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I. INTRODUCTION 

HIS WORK proposes a new approach to limit the control 
signals during a trajectory tracking in mobile robots. In 

the literature it is common to find works that use explicit 
saturation functions, such as the hyperbolic tangent [1, 2], or 
fuzzy rules [3] to limit control signals in mobile robots. In this 
paper, however, concepts of linear algebra and non-linear 
programming are adopted to achieve such limitation while 
keeping an efficient trajectory tracking controller operation. 

In recent years, there has been an increasing amount of 
research on the mobile robotics field [3-5]. Mobile Robots are 
currently used in industry, for domestic needs (vacuum 
cleaners, lawn mowers, pets), in difficult-to access or 
dangerous places areas (space, army, nuclear-waste cleaning) 
and also for entertainment (competition, robot soccer).  

Several controllers can be found in the literature aiming at 
achieving trajectory tracking. Some of such controllers are not 
based on a model associated with the used platform. Such case 
is shown in [6, 7], where neural networks or fuzzy logic are 
used for generating the control actions. However, these 
controllers are relatively few compared to model-based 
developments [5, 8]. 

In [9] an adaptive fuzzy controller for trajectory tracking  in 
mobile robots is presented. With the purpose of accomplishing 
a perfect tracking of the WMR heading, velocity and position 
variables, a heuristic method is proposed to design the expert 
knowledge base as fuzzy if-then rules. In [10] the authors 
presents an adaptive controller to solve the tracking problem 
of a unicycle robot with unknown dynamic parameters. 
Unfortunately, [9, 10] only present simulation results. 

In [11], a novel trajectory-tracking controller was 
presented. The robot mobile model is approximated by 
numerical methods and the control actions are calculated 
under the assumption that the reference trajectories are known. 
Such control action forces the system to move from its current 
state to the reference one; and the conditions for achieving a 
zero tracking error are obtained by solving a system of linear 
equations. This design technique has been applied successfully 
in several systems [5, 11-15].  

Another typical problem, covered in the literature by other 
authors ([16, 17]) is the trajectory tracking with constraints in 
the control actions. In general, in robot mobile system, the 
linear and angular velocities constraints prevents the mobile 
robot from slipping and saturating the actuators. 

Nonlinear system theory has been employed to solve this 
problem in [16]. The controller proposed by the authors is 
based on the backstepping method and an idea taken from the 
LaSalle’s invariance principle. With the proposed control law, 
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the robot can globally follow any path specified by a straight 
line, a circle or a path approaching the origin using a single 
controller.  

In [17], a model-predictive trajectory-tracking control 
applied to a mobile robot is presented. In order to predict 
future system behavior, a linearized tracking-error dynamic is 
used, and a control law is derived from a quadratic cost 
function that penalizes the system tracking error and the 
control effort. In [3], fuzzy rules are adopted to achieve 
control actions limitation problems, combining the heuristic 
knowledge of the problem, the sector non linearity approach 
and the inverse kinematic of the mobile platform. 

In this work, the saturation constraints in the control inputs 
(the linear and angular velocities) are incorporated in our 
controller design. A new control law based on the numerical 
approximation of the mobile robot model is then developed. 
This novel control law achieve the limitation in the control 
actions while keeping an efficient trajectory tracking 
controller operation. The trajectory tracking controller 
structure arises naturally derived through a handcrafted 
procedure that is inferred by analyzing the mathematical 
model of the robot. In addition, a new parameter assignment 
method based on nonlinear programming is proposed. The 
controller underlying idea for tracking the reference trajectory 
(xref and yref) is intuitively simple: it is based on determining 
the desired trajectories of the remaining state variables. They 
are determined through analysing the conditions for a system 
of linear equations to have an exact solution. Lastly, the 
control signals are obtained by solving a system of linear 
equations. The main contribution of this work is that the 
proposed methodology is based upon easily understandable 
concepts, and there is no need of complex calculations to 
attain the control signal. 

The proposed newfangled method ensures the convergence 
to zero of the tracking errors and prevents the controller 
saturation. We also include a comparison analysis of our 
approach with other two trajectory tracking controllers 
previously published in the literature [3, 18]. The proposed 
controller has lower tracking errors and presents slight 
oscillations, which minimizes the maneuverability space 
needed by the vehicle. Finally, the proof of convergence to 
zero of the tracking error is presented in the Appendix.  

The paper is organized as follows: Section 2 summarizes 
the kinematical model of the mobile robot. The controller 
design and the parameters analysis are included in Section 3. 
A method to choose the controller parameters based on 
nonlinear programming is considered in Section 4. 
Experimental results of the proposed controller with a mobile 
robot system are given in Section 5, followed by the 
discussions and conclusions in Section 6 and Section 7 
respectively. 

II. KINEMATIC MODEL OF THE MOBILE ROBOT 

A nonlinear kinematic model for a mobile robot will be 
used [11, 14, 19, 20], and it is represented by (1), 
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where, V: linear velocity of the mobile robot, W: angular 
velocity of the mobile robot, (x, y): cartesian position, θ: 
mobile robot orientation. This model has been used in 
several recent papers such as [13, 20, 21]. 

(este párrafo está medio caido del cielo)Then, it aims to 
find the values of V and W so that the mobile robot follows a 
pre-established trajectory (xref and yref) with a minimum error. 
The values of  x(t), y(t), θ(t), V(t) and W(t) at discrete time 
t=nT0, where T0 is the sample time and n Є [0,1,2,…), will be 
denoted as xn,yn,θn, Vn and Wn, respectively.  

Remark 1: The value of the difference between the 
reference and the real trajectory shall be called tracking error. 
It is given by ex,n= xref,n-xn and ey,n= yref,n-yn. Thus, the tracking 
error is represented by ||en|| = (ex,n

2 + ex,n
2 )1/2. 

 

III. CONTROLLER DESIGN 

In this paper a new control law is proposed. This novel 
approach by trapezoidal approximation of the system model 
ensures an acceptable trajectory tracking and avoids exceeding 
the allowable limits of the control actions.  

 

A. Trapezoidal controller. 

Firstly, consider the Trapezoidal approximation of the 
kinematic model (1), as proposed here: 

 

 

 

 

0
1 1 1

0
1 1 1

0
1 1

cos cos
2

sin sin
2

2

n n n n n n

n n n n n n

n n n n

T
x x V V

T
y y V V

T
W W

 

 

 

  

  

 

   

   

         (2) 

 
The system (2) can be rearranged as (3), 
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      (3) 

From (3), the control law to move from (xn,yn) to (xn+1,yn+1) 
can be derived. Considering (3) and replacing [xn+1,yn+1] by 
the desired trajectory [xd,n+1, yd,n+1], system (4) can be 
obtained:  
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After that, we propose the following replacements: 
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where, 

, 1 ,
,

0

ez n ez n
ez nW

T

  


        (6) 
The orientation θez is the value of the robot mobile 

orientation (θ) required in order to the tracking errors tend to 
zero, for details see Appendix. Thus, Wez represents the 
necessary angular velocity for the mobile robot reaching and 
following the reference trajectory.  

The new variable, θez, is calculated in each sample time by 
analyzing the condition for which the system (3) has an exact 
solution. One possible way to meet the aforementioned 
condition is to resolve (7): 
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where the direction θn+1 will be called θez,n+1. As shown in (3), 
this is a three-equation system where linear and angular 
velocities are unknown. Considering (4)-(7), system (3) can be 
expressed as follows: 
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                     (8) 
At time n, the mobile is at [xn,yn,θn]; the desirable next state, 

[xd,n+1, yd,n+1,θd,n+1], is not necessarily the new reference state 
value. Consider then, this state vector ([xd,n+1, yd,n+1, θd,n+1]) 
assuming an approaching proportional to the error as proposed 
here: 
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         (9) 
With the purpose of the tracking errors tend to zero, the 

controller parameters must fulfill 0<kv<1 and 0<kw<1 (see 
Appendix). Note that: 

 If kv = 0, (xd,n+1= xref,n+1), the goal is to reach the 
reference trajectory in one step.  

 If kv = 1, the error will remain constant, (xd,n+1- xn= 
xref,n+1- xref,n). 

Thus, the approach proposed in (9) is applied in order to get 
a smooth trajectory. The same analysis can be applied to yd,n+1 

and θd,n+1.  
In addition, we define: 
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     (11) 

The system (11) is of type Au=b, with more equations than 
unknowns. Its solution by least squares can be obtained by 
solving the normal equations [22], ATAu=ATb, and thence, the 
proposed controller is given by (12), 
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   (12) 
Theorem 1. If the system behavior is ruled by (2) and the 

controller is designed by (7), (10) and (12), then en→0, n→∞ 
when trajectory tracking problems are considered and 
controller parameters fulfill 0<kv<1 and 0<kw<1.  

The proof of Theorem 1 is shown in Appendix. 

B. Analysis of trapezoidal controller parameters. 

In this subsection, the performance of the control law 
proposed when its parameters vary, is discussed. The objective  
is to determine the conditions to be fulfilled by the controller 
parameters, such that the proposed control actions (V and W) 
do not exceed the maximum allowable values (Vmax and Wmax). 

In this work it is not considered the design problem of a 
global trajectory planner. The trajectory tracking problem is 
addressed considering that the desired trajectory is admissible. 
Thus, the desired trajectory satisfies (2). Then (13), (14) and 
(15) are fulfilled. Here, θref,n+1, Vref,n+1 and Wref,n+1 are the 
mobile robot orientation, linear and angular velocities of the 
reference trajectory, which fulfills: Vref,n+1<Vmax and 
Wref,n+1<Wmax. 
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Subsequently, the trapezoidal controller performance is 
analyzed. First the mobile orientation is evaluated in (7) when 
kv→1ˉ. 
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By inspection of (13) and (16), when kv→1ˉ, (17) can be 

immediately obtained. As can be seen, θez,n+1→θref,n+1, 
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Next, the linear velocity (V) is analyzed. Considering (17), 

and taken the limit of V when kv→1¯, in (12), (18) results, 
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By comparison of (14) and (18), when kv→1ˉ, (19) can be 

obtained, 
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Finally, the angular velocity (W) is evaluated. From (12): 
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Considering (17) and replacing θez by θref in (20), 
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According to (15) and (21), whenkv→1ˉ andkw→1ˉ, (22) 

results: 
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Remark 2: Note that if the replacements propose in (5) is 
not made, then (19) and (22) are not fulfilled. Then, the 
control actions can exceed allowable limits for large values 
of en.  
From (19) and (22), when kv→1ˉ and kw→1ˉ then, Vn→ 

Vref,n and Wn→Wref,n; therefore Vn<Vmax and Wn<Wmax. The 
latter demonstrates that a value below but close to one of the 
parameters (kv and kw), makes the actual velocities of the robot 
close to the reference ones, and the tracking errors converge to 
zero. Thus, we obtain a control law capable of tracking the 
desired trajectory without surpassing the maximum allowable 
values of the velocities. 

In the next section a new algorithm to select the controller 
parameters (kv and kw) so that the tracking error tends to zero, 
and the control actions do not exceed the allowable limits is 
proposed. 

IV. SELECTION OF THE CONTROLLER PARAMETERS BY 

NONLINEAR PROGRAMMING. 

Nonlinear programming (NLP) deals with the problem of 
optimizing an objective function in the presence of equality 
and inequality constraints, where some of the constraints or 
the objective function is nonlinear. Typically a NLP is posed 
as: 

g ( ) 0   for i=1,...,m

     ( )     to     ( ) 0   for i=1,...,p
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Minimize f x subject h x

x X


 
 

Where f, g1, …,gm, h1, …,hp are functions defined on Rn, X is a 
subset of Rn,  and x is a vector of n components x1, …,xn. The 
above problem must be solved for the values of the variables 
x1,…,xn that satisfy the restrictions while minimizing the 
function f. The function f is usually called the objective 
function, or the criterion function. Each of the constraints gi ≤ 
0 for i=1,…,m is called an inequality constraint, and each of 
the constraints hi = 0 for i=1…,p is called an equality 
constrain, [23].  

Considering the issue addressed in this paper, the 
conditions to avoid the control actions saturation (12), are 
specified by, 
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Besides, to ensure that the robot movements tend to the 

desired trajectory, (7) must be satisfied, 
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used to maintain the velocities of the mobile robot at the 
desired value. The values of the parameters of the controller at 
each sample time are shown in Fig.6.  

 
Fig. 2.  Reference trajectory and the trajectory performed by the robot using 
the proposed controller. Continuous line represents the position of the mobile 
robot; and the dotted line the reference trajectory. 
 

 
Fig. 3.  Tracking errors vs. time. The figure shows how the tracking errors are 
close to zero when the robot reaches the trajectory. 
 

 
Fig. 4.  Results of curvature test, control action V vs. time.  

 

 
Fig. 5.  Control action W vs. time during curvature test. 

 

 
Fig. 6.Plot of the controller parameters values vs. time. 

 

B. Square Trajectory. 

Another proof for checking the controller performance is a 
square trajectory, as recommended in [25]. This strategy can 
be used in applications such as obstacle avoidance and 
contour-following. For example, if the danger of collision is 
large, the trajectory to be followed by the robot is modified 
abruptly and the robot must follow that path in order to avoid 
collision. Thus, the controller performance when the trajectory 
changes abruptly will be analyzed. The square reference 
trajectory is generated with constant linear velocity of V = 
0.3m/s. The initial position of the robot is the system origin 
and the trajectory begins in the position (xref(0), yref(0)) = 
(1m,1m). The sample time used is T0=0.1s and the maximum 
allowable velocities are Vmax=0.55m/s and Wmax=0.5rad/s. 

Figure 7 shows the results of the implementation. As can be 
seen, the controller reaches and follows the reference 
trajectory. In Fig. 8 it is observed that the tracking errors, 
when the mobile robot reaches the desired trajectory, are less 
than 0.01m. However, these errors remain low compared to 
the mobile robot dimensions (0.508 m long, 0.497 m large, 
0.277 m high). The control action values, are shown in Fig. 9 
and Fig. 10. Figure 11 shows the controller parameters versus 
time. As can be seen, these parameters change to ensure that 
the tracking errors tend to zero and control actions do not 
exceed the maximum allowed. 

 

 
Fig. 7.  Second experiment: reference trajectory and the trajectory performed 
by the robot. 
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Fig. 8. Evolution of the magnitude of the tracking errors. 

 
Fig. 9. Evolution of the magnitude of the velocity V during the second 
experiment. 

 

 
Fig. 10.  Evolution of the magnitude of the velocity W during the second 
experiment. 

 

 
Fig. 11.  Evolution of the controller parameters during the square trajectory 
test. 

 
C. Controller Comparison. 

To test the advantages and drawbacks of our proposal, an 
experimental evaluation was carried out. In order to do so, the 
control law proposed in (12) with a simple saturator and two 
controllers previously published in the scientific literature 
were implemented for comparison purposes on the mobile 

robot Pioneer 3AT. The controllers implemented for 
comparison are the following: 

 
 Controller proposed in this paper when its 

parameters are chosen with nonlinear 
programming, C1 in the sequel (methodology 
proposed in this paper). 

 Controller proposed in this paper when its 
parameters are fixed, and the control actions are 
limited with a simple saturator, C2 in the sequel. 

 A non-linear trajectory tracking strategy developed 
by [18], C3 in the sequel.  

 The controller developed in [3], C4 in the sequel. 
 

The implementation schemes for the controllers C1 and C2 
are shown in Fig. 12 and Fig. 13. The controller parameters of 
C2, kv and kw, are both equal to 0.94. 

 

 
Fig. 12.  General architecture of the proposed controller.  

 

Fig. 13.General architecture of C2. The controller parameters are fixed and the 
control action actions are limited by a simple saturator in comparison of C1.  

 
The designing details of the controllers C3 and C4 can be 

found in its respective references, and only the experimental 
results without a theoretical analysis of the controllers’ 
properties are shown here. For those, [18] and [3], offer a deep 
insight into the controller design.  

In order to compare the controllers performance, the 
integrated squared error (ISE) is used [26, 27].  An idea 
widely used in the literature is to consider the cost incurred by 
the error. Then, we define a cost function represented for the 
combination of the ISE in x-coordinate and the y-coordinate as 
shown in (28),  
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(xref(0), yref(0)) = (1m,-1m). The sample time used is T0=0.1s 
and the maximum allowable velocities are set in Vmax=0.55m/s 
and Wmax=0.5rad/s. 

Fig.14 shows the reference trajectory and the results 
obtained by implementing the controllers C1, C2, C3 and C4. 
It shows that, all controllers reach and follow the desired 
trajectory without unexpected oscillations. Figure 15 and Fig. 
16 show the absolute values of the tracking errors for the x-
coordinate and y-coordinate respectively. It is observed that 
the proposed controller has better performance. The controller 
C4 presents a similar performance that C1, but the lowest cost 
is obtained by C1 as can be seen in Fig. 17. 

 

 
Fig. 14. Reference trajectory and the robot position for all controllers. 
 

 
Fig. 15. Absolute value of tracking error in x-coordinate. 
 

 
Fig. 16. Absolute value of tracking error in y-coordinate. 
 

 
 
Fig. 17. Results of controller’s comparison: trajectory tracking cost of each 
controller when the robot follow an eight-shaped trajectory.  

 

Analyzing the above plots, one can conclude that the 
proposed trajectory tracking controller with velocity limitation 
via nonlinear programming has superior performance, 
compared to the others controllers. 

VI. DISCUSSIONS 

- In our work, the controller tuning is performed by an 
optimization function that ensure a faster convergence 
avoiding the actuator’s saturation. This represents a 
great advantage compared to previous controllers based 
on linear algebra published in the literature [11, 20]. In 
[11, 20] the controllers parameters are fixed and are 
chosen by empirical tests, which does not ensure that 
the control actions would not saturate the actuators.  

- As stated in Section 5(c), when we compare our 
methodology with other controllers of the bibliography 
(C3 and C4) the tracking cost decreases, while it is 
avoided that the control actions exceed the saturation 
limits. 

- Compared to [1] the proposed methodology is based on 
basic mathematical concepts and easy to understand. 
This represents a great advantage when it is desired 
apply the methodology in a system of different nature. 

- The proposed controller is easy to implement, making 
it suitable for its application in low-profile processors, 
and its control inputs are the linear and angular 
velocities, common to most commercial robots. 

VII. CONCLUSION 

An efficient control law for trajectory tracking in mobile 
robots subject to saturation in the control actions has been 
presented. The conditions for synthesizing the control actions 
able to minimize tracking errors were obtained by analyzing a 
system of linear equations. In addition, the developed 
methodology for the controller design can be applied to other 
types of systems. 

A contribution of this work involves the application of a 
method to find the parameters of the controller. This method 
can be used to find values of the control actions that do not 
exceed the actuators saturation limits. The values found by our 
approach maintain control actions below the saturation values 
while the tracking errors tend to zero.  

The proposed controller was implemented in a commercial 
robot PIONEER 3AT, and experimental results were 
presented, showing that the robot is capable of tracking a 
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desired trajectory with a small distance error. The proposed 
controller was also compared with others controllers with 
saturation in control signals, and experimental results showed 
that it has a better performance.   

The proposed controller provides an appropriate value for 
robot velocity commands, avoiding saturation values of 
control signals, while keeping a good performance of the 
control system. Finally, the convergence to zero of tracking 
errors was demonstrated in Appendix. 
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APPENDIX 

Theorem 1: If the system behavior is ruled by (2) and the 
controller is designed by (7), (10) and (12), then 

0,ne n   when trajectory tracking problems are 

considered and the controller parameters fulfill 0<kv<1 and 
0< kw<1. 

 
Remark 4: consider the next geometric progression,  

1 0

2
2 1 0

1
1 0

n
n n

a k a

a k a k a

a k a k a




 

 



 

Then, if 0 1k   and n→0 (with n Є N), then an→0. 
The proof of convergence to zero of the tracking errors 

starts with the variable θ.  
Considering the orientation from (2) and the control action 

from (12), 

 0
1 12n n n n

T
W W    

    (A.1) 
 

   , 1 ,
1 , 1 ,

0 0

2 ez n ez n
n ez n w ez n n nW k

T T

 
    

 


        (A.2) 

By replacing the control action Wn+1 given by (A.2) and the 
Euler approximation of Wn in (A.1), the following expression 
is found: 

   , 1 ,0 1
1 , 1 ,

0 0 0

2

2
ez n ez nn n
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T
k

T T T

  
      

 

 
       

   
  (A.3) 

After some simple operations, it yields: 
 

     , 1 1 , , 1 1 ,

1 1
0

2 2ez n n w ez n n ez n n ez n nk                   

   (A.4) 
Thence, 

, 1
,

1
0

2 2
n

w n

e
k e


     

 
    (A.5) 

 

 , 1 ,2 1 0n w ne k e         (A.6) 

Thus, in order to makes the error in (A.6) tends 
asymptotically to zero,  

 

 2 1 1 0 1w wk k          (A.7) 

Then if 0 1wk   and n   (with n Є N), then 

, 1 0ne   (see Remark 4). 

Now, the convergence analysis of ex and ey is developed 
below. From the corresponding equation of the system (2), 

 

 0
1 1 1cos cos

2n n n n n n

T
x x V V     

   (A.8) 
By using the Taylor interpolation rule, the functions cosθn+1 

can be expressed as, 
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 (A.9) 

Where θλ,n is an interpolation point between θn+1 and θez,n+1. 
Thus, (A.8) will be:  

,
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 (A.10) 

 
Then, considering the control action Vn+1 (12) and 

multiplying by cosθez,n+1, 
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From (30), 
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Considering (A.11) and (A.12), after some simple 
operations, it yields, 
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leading to,  
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Taking into account (A.10) and (A.14), it can be shown 
that: 
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Next, the following replacements are considered:  
 

, 1 ,1
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According to (A.15),  
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  , 1 ,1 0
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Thence, 
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Now, applying the same reasoning to the y-coordinate, and 
taking into account that: 

 

  0 1
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it yields, in compact form to: 
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   (A.21) 
where, 

, 1 ,cosn n nf V   

Thus, for 0 <kv< 1 the error (A.21) tends asymptotically to 
zero.  

Remark 5: Equation (A.21) is a linear system with a 
nonlinearity that tends to zero. It can be shown that the 
nonlinearity is bounded in the same manner as shown for other 
functions in [20]. If 0 <kx< 1 and 0 <ky< 1  then ex,n→0 and 
ey,n→ 0 when n→∞ ([20], appendix A (A31), (A35)-(A41)). 
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