α)) /∈ D, as expected.

Remark: Notice that a proper inconsistency operator •α is not necessarily definable by
putting any negation in front of ◦α, in particular not by putting the usual non-classical
negation ¬. Recall that ◦α =def ∼(α ∧ ¬α), and let v(α) ∈ D and v(¬α) /∈ D. Thus,
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v(∼(α∧¬α)) = v(◦α) ∈ D. However, we do not knowwhich designated value ◦α receives
in this valuation, because ∼ can be non-deterministic. Hence, for all we know it could be
the case that v( ◦ α) ∈ D and v(¬ ◦ α) ∈ D, in which case ¬ ◦ α will not work as a proper
inconsistency operator.

Proposition 4: Let L be a paracomplete logic that has some infectious value. Let L be
extended with a classical negation∼. Then, in the context of the extended system, the formula
α ∨ ¬α defines a determinedness operator ✩(α) and the formula ∼(α ∨ ¬α) defines an
undeterminedness operator ★. As a consequence, such an extension of L is a Logic of Formal
Undeterminedness defined in an extension of an infectious.

Proof: Dual to the case of Proposition 3.

Remark: Notice that a proper undeterminedness operator ★ is not necessarily definable
by putting any negation in front of ✩α, in particular not by putting the usual non-classical
negation¬. Recall that✩α =def α∨¬α, and let v(α) /∈ D and v(¬α) /∈ D. Thus, v(α∨¬α) =
v (✩α) /∈ D. Therefore, v(¬(α ∨ ¬α)) /∈ D, in which case ¬ ✩α will not work as a proper
undeterminedness operator.

5. Defining LFIs and LFUs in extensions of infectious logics

We now state the next results, which follow straightforwardly from the previous proposi-
tions and definitions regarding infectious logics extended with any classical negation, be it
deterministic or non-deterministic.

Corollary 5: The systems

• PWK extended with any of its three classical negations can define a consistency operator
◦(α) and an inconsistency operator •(α) with the help of the formulae of Proposition 3,
and

• Lbb′ extended with any of its seven classical negations can define a consistency operator
◦(α) and an inconsistency operator •(α)with the help of the formulae of Proposition 3,

and are therefore LFIs defined in extensions of infectious logics.
The systems

• Kw
3 extended with any of its three classical negations can define a determinedness

operator✩(α) and an undeterminedness operator★(α), with the help of the formulae of
Proposition 4, and

• Lne extended with any of its seven classical negations can define a determinedness
operator✩(α) and an undeterminedness operator★(α), with the help of the formulae of
Proposition 4,

and are therefore LFUs defined in extensions of infectious logics.
The systems

• Lb′e extended with any of its 81 classical negations, and
• Sfde extended with any of its 81 classical negations, and
• Lnb′ extended with any of its 81 classical negations
• Leb′ extended with any of its 81 classical negations, and
• Lnb′e extended with any of its 1323 classical negations, and
• FDEϕ extended with any of its 1323 classical negations, and



JOURNAL OF APPLIED NON-CLASSICAL LOGICS 305

• Lbb′e extended with any of its 1323 classical negations, and
• Lneb′ extended with any of its 1323 classical negations, and
• Lnbb′ extended with any of its 1323 classical negations, and
• Lbeb′ extended with any of its 1323 classical negations, and
• Lnbb′e extended with any of its 117,649 classical negations, and
• Lnebb′ extended with any of its 117,649 classical negations

can all define a consistency operator ◦(α), an inconsistency operator •(α), a determinedness
operator ✩(α) and an undeterminedness operator ★(α), with the help of the formulae of
Propositions 3 and 4.

Therefore, they all constitute LFIs and LFUs defined in extensions of infectious logics.

These facts ultimately amount to the presentation of new LFIs and LFUs defined in
extensions of infectious logics –indeed, of a new collection of LFIs and LFUs that might be
orthogonal to the hierarchy built on top ofmbC and similar systems by Carnielli, Coniglio,
Marcos, and others.35

Earlier in this paper, we said that LFIs and LFUs built on top of infectious logics will
probably constitute logically weak LFIs and LFUs. By that we meant that some inferences,
such as disjunction-introduction and conjunction-elimination, which are taken to be very
basic, fail in these systems. These can, nevertheless, be recovered with the help of the
various operators that are definable with the aid of classical negation.

For the following results let us recall that we take L to be one of the logics above,
identified with the pair 〈L,�〉 such that � is induced by the matrix M = 〈V ,D,O〉 and,
furthermore, that V ⊆ {t, b, b′, n, e, f} for every such set. Finally, when we say that x , y ∈ V ,
we take it that these values interact between themselves and the classical truth values in
the intended way; and that for the case of two allegedly infectious value, they interact as
clarified in each of the following cases.

Proposition 6: Let L one of the logics above that has a designated infectious value z. Let L
be extended with a classical negation. By the above, the resulting system is a LFI which counts
with a consistency operator ◦(α) definable as in Proposition 3. In such a system the following
are the case:

(1) α ∧ β � α

(2) ◦α,α ∧ β � α

(3) However ◦β ,α ∧ β � α
Proof: Let v be a valuation for L such that v(α) /∈ D and v(β) = z.

(1) Then, given z is infectious, v(α ∧ β) = z and thus α ∧ β � α

(2) Let v be as before. Then, by Proposition 3 v( ◦ α) ∈ D and thus ◦α,α ∧ β � α

(3) We assume that ◦β and α ∧ β are true, and then show that α is true. Let, then,
v( ◦ β) ∈ D and v(α ∧ β) ∈ D. From the former we infer that either v(β) /∈ D or
v(¬β) /∈ D. Thus, it follows that v(β) /∈ {b, b′}. From this, together with the fact that
v(α ∧ β) ∈ D, we can infer by looking at the truth-tables above and at Definition 13
that v(α) ∈ D. �

Proposition 7: Let L be one of the logics above that has an undesignated infectious value z.
Let L be extended with a classical negation. By the above, the resulting system is a LFU which
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counts with a determinedness operator ✩definable as in Proposition 4. In such a system the
following are the case:

(1) α � α ∨ β
(2) ✩α,α � α ∨ β
(3) However✩β ,α � α ∨ β

Proof: Let v be a valuation for L such that v(α) ∈ D and v(β) = z.

(1) Then, given z is infectious, v(α ∨ β) = z and thus α � α ∨ β
(2) Let v be as before. Then, by Proposition 4 v(✩α) ∈ D and thus ✩α,α � α ∨ β
(3) We assume that ✩β and α are true, and then show that α ∨ β is true. Let, then, v

(✩β) ∈ D and v(α) ∈ D. From the former we infer that v(β ∨¬β) ∈ D and thus that
either v(β) ∈ D or v(¬β) ∈ D. Thus, it follows that v(β) /∈ {n, e}. From the latter,
we infer that v(α) ∈ {t, b, b′}, whence by looking at the truth-tables above and at
Definition 13 this guarantees that v(α ∨ β) ∈ D.

We show below how these logical shortcomings will be also reflected in the failure of
some propagation and retropropagation properties (as called, for example, by Corbalán
(2012) and Carnielli and Coniglio (2016)).

Proposition 8: LetLoneof the logics above that has adesignated infectious valueb′ . LetLbe
supplementedwith a classical negation. By the above, the resulting system is a LFI which counts
with a consistency operator ◦ definable as in Proposition 3. In such a system the following are
the case:

(1) ◦α � ◦(α ∧ β)
(2) ◦α � ◦(α ∨ β)
(3) ◦α, ◦β � ◦(α ∧ β)
(4) ◦α, ◦β � ◦(α ∨ β)
(5) If b ∈ V : ◦(α ∧ β) � ◦α ∧ ◦β
(6) If b ∈ V : ◦(α ∨ β) � ◦α ∧ ◦β
(7) If b /∈ V : ◦(α ∧ β) � ◦α ∧ ◦β
(8) If b /∈ V : ◦(α ∨ β) � ◦α ∧ ◦β
(9) ◦(α ∧ β) � ◦α, ◦β

(10) ◦(α ∨ β) � ◦α, ◦β
Proof: Straightforward from the above definitions.

Proposition 9: Let L one of the logics above that has an undesignated infectious value e. Let
L be supplemented with a classical negation. By the above, the resulting system is a LFU which
counts with an undeterminedness operator★(α) definable as in Proposition 4. In such a system
the following are the case:

(1) If n ∈ V :★α � ★(α ∧ β)
(2) If n ∈ V :★α � ★(α ∨ β)
(3) If n /∈ V :★α � ★(α ∧ β)
(4) If n /∈ V :★α � ★(α ∨ β)
(5) ★α,★β � ★(α ∧ β)
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(6) ★α,★β � ★(α ∨ β)
(7) ★(α ∧ β) � ★α ∧ ★β

(8) ★(α ∨ β) � ★α ∧ ★β

(9) ★(α ∧ β) � ★α,★β
(10) ★(α ∨ β) � ★α,★β

Proof: Straightforward from the above definitions.

It might be the interest for the reader to have a proof system associated with the
above infectious logics and, moreover, with their extensions with classical negations that
constitute genuine LFIs and LFUs. Therefore, inwhat followswewill be givingdetails –based
on techniques introduced by Avron and Konikowska (2005)– on how to provide calculi of
signed formulae for all of the above systems.

5.1. Proof-theory

5.1.1. Preliminaries
Definition 15 (Avron & Konikowska, 2005):

Let V be a finite set of truth-values, let L be a propositional language whose set of
well-formed formulae is FormL, and let M be a Nmatrix for L with V as its set of truth
values.

• A signed formula over L and V is an expression of the form a : ϕ, where a ∈ V ,ϕ ∈
FormL

• A valuation v for M satisfies a signed formula a : ϕ –in symbols v � a : ϕ– if v(ϕ) = a

Signed formulae will be denoted by ϕ,ψ , . . . and sets of signed formulae by�,�, . . .

Definition 16 (Avron & Konikowska, 2005): In terms of satisfaction by a valuation, sets of
signed formulae will be interpreted disjunctively.

• A valuation v forM satisfies a set of signed formulae� –in symbols v � �– if and only
if it satisfies some signed formulae ϕ ∈ �

• A set of signed formulae� is said to be valid in an Nmatrix M –in symbols �M �– if
v � � for every valuation v for M.

As before, with regard to a (N)matrix M = 〈V ,D,O〉, we will refer to the set U = V − D
as the set of undesignated values. Furthermore, for any set of truth-values A ⊆ V , and any
set of formulae F ⊆ FormL, we denote A : F = {a : ψ | a ∈ A,ψ ∈ F} (see Avron &
Konikowska, 2005, p. 6).

Proposition 10 (Avron & Konikowska, 2005): For any Nmatrix over V and any finite set of
formulae�,� it happens that� �M � if and only if the set of signed formulae (U : �) ∪ (D :
�) is valid inM. In particular, a formula ϕ is valid inM if and only if the setD : {ϕ} is valid in
M.

A deduction system SFM based on finite sets of signed formulae for an n-valued Nmatrix
M contains:

• Axioms: Each set of signed formulae containing {a : ϕ | a ∈ V}, where ϕ is any
formulae in FormL
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• Rules:For everym−ary connective�andany logical valuesa1, a2, . . . , am,b1, b2, . . . , bk
∈ V such that f �M(a1, . . . , am) = {b1, . . . , bk}, the rule:

�, a1 : ϕ1 . . . �, am : ϕm�{b1, . . . , bk}
�, b1 : �(ϕ1, . . . ,ϕm), . . . , bk : �(ϕ1, . . . ,ϕm)

Some ‘streamlining principles’ for deleting, replacing and combining two rules with
the same conclusion are presented in Avron and Konikowska (2005). These are applied to
compress the calculus presented below, but we do not reproduce them here for matters
of space. Although they incarnate natural and straightforward ideas, readers interested in a
detailed account are referred to Avron and Konikowska (2005, p. 8).

• Admissible cuts: The analogue of the well-known Cut-rule for ordinary (two-sided)
sequents is the following generalized Cut-rule for sets of signed formulae –which, as
proved in Avron and Konikowska (2005), are admissible in SFM:

� ∪ {i : ϕ | i ∈ I} � ∪ {j : ϕ | j ∈ J}
for I, J ⊆ V , I ∩ J = ∅

�

Remark ((Avron & Konikowska, 2005)): The Weakening Rule is admissible in SFM.

Definition 17 (Avron & Konikowska, 2005): Let M be a Nmatrix, and let SFM be a
deduction system based on finite sets of signed formulae over the language L and the set
of truth-values of M.

• SFM is complete for M if for all finite sets of formulae �,� it happens that � �M �

if and only if �SFM (U : �) ∪ (D : �)
• SFM is weakly complete for M if for all formulae ϕ it happens that �M ϕ if and only
if �SFM (D : {ϕ})

• SFM is fully complete for M if for all sets of formulae� it happens that �M � if and
only if �SFM �

Remark ((Avron & Konikowska, 2005)): Notice that by Proposition 10 full completeness
implies completeness, which in turn implies weak completeness.

Theorem 11 (Avron & Konikowska, 2005): The calculus SFM is sound and fully complete
forM

Notice, of course, that the technique of Avron and Konikowska (2005) can be easily
adapted to provide cut-free calculus of signed formulae for any of the infectious logics
above, and for any of their extensions with classical negation.

In fact, we will be providing a concrete example of a calculus for the logic L∗
eb′ , i.e.

the infectious logic Leb′ extended with a non-deterministic classical negation. For obvious
reasons of space we cannot do the same for each of the logics described above.

5.1.2. An example
Let L∗

eb′ be the extension of the logic Leb′ with a non-deterministic classical negation,
i.e. the logic which is interprets the language L ∪ {∼} and is induced by the matrix
M∗

Leb′ = 〈VLeb′ ,DLeb′ ,O∗
Leb′ 〉, where O∗

Leb′ = OLeb′ ∪ {f∼L∗
eb′ }. Since we defined the

elements VLeb′ ,DLeb′ and OLeb′ in Definition 10, we just need to spell out the truth-
function for the non-deterministic classical negation, i.e. f∼L∗

eb′
. We do this in Table 6 letting

ULeb′ = VLeb′ − DLeb′ .
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Table 6. Truth-table for non-deterministic classical negation for the logic Leb′ .

The deduction system SFL∗
eb′ for the logic L

∗
eb′ , induced by the Nmatrix M∗

Leb′ contains
the following items:

• Axioms: Each set of signed formulae containing {a : ϕ | a ∈ {t, b′, e, f}}, where ϕ is any
formulae in FormL∪{∼}

• Rules:

�, t : ϕ¬{f}
�, f : ¬ϕ

�,b′ : ϕ¬{b′}
�,b′ : ¬ϕ

�, e : ϕ¬{e}
�, e : ¬ϕ

�, f : ϕ¬{t}
�, t : ¬ϕ

�, t : ϕ �, t : ψ∧{t}
�, t : ϕ ∧ ψ

�,b′ : ϕ,b′ : ψ∧{b′}
�,b′ : ϕ ∧ ψ

�, t : ϕ �, e : ψ∧{e}1
�, e : ϕ ∧ ψ

�, e : ϕ �, t : ψ∧{e}2
�, e : ϕ ∧ ψ

�, e : ϕ �, e : ψ∧{e}3
�, e : ϕ ∧ ψ

�, f : ϕ �, e : ψ∧{e}4
�, e : ϕ ∧ ψ

�, e : ϕ �, f : ψ∧{e}5
�, e : ϕ ∧ ψ

�, t : ϕ �, f : ψ∧{f}1
�, f : ϕ ∧ ψ

�, f : ϕ �, t : ψ∧{f}2
�, f : ϕ ∧ ψ

�, f : ϕ �, f : ψ∧{f}3
�, f : ϕ ∧ ψ

�, t : ϕ �, f : ψ∨{t}1
�, t : ϕ ∨ ψ

�, f : ϕ �, t : ψ∨{t}2
�, t : ϕ ∨ ψ

�, t : ϕ �, t : ψ∨{t}3
�, t : ϕ ∨ ψ

�,b′ : ϕ,b′ : ψ∨{b′}
�,b′ : ϕ ∨ ψ

�, t : ϕ �, e : ψ∨{e}1
�, e : ϕ ∨ ψ

�, e : ϕ �, t : ψ∨{e}2
�, e : ϕ ∨ ψ

�, e : ϕ �, e : ψ∨{e}3
�, e : ϕ ∨ ψ

�, f : ϕ �, e : ψ∨{e}4
�, e : ϕ ∨ ψ

�, e : ϕ �, f : ψ∨{e}5
�, e : ϕ ∨ ψ

�, f : ϕ �, f : ψ∨{f}
�, f : ϕ ∨ ψ

�, t : ϕ,b′ : ϕ∼{e, f}
�, e : ∼ϕ, f : ∼ϕ

�, e : ϕ, f : ϕ∼{t,b′}
�, t : ∼ϕ,b′ : ∼ϕ

• Admissible Cuts: The analogue of the well-known Cut-rule for ordinary (two-sided)
sequents is the following generalized Cut-rule for sets of signed formulae –which as a
corollary of Avron and Konikowska (2005, Theorem 4.6) is admissible in this calculus:

� ∪ {i : ϕ | i ∈ I} � ∪ {j : ϕ | j ∈ J}
for I, J ⊆ {t, b′, e, f}, I ∩ J = ∅

�

Remark: Being defined connectives in e.g. L∗
eb′ the following rules for the consistency and

the undeterminedness operators are derivable in the calculus SFL∗
eb′ –as is routine to check.
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�, t : ϕ, e : ϕ, f : ϕ◦{t, b′}
�, t : ◦ϕ, b′ : ◦ϕ

�, b′ : ϕ◦{e, f}
�, e : ◦ϕ, f : ◦ϕ

�, t : ϕ, b′ : ϕ, f : ϕ
★{e, f}

�, e : ★ϕ, f : ★ϕ

�, e : ϕ
★{t, b′}

�, t : ★ϕ, b′ : ★ϕ

Corollary 12: The Soundness of the calculus is straightforward by looking at the Nmatrix
in question. Moreover, as a Corollary of Theorem 11, we have that the calculus SFL∗

eb′ is fully
complete for the logic L∗

eb′ , induced by the NmatrixM∗
Leb′

6. Conclusions

In the previous sections we showed that there are logically or inferentially weak LFIs and
LFUs that have not been discussed in the literature about these topics, until now.Moreover,
we proved that many of these systems are built as extensions of subsystems of known
infectious logics, that when extended with a classical negation (spelled out conceptually
and formally in apreciseway) candefineproper consistency, inconsistency, determinedness
and undeterminedness operators.

It remains to be analyzed how many of the resulting LFIs and LFUs are non-equivalent,
and how many of them have interesting meta-theoretical properties, such as being Post-
complete, maximal with regard to some systems (especially classical logic) or functionally
complete.We leave these issues for furtherworks, hoping to discuss them in the near future.

Notes

1. As a referee points out this project is by no means a recent enterprise. On the contrary, both
Bochvar and Halldén (on which more below) thought of themselves as enriching the classical
connectives of the Principia Mathematica by adding means to mark pieces of language and
identify them as well-behaved and non-problematic or non-pathological.

2. It is important to remark that these logics have only non-classical connectives. They are,
therefore, devoid of any definable or primitive consistency or undeterminedness operator.

3. For more on the hierarchy of LFIs, see the recent monograph (Carnielli & Coniglio, 2016).
4. In da Costa and Arruda (1976), da Costa and Alves (1977), and da Costa and Loparic (1984).
5. Notation and terminology here follows closely the one employed in Priest (2008) and Avron

and Zamansky (2011).
6. It should be noticed that the set of truth-functions is closed under function composition.

In reference texts such as Humberstone (2011), the truth-functions originally and explicitly
included in the set are called ‘fundamental’, whence the functions properly obtained by
composition are called ‘derived’ (see Humberstone, 2011, 17).

7. The behavior of deterministic matrices can be mimicked in the context of Nmatrices by
building, for each n-ary connective � that is interpreted in a deterministic matrix M by a
function f � : Vn −→ V , a corresponding Nmatrix M′ where that connective is interpreted
by a function that has only singletons as its output values, i.e. f ′� : Vn −→ {A ⊆ V : |A| =
1}. Analogously, valuations for Nmatrices can be seen as generalizations of valuations for
deterministic matrices.

8. To avoid confusion, let us state clearly that our aim is not to extend actual LFIs or LFUs with
a classical negation. Instead, we want to extend logics that are neither LFIs nor LFUs with
classical negation, so that consistency and/or undeterminedness operators become definable
–having, as a result, proper LFIs and LFUs.
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9. Like many mottos, this motto might be somehow misleading and oversimplifying. For
example, the use of the word ‘spoils’ could lead the reader to think that infectious values
have always a negative connotation, e.g. that they should always be taken to be untrue, which
is not the case, as we shall see next.

10. On a terminological side, it should be noted that the choice of the ‘infectious’ denomination
and the subsequent terminology is heavily inspired in the recent works Ferguson (2015a,
2015b) where the term infectious and related uses are employed. Moreover, these definitions
are also scrutinized under the magnifying glass of power algebras and power matrices in
Humberstone (2014).

11. Additionally, there might be other alternative senses in which a value z can be said to be
infectious, in the context of non-deterministic semantics. For example, the case where every
operation which has z as an input needs to have z among the possible outputs, but does not
require z to be the unique output. Notwithstanding the interest of these generalizations we
do not discuss them here for matters of space, hoping to explore them in future works. We
would like to thank an anonymous referee for discussion with regard to this point.

12. These fragments have been studied proof-theoretically by Coniglio and Corbalán (2012).
13. We should clarify, however, that the systems B3 and H3 are not properly speaking infectious,

since they are endowed with ‘assignificativity’ or ‘nonsense’ connectives, which take the
nonsensical infectious values to classical values. However, as we remarked before, their
classical fragments constitute infectious logics.

14. Notice that the validity of α,β � β and the invalid character of α ∧ β � β shows that
these logics belong to the larger family of non-adjunctive systems, which comprises an entire
collection of paraconsistent logics. This is interesting, for it shows that this non-adjunctive
feature can be obtained as the result of the introduction of an infectious value. Moreover,
some non-adjunctive logics (e.g. discussive logics) can be given some kind of frame semantics,
whence it would be interesting to determine whether or not the paraconsistent infectious
logics presented here can also enjoy semantics of this sort. Indeed, the work done in Ciuni
(2015) can be understood as initiating this path. Discussing these matters is interesting, and
we hope to embrace them in future research, but an exhaustive investigation will take us too
far afield.

15. Notice that what differentiates K3 and LP from some other well-known logics, more central to
the literature about LFIs, such as P1, LFI1 and J3 is the fact that the former do not havemeans
to define a proper classical negation, whereas the latter have many means to do so.

16. Humberstone (2014) makes a parallel between this fact about infectious logics, and the
uniqueness of zero elements in semigroups.

17. It was later on discussed as the logic AL in Oller (1999).
18. This system, despite its being dual to Sfde, did not appear previously in the literature, as far

as we know.
19. This logic is referred as FDE ∩ AIfde in Angell (1977), and that it has also been discussed

in Daniels (1990) with an homonym denomination to Deutsch’s system of Deutsch (1984),
whence e.g. in Ferguson (2014a) it is referred as S�fde.

20. Thanks to an anonymous referee for making the suggestion of presenting these systems in
this more elegant way.

21. We do not intend to claim that this is the only way in which the �-Proscriptive Principle can
be reversed, but instead that this is an interesting way in which this can be done.

22. As an anonymous referee points out, Richard Epstein has introduced a system called DualD,
which is dual to Parry’s logic PAI (see Parry, 1933) and which enjoys the Permissive Principle
with regard to an intensional implication connective. For a presentation and discussion of
Epstein’s systems, see e.g. Epstein, 1995.

23. In particular, paraconsistent infectious logics that are also subsystems of paracomplete logics,
enjoy this principle.

24. There have been other discussions of infectious logics in the literature that we are unable to
review here for matters of space. For example, Graham Priest’s discussion of FDEϕ as the logic
of the catuskoti and Thomas Ferguson’s discussion of this logic as the logic of faulty Belnap
computers in Ferguson (2016).
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25. In Carnielli and Coniglio (2016) the semantic clause guaranteeing this is called (vCf ).
26. To see why Contra cannot be applied to these three-valued logics: ‘[S]uppose we have only

three values, t, b, and f. (It will not matter whether b is designated.) In order to meet Contra,
a classical negation ∼ must take t to f and conversely. Now what to do with b? It can’t go
to f, lest α ∨ ∼α not always take t. And it can’t go to b or t either, lest α ∨ ∼α not always
take t or α ∧ ∼α not always take f. In other words, there is no operation satisfying Contra in a
three-valued setting’ (De & Omori, 2015, p. 5).

27. Omori andDeuse ‘not true’ insteadof themore succinct ‘untrue’. For the sakeof terminological
unity with the rest of the paper, we prefer to employ the latter.

28. For more on why a syntactic approach to the definition of classical negation should be
discarded, see De and Omori (2015, Section 2).

29. Additionally, this does not imply that we think there is no other reasonable semantics (e.g.
possible-worlds semantics, etc.) for such a negation that can be explored, but instead that we
prefer to focus on this simple treatment here.

30. In previous papers, like De and Omori (2015), the investigation was only focused on fully
deterministic classical negations for many-valued logics, but left the other cases unexplored.
This, in fact, shows that there is room to analyze the other cases, as is done in Omori and
Szmuc (n.d.), whose results are applied to this paper.

31. In which case, it could be argued that the following alternative criterion, compatible with
non-deterministic semantics, should be adopted instead
Liberal∗ If the sentence α is true, then the sentence ∼α is deterministically untrue or non-
deterministically untrue; If the sentence α is untrue, then the sentence∼α is deterministically
true or non-deterministically untrue.
However, given the disjunction of being deterministically true (untrue) and being non-
deterministically true (untrue) is just being true (untrue), this alternative and Liberal do indeed
coincide. Thanks to an anonymous referee for discussion on this matter.

32. An anonymous referee suggests considering Dummet’s Weak Law of Excluded Middle β �
∼α ∨ ∼∼α and the Weak Principle of Explosion ∼α ∧ ∼∼α � β from Ferguson (2014b).
However, it is easy to see that given the possibly non-deterministic character of ∼, these are
not guaranteed to hold. Let z be an infectious value (regardless if it is the case that z ∈ D or
z /∈ D). In both cases, if v(α) = z, this does not exclude the possibility of v(∼∼α) = z, whence
the failure of these Weak versions of LEM and ECQ, in the respective cases.

33. Notice that the former is canonically called the Principle of Explosion, while the latter does
not enjoy a canonical denomination. The latter is sometimes called the Principle of Implosion
in e.g. Marcos (2005) and Corbalán (2012), but this terminology might not be so felicitous,
despite its duality with the case of Explosion, though. This is why we preferred to stick with
the above symmetrical denominations (ECQ+) and (LEM+).

34. Notice that the extended system is not infectious anymore, particularly due to the involvement
of classical negation that sends the infectious value to some other value.

35. Moreover, the logic FDE extended with any of its classical negations can also define consis-
tency, inconsistency, determinedness and undeterminedness operators. It is not an infectious
logic, though.
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