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The debonding process at the interface of filler-matrix is studied. The relevance of this process lays in its
triggering effect of toughening mechanisms in polymer based composites. Based on a micromechanical
model, a general approach of the debonding condition was derived. The proposed expression was applied
for different particle shapes: spherical, ellipsoid, cubic, rectangular and fiber. Results of debonding
strength versus geometric parameters of the different particles showed that oblate ellipsoids and cubic
particles can be easily analyzed as spherical filler.
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1. Introduction

Filler incorporation into polymer matrices represents a widely
used technique. The aim is to obtain composite materials with
enhanced mechanical performance [1–4]. On the other hand, the
analysis of mechanical properties represents a really complex task
due to the wide range of factors and parameters involved [1,2,5–
10]. For example, particle size or content variation can promote,
simultaneously, different trends for each mechanical property as:
elastic modulus, stress strength, tensile toughness and fracture
toughness. The relation between composite characteristics and
some of these properties (e.g. elastic modulus, tensile strength) is
quite well understood [1,2,11,12]. Nevertheless, theories for com-
posite toughness are still largely discussed due to the complex ten-
dencies experimentally observed [2,6,13,14]. Particularly, for
thermoplastic composites several toughening mechanisms have
been proposed: i) matrix shear yielding, ii) crazing, iii) interparticle
shear yielding and iv) particle debonding followed by plastic void
growth [15–18]. In general, experimental data have been analyzed
by simultaneous activation of some of the listed mechanisms. Par-
ticularly, plastic void growth has been considered as a toughening
mechanism extensively detected. This process is triggered by par-
ticle debonding, close related to the strength of the matrix-filler
interface [14,17–21]. Based on this fact, a detailed understanding
of debonding could be helpful for fracture and damage
characterization.

In the present work, a general approach of the debonding stress
is proposed. The general solution is applied for different particle
geometries.

2. Debonding strength analysis

The simplified analyzed system consists of a particle embedded
into a polymer matrix. As a first approximation, an interphase
region around the particle has not been considered. In general,
determination of interphase zone (mechanical properties, law of
properties variation and thickness) represents a widely discussed
topic. For this reason, experimental or simulated data could be
incomplete, imprecise or contradictory [1,20,22–23]. Fig. 1 shows,
schematically, the studied system under hydrostatic remote stress.
For this loading condition, the debonding stress value could be
approached by determination of the critical normal stress. In addi-
tion, stress fields around crack tips can be properly approximated
by hydrostatic condition [17,20,24].

The debonding process analysis for microparticles was based on
the Finite Fracture Mechanics approach considering the following
conditions [20,21]:
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Fig. 1. Description of the analyzed system under hydrostatic remote stress.
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where: c is the interfacial fracture energy, dU is the change in
potential energy of the system, rcr is the critical normal strength
and dA is the debonded surface. Taking into account the equilibrium
equation (before and after debonding) and neglecting the kinetic
energy of the system, one obtains the energy balance equation:

dW ¼ dUm þ dUp þ cdA ð2Þ

where: dW is the work done by external forces, dUm and dUp are the
matrix and particle elastic energy variations, respectively. The work
and energy variations can be expressed as follows:

dW ¼
Z
r1dum
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1
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where: subscript 1, 2 means before and after debonding, respec-
tively; rcr and r1 are the critical and the applied stress, respec-
tively; up

1 is the particle displacement value before debonding,
whereas dum

ðrpÞ and dum
ðr1Þ are the matrix displacement variations at

the particle surface and polymer boundary, respectively. Eq. (2)
can be rewritten as follows:
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The new created surfaces, after debonding, are identically equal
for the matrix and particle:Z

dAp ¼
Z
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resulting in:
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while taking into account that:
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The critical stress can be rewritten as:

rcr ¼ 2c
R
dAR

um
2ðrpÞdA

ð3Þ

The expression (3) allows some preliminary observations. The
obtained equation corresponds to a general approach of the parti-
cle debonding process, independently of the filler shape, but inter-
face continuity should be guaranteed. In addition, the critical stress
value is related to the interfacial fracture energy and to the matrix
displacement field, at the particle surface, after debonding.

3. Debonding stress calculation for different particle geometries

3.1. General solution for spherical particles

For a spherical symmetric problem, the general solution of the
displacement field is [20,25]:



Fig. 2. Particle geometries: a) spherical, b) FE mesh, c) oblate, d) tri-axial ellipsoid,
e) cubic, f) rectangular and g) fiber.

264 E. Pérez, B. Lauke / Composite Structures 167 (2017) 262–270
u ¼ Ar þ B
r2

rrr ¼ 3KmA� 4GmB
1
r3

with the following boundary conditions, after debonding:

at : r ¼ rp : rrr ¼ 0

at : r ¼ r1 : rrr ¼ r1
Fig. 3. Debonding stress valu
where:

Km ¼ Em

3ð1� 2vmÞ

Gm ¼ Em

2ð1þ vmÞ
with: Em and vm as the elastic modulus and Poisson’s ratio of the
matrix.

The constants are expressed as the following:
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Thus the matrix displacement field after debonding is given by:
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where: r1 can be expressed by the relation: rcr ¼ Ktr1. The stress
concentration factor (Kt) for uniform tension is: Kt ¼ 1:5, obtained
by the Finite Element Method (FEM). The critical normal strength
can be calculated as:
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es for spherical particles.
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Fig. 4. Debonding stress values for: a)
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For r ¼ rp this relation leads to:
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Fig. 5. Debonding stress values for: a)
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And this finally provides:
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cubic and b) rectangular particles.
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3.2. Debonding stress calculation for spherical particles

Similar analytical solutions for spherical particle have been
published by other authors [17,20,21]:

rcr ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c
rp

Em

ð1þ vmÞ

s
ð5Þ

The general solution (Eq. (3)) and the particular solution for
spherical inclusion (Eq. (4)) were compared with the published
expression (Eq. (5)), in order to verify the accuracy of the proposed
model. The following parameter values were considered:

– matrix: c ¼ 0:01 J=m2; Em ¼ 1:6 GPa; vm ¼ 0:4
– particle: Ep ¼ 16 GPa; vp ¼ 0:2

The displacement values required for the general solution (Eq.
(3)) were obtained by FEM. The modeled system consists of an
axisymmetrical problem: a spherical particle (Fig. 2.a) within a
polymer region under tension applied at the boundary. Linear elas-
tic material behaviors were adopted for the spherical particle and
polymer matrix. The mesh (Fig. 2.b) was built by 10-node elements
and refined in the interphase between components. All calcula-
tions were performed by ABAQUS 6.13-4 and the stress distribu-
tion is plotted in Fig. 3. The critical strength values (Fig. 3)
obtained with the different expressions exhibited similar tenden-
cies with particle radius variation.
3.3. General solution for elliptical particles

The general solution (Eq. (3)) was considered now for elliptical
particles with the geometries shown in Fig. 2.c and .d and the
required displacement values were obtained by FEM. In addition,
models for different particle shapes (ellipsoidal, cubic, rectangular,
fiber) were developed similarly to previous described for spherical
situation. For the analysis of ellipsoids different semi-axis relations
and particle cross section were considered:
Fig. 6. Debonding stres
– a = b, c/b = 2.5 (circular cross section, oblate).
– a = b, c/b = 10 (circular cross section, oblate).
– b/a = 2, c/b = 10 (elliptical cross section, tri-axial ellipsoid).
– b/a = 4, c/b = 10 (elliptical cross section, tri-axial ellipsoid).

The critical stress values were plotted as a function of the short-
est semi-axis. Fig. 4 shows the obtained results for ellipsoids with
circular and elliptical cross section. For circular cross section
(Fig. 4.a), the corresponding critical stress values were similar to
the spherical particles. These geometries could be easily analyzed
as a spherical situation by Eqs. (4) or (5). On the other hand, parti-
cles with elliptical cross section (Fig. 4.b) displayed some discrep-
ancies. Ellipsoids with the largest semi-axis relations (b/a = 4 and
c/b = 10) showed reduced critical stress values at short particle
sizes.

3.4. General solution for cubic particles

For cubic particle (Fig. 2.e), the general solution (Eq. (3)) was
considered. The displacement values required were obtained by
FEM, in a similar way as previously described. The obtained results
for cubic filler (Fig. 5.a) were similar to the spherical solutions,
independently of the filler size.

3.5. General solution for rectangular particles

For this geometry (Fig. 2.f) different semi-axis relations were
considered:

– a = b, c/b = 2, (square cross section).
– a = b, c/b = 4, (square cross section).
– a = b, c/b = 10, (square cross section).

Fig. 5.b shows the obtained results for rectangular particles; short-
est semi-axis variations were plotted. For filler sizes shorter than
1 mm, the corresponding critical stress values were lower than
the spherical solutions.
s values for fibers.



Fig. 7. Critical strength values for: a) spherical particles, b) ellipsoids and c) cubic, rectangular particles and fiber.
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Table 1
Slopes for the different particle shapes.

Slope r2

Spherical particle
Eq. (3) �0.51 0.999
Eq. (4) �0.50 0.999
Eq. (5) �0.50 0.999
Ellipsoids
a = b, c/b = 2.5 �0.51 0.999
a = b, c/b = 10 �0.52 0.998
b/a = 2, c/b = 10 �0.55 0.989
b/a = 4, c/b = 10 �0.52 0.989
Cubic particle
a = b = c �0.50 0.999
Parallelepiped
a = b, c/b = 2 �0.49 0.998
a = b, c/b = 4 �0.51 0.999
a = b, c/b = 10 �0.48 0.999
Fiber
a = b, c/b = 2.5 �0.49 0.999
a = b, c/b = 10 �0.50 0.999
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3.6. General solution for fibers

The fiber geometry is shown in Fig. 2.g and the semi-axis rela-
tions considered were:

– a = b, c/b = 2.5 (circular cross section).
– a = b, c/b = 10 (circular cross section).

Fibers (Fig. 6) shorter than 1 mm exhibited slightly lower values
than the spherical solutions.

Based on the obtained results previously described, some obser-
vations can be introduced. Reduced critical stress values were
observed for inclusions with no symmetric stress distributions
(e.g. tri-axial ellipsoids) compared with the spherical solution.
Fig. 8. Debonding stress values and tensi
The no axisymmetrically stress distributions around particle sur-
face could easily trigger the debonding process, but this observa-
tion should be extensively analyzed.

Fig. 7 shows the critical strength for the different particle
geometries analyzed. Debonding process, related to the particle
size, can be promoted by the interface fracture toughness or by
the interfacial strength [26]. In the region where debonding pro-
cess depends on interface fracture toughness, a characteristic slope
can be determined. In general, for the analyzed particles (Table 1)
the slopes were close to 0.5, similar to previously reported ones for
fibers [26]. In addition, tri-axial ellipsoids and rectangular particles
exhibited increased values.

3.7. Experimental data compared to general solution for elliptical
particles

The tensile strength of composite materials has been related to
the debonding process [1,2]. Large filler sizes, agglomerates and
weak interface strength can promote a reduction of this parameter.
In a previous work, quartz distribution into a polypropylene (PP)
matrix and filler-matrix interaction were investigated. Relatively
weak interface strength was estimated. Particle size distributions
were irregular and broader with increased filler content [10]. In
addition, quartz particles (Ep ¼ 72 GPa; vp ¼ 0:17) exhibited
morphologies similar to ellipsoids (semi-axis relation: c/b = 2,
approximately). Debonding stress was determined based on results
of Section 3.3 and median particle size for each PP-quartz compos-
ite. Fig. 8 shows similar trends for experimental and theoretical
analysis (tensile strength of PP-quartz composites and critical
debonding stress) but with a large difference on their values. It
should be remarked that the debonding process affects the com-
posite tensile strength but does not limit it. In addition, proposed
debonding solution does not consider matrix yielding or plastic
void growth. Finally, in order to obtain a deeper understanding of
le strength of PP-quartz composites.
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polymer composite mechanical behavior, several authors highlight
the importance to develop multi-scale modeling strategies and
their experimental validation [27,28]. In particular, for debonding
stress, published experimental data suggest that the process
depends on particle size but, unfortunately, it has not been proved
yet.

4. Conclusions

In this work, a general approach to determine the particle
debonding stress was proposed. The analysis performed was based
on a micromechanical model meaning that the solution should be
restricted to this scale, due to none nanoscale effects have been
taken into account. The general expression was applied for differ-
ent particle shapes. Comparison with spherical expressions, previ-
ously published, allows validating the solution proposed.

Obtained results suggest that some particle geometries with
semi-axis relation: a = b (oblate ellipsoids and cubic particles)
can be easily analyzed as spherical filler. On the other hand, in
all cases the highest discrepancies were observed for short filler
sizes (lower than 1 mm).
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