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a  b  s  t  r  a  c  t

A  very  sensitive  electrochemical  sensor  to  determine  glycerol  (GLY)  in biodiesel  samples  has  been  devel-
oped.  It is  based  on  the  electrochemical  oxidation  of  GLY  at glassy  carbon  electrodes  modified  with
copper  oxide  nanoparticles  supported  on  multiwalled  carbon  nanotubes/pectin  composite.  The  electro-
chemical  oxidation  of  GLY  was studied  in  pH  8 phosphate  buffer  solutions.  The  quantification  of  GLY was
performed  by  amperometric  measurements.  The  proposed  electrochemical  sensor  improves  the perfor-
mance  of  others  methods  developed  for the  quantitation  of GLY.  A  low  limit  of  detection  of 5.8  ×  10−6 g
eywords:
lycerol
iodiesel
lectrochemical sensor
opper oxide nanoparticles

dm−3 and  a percent  coefficient  of  variation  smaller  than 10%  was  found,  along  with  a  reasonable  linear
range  of 9  ×  10−6–1  × 10−3 g dm−3. The  proposed  electrochemical  sensor  exhibited  good  performance,
stability,  reproducibility,  repetitiveness  and a good  detection  limit  and  a linear  concentration  range  to
quantify  GLY  in biodiesel  samples.

©  2017  Elsevier  B.V.  All  rights  reserved.

ultiwalled carbon nanotubes

. Introduction

Glycerol (GLY) is a very important substance commonly used
n many areas of daily life, such as food, textiles, automobiles,
io-combustibles (bio-fuels), cosmetics, pharmaceutical industry,
tc. In recent years, biodiesel (novel alternative fuel derived from
ipids of vegetable oils or animal fats) has gained importance due to
he rapid decline of fossil fuels and the consequent impact on the

ncrease in fuel prices, which has led to the urgent need to mas-
ively develop the use of renewable energies such as solar, wind,
ydro, biomass, etc. One of the alternatives to address the demand

∗ Corresponding authors.
E-mail addresses: josesandoval@uadec.edu.mx (J. Sandoval-Cortés),

fernandez@exa.unrc.edu.ar, hfernandezster@gmail.com (H. Fernández).

ttp://dx.doi.org/10.1016/j.snb.2017.01.093
925-4005/© 2017 Elsevier B.V. All rights reserved.
for fossil fuels, especially for agriculture and transport, is the use of
biomass to produce biodiesel, in particular obtained from oil seeds
other than for the production of food.

Biodiesel is produced by transesterification the parent oil or
fat with an alcohol, usually methanol, in the presence of a cata-
lyst, usually a strong base such as sodium or potassium hydroxide,
or, preferably and increasingly more commonly, alkoxides [1,2].
Therefore, the resulting product can contain not only the desired
alkyl ester but also unreacted starting material, residual alcohol
and catalyst. GLY is formed as a by-product and it is separated from
biodiesel in the production process, however, traces thereof can be
found in the final biodiesel product [3].
Due to the rising importance of biodiesel as alternative fuel in
many countries, it is absolutely necessary to establish standards
for the description of the quality of the product. A higher content
of free GLY may  cause problems during the storage or in the fuel

dx.doi.org/10.1016/j.snb.2017.01.093
http://www.sciencedirect.com/science/journal/09254005
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ystem, due to separation of GLY, or can lead to injector fouling
nd lower engine performance, or the formation of higher aldehyde
missions [4]. Thus, it is important to develop sensitive and reliable
nalytical methods for the quantification of free GLY in biodiesel.
herefore, biodiesel standards related to the presence of GLY have
een established in various countries and regions around the world,
uch as United States of America (ASTM 6584–00), Europe (EN
4105:2003), China (GB/T20828-2007), Germany (DINV51606),
tc. [5]. Argentine uses the same standard that United States of
merica. All these specifications in biodiesel standards mentioned
bove impose a maximum concentration of free GLY of 0.02%
200 mg  kg−1). The ASTM standard for GLY determination is based
n gas chromatography. This standard specifies a method for deter-
ining the content of free GLY and mono-, di- and triglycerides

esidual methyl esters of fatty acids. The technique consists in the
ransformation of free GLY, mono- and di-glycerides in the silylated
erivatives, which are compounds more volatile in the presence of
yridine and N-methyl-N-trimethylsilyltrifluoracetamide [6].

Several analytical techniques have been proposed to determine
LY such as electrochemistry [7,8], biosensor [9–15], spectropho-

ometry, chemiluminescence [16–18] and chromatographic ones
19,20]. Electrochemical methods have been proved to be an
ffective and inexpensive tool to determine different compounds.
owever, it has been proved that the direct oxidation of GLY at
are electrodes is not suited for analytical applications. Thus, the
evelopment of chemically modified electrodes (CME) is of practi-
al significance.

The alcohol oxidations have widely been studied to design fuel
ells through the methanol and ethanol oxidation [21]. Due to the
igh oxidation potentials of GLY, electrodes of expensive mate-
ials (i. e. platinum, ruthenium, gold, etc.) have been modified
y metallic or bimetallic nanostructures, [21–24]. Thus, various
latforms pointing to different alcohols determination have been
roposed [21,25–29]. However, many efforts have been undertaken
o reduce the cost of production of electrodes for the oxidation
f alcohols with the use of less expensive electrodes, which also
ave an equally high efficiency. One of the platforms promising is
hat which considers the composite of copper and its oxides as a
atalyst suitable for the oxidation of alcohols [30–32] and other
mportant compounds, such as glucose [33] and H2O2 [34]. The
ensors developed by nanostructures/structures of metallic elec-
rodes, such as copper and nickel, have the advantage of using
n inexpensive metal and environmentally friendly. The electrode
rocesses in alkaline solutions involve the electrochemical forma-
ion of metal oxide or hydroxide films of higher oxidative states,
.e., NiO(OH) and CuO(OH), which have been proposed to behave
s redox mediators associated with the analyte oxidations [35]. In
ddition, chemically modified electrodes containing surface-bound
norganic redox species have been described, which demonstrate
n unusual stability and reactivity for aliphatic compounds [30].

A general mechanism proposed for the oxidation of aliphatic
ompounds, as GLY, at the CuO, CuO(OH) and Cu(III) surfaces
nvolves several steps, where there is an adsorption of alcohol and

 strong dependence on the OH− concentration [30]. The adsorp-
ion of alcohol conforms to a Langmuir isotherm model, being the
ate-determining step the abstraction of a hydrogen atom from the
-carbon according to Fleischmann [36]. The mechanism includes

he formation of a CuO layer from Cu20 oxidation, where the
hemisorption of hydroxide ions on the CuO surface lattice is fol-
owed by the oxidation of the hydroxide to a hydroxyl radical.

eanwhile, at adjacent lattice site, the analyte also adsorbs onto
he electrode surface forming a bridged cyclic intermediate with a

ubsequent abstraction of a hydrogen atom from the carbon in the
-position to the functional group. After the �-hydrogen abstrac-

ion the analyte radical is further rapidly oxidized to carboxylate or
ther product [30].
ators B 244 (2017) 949–957

The nanostructured CuO and Cu2O are promising in the
development of sensors for alcohol oxidation because of their
highly specific surface area, good electrochemical activity, and
the possibility of promoting electron transfer reactions at a lower
overpotential [37–40]. The methods to synthesize nanostructured
CuO and Cu2O mainly include hydrothermal synthesis in solu-
tion [38,41], sonochemical route [39], heating copper substrates at
elevated temperature [42,43] and electrodeposition with electro-
chemical oxidation in situ [33,44]. Thus, it is possible to generate
an electrochemical sensor based on glassy carbon (GC) electrodes
modified with CuO, CuO(OH) nanostructures to oxidize GLY  to
lower overpotentials. As far as we  know, it has not yet been
discussed in literature any composite sensor based on copper
nanostructures to determine GLY.

In the development of electrochemical sensors, multi-walled
carbon nanotubes (MWCNT) are an important option. It has been
demonstrated that electrodes modified with MWCNT show an
increment in the linear analytical response and lower the detection
limit [45,46]. However, it is necessary to work with homogeneous
dispersions of MWCNT for obtaining reproducible results. There-
fore, homogeneous dispersions can be obtained using different
solvents such as DMF, DMSO or dioxolane [47,48]. In addition,
if water dispersions are used it is necessary to use soluble or
hidrophylic polymers to obtain a homogenous dispersions [49,50].
Another alternative to obtain homogeneous dispersions is the use
of natural polymers such as pectine or chitosan in aqueous solu-
tions. On the other hand, the use of pectin allows attracting copper
ions (Cu2+) in solution towards the pectin/MWCNT composite at the
electrode surface. It is well known the ability of pectin to interact
with divalent ions as Cu2+ [51,52], and the ability of some carbohy-
drates to disperse MWCNT [53–55].

In this paper, we discuss the development of an electrochem-
ical sensor to determine free GLY in biodiesel samples in pH 8
phosphate buffer solutions (PBS). The sensor is based on GC elec-
trodes modified with CuO nanoparticles (CuONP) supported on a
multi-walled carbon nanotubes (MWCNT) + pectin (Pe) compos-
ite (CuONP/Pe(MWCNT)/GC). The GLY oxidation was promoted by
CuONP supported on MWCNT. The sensor developed properly uses
the benefits of nanomaterials in order to obtain an advantageous
method to quantify free GLY in biodiesel samples.

2. Materials and methods

2.1. Chemicals and reagents

All chemicals used were of analytical grade. CuCl2·2H2O (Carlo
Erba Reagents) was used to generate copper oxides. The sup-
porting electrolyte to generate copper oxide nanoparticles was
0.1 mol  dm−3 KCl solutions (JT Baker). Oxide generation was  car-
ried out in 0.1 mol  dm−3 NaOH (Merck p.a.) solution. GLY, pectin
and anhydrous heptane were obtained from Sigma-Aldrich. A
1 × 10−3 mol  dm−3 stock solution of GLY was  prepared in distilled
water, and it was  fractioned and stored frozen until use.

pH 8 2.5 × 10−2 mol dm−3 PBS was  prepared from their salts
(Merck p.a): 1.25 × 10−2 mol  dm−3 of dibasic sodium phosphate
dihydrate (Na2HPO4) and 1.25 × 10−2 mol  dm−3 of monobasic
sodium phosphate monohydrate (NaH2PO4). The pH value was
adjusted with HCl (Merck p.a.) solution.

MWCNT 85% purity, l. 5–15 �m,  dia. 10–30 nm,  were industrial
grade (Alfa Changdu Nanotechnology Co. Ltd.).

The standards to determine GLY by gas chromatography

were Sigma-Aldrich, under ASTM D-6584. They were 1,3-
diolein, monoolein, tricaprin and 1,2,4-butanetriol, all of them as
pyridine solutions. The derivatizing agent used was  N-methyl-N-
(trimethylsilyl) trifluoroacetamide, from Sigma-Aldrich.



d Actuators B 244 (2017) 949–957 951

I
R
G
s
o
1
T
O
t
T
s

2

e
(
d
c
w
A
r
w
c
e
s
u
a
c
a

2

2
d

i
a
a
t
d
T
t
m
f
T
i
2
t
t
m
A
w
a
b
o

2

G
1
t
b
q
r

Fig. 1. SEM image of the GC/Pe(MWCNT) electrode surface. 100,000×.
F.J. Arévalo et al. / Sensors an

Biodiesel samples were obtained from the Departamento de
ngeniería Química, Facultad de Ingeniería, Universidad Nacional de
ío Cuarto, and were spiked with different amounts of GLY. For free
LY determination in biodiesel samples using the electrochemical

ensor it was necessary to perform the GLY extraction with aque-
us solution, considering that GLY solubility in water is high (about

 g dm−3). Thus 5 g of biodiesel were added to 45 g of pH 8 PBS.
he mixture was stirred during 5 min, then left to stand for 5 min.
nce achieved the separation of the aqueous and organic phases,

he aqueous phase was extracted and diluted by a factor of 1:2000.
hen, GLY standard aliquots were added for electrochemical mea-
urements.

.2. Instrumentation

All electrochemical measurements were performed in a three
lectrode C3 stand cell (BASi Bioanalytical System, USA). A GC disk
3 mm dia., CH Instruments), polished with alumina (0.05 �m in
iameter) and sonicated in water during two min  before modifi-
ation was used as working electrode. Ag/AgCl (BAS) and a Pt wire
ere used as the reference and the counter electrodes, respectively.
ll potentials are referred to this reference electrode. Amperomet-
ic and cyclic voltammetry (CV) measurements were performed
ith an EPSILON potentiostat (BASi Bioanalytical System, USA)

oupled to a PC with software incorporated. To perform scanning
lectron microscopy (SEM) as well as quantitative elemental analy-
is, a field emission scanning electron microscope JSM −740-1F was
sed. Conditions to record micrographs were: accelerating volt-
ge of 6 kV and 8 mm working distance. Operating conditions to
arry out elemental analysis were: accelerating voltage of 15 KV
nd 8 mm working distance.

.3. Methods

.3.1. Preparation of multi-walled carbon nanotubes/pectin
ispersions

The Pe(MWCNT) dispersion was studied and optimized by vary-
ng the concentration of MWCNT and pectin from 0.5 to 3 mg  dm−3

nd from 1 to 3 mg  dm−3, respectively. The sonication time was
lso studied from 3 to 20 min. Different combinations of concen-
rations and sonication times were checked. Thus, the resulting
ispersion was the one that showed the highest homogeneity.
his was obtained by adding 2 mg  mL−1 of MWCNT to a solu-
ion of 1 mg  mL−1 of pectin. Three cycles of three min  each with

anual agitation between each cycle were optimal conditions
or sonication. The resulting dispersion was stable by six month.
hen, it started to show the formation of aggregates. The result-

ng dispersion was stored in darkness at room temperature. Then,
 × 10−5 dm3 of the dispersion was deposited onto the surface of
he GC electrode and dried in an oven at 40 ◦C during 20 min. Thus,
he Pe(MWCNT)/GC electrode was obtained. Fig. 1 shows a SEM

icrograph about the morphology of Pe(MWCNT) on GC electrode.
s shown in Fig. 1, a uniform dispersion on the electrode surface
as obtained, where the absence of aggregates is observed. It is

lso possible to observe the presence of bigger MWCNT, which can
e due to the use of industrial grade carbon nanotubes, of pureness
f 95%, which are significantly cheaper than those of higher purity.

.3.2. Generation of copper oxide nanoparticles (CuONP)
Fig. 2 shows cyclic voltammograms recorded at the bare

C electrode (a) and the Pe(MWCNT)/GC electrode (b) in a
 × 10−4 mol  dm−3 CuCl2·2H2O + 0.1 mol  dm−3 KCl aqueous solu-

ion, which was previously bubbled with Ar during 15 min. In
oth cases, there are two pairs of peaks attributed to two
uasi-reversible redox reactions, i.e., Cu(I)/Cu(0) and Cu(II)/Cu(I),
espectively. The difference between capacitive currents of both
Fig. 2. Cyclic voltammograms recorded at GC (a) and Pe(MWCNT)/GC (b) in
100  �mol  dm−3 CuCl2.2H2O+ 0.1 mol  dm−3 KCl at v = 0.1 V s−1. The arrow indicates
the  direction of the potential sweep.

GC and Pe(MWCNT)/GC electrodes is due to the presence of
Pe(MWCNT), which produces an increment in the electroactive
area. To generate the copper deposition on Pe(MWCNT)/GC elec-
trode, a potential step of −0.4 V was  imposed during 180 s on the
electrode surface in the absence of oxygen in not stirred solution.
The applied potential allowed a complete reduction of copper gen-
erating deposits on the Pe(MWCNT)/GC electrode surface.

Subsequently, the electrode was rinsed with water and dried
under a stream of N2. Then, the electrode was immersed in a
0.1 mol  dm−3 NaOH solution and a cyclic voltammogram were
recorded in the potential range from −1.1 V to 0.4 V (Fig. 3a). Two
well defined oxidation peaks (a1 and b1) were found in the anodic
sweep. The a1 peak is attributed to the oxidation of Cu to form Cu2O
and (CuOH), in two independent reactions. The b1 and c peaks are
due the generation of CuO from products formed in the a1 peak. In
the cathodic sweep, the reduction of CuO to Cu2O and CuOH (b2
peak) and the reduction of Cu2O and (CuOH) to Cu (a2 peak) are
observed, in close agreement with results found for the deposition
of copper on GC [31,44].
Oxidized copper provides the active surface for the oxidation
of aliphatic compounds [30]. Thus, the generation of copper oxide
nanoparticles was carried out by successive cycles in 0.1 mol  dm−3

NaOH solution, in the potential range from −0.5 V to 0.3 V at



952 F.J. Arévalo et al. / Sensors and Actu

Fig. 3. a) Cyclic voltammograms recorded at the CuPe(MWCNT)/GC electrode and
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)  at the CuONP/Pe(MWCNT)/GC electrode in 0.1 mol  dm−3 NaOH at v = 0.1 V s−1.
umber of cycles = 20. The arrows indicate the direction of the potential sweep.

.1 V s−1. Cathodic potential limit involves the no generation of Cu
0), which prevents the reduction of copper oxides to Cu, so the
opper is always in the form of oxides and/or hydroxides. As it is
hown in Fig. 3b, when the number of cycles increases, progres-
ively the generation of oxides and the corresponding reduction
eak decreases, indicating that copper oxide structures were suc-
essfully formed. Thus, the CuONP/Pe(MWCNT)/GC electrode was
lectro-generated.

The presence of Cu at the CuONP/Pe(MWCNT)/GC electrode
urface was analyzed by quantitative chemical analysis and SEM.
ig. 4a and b shows the quantitative chemical analysis and the SEM
mage, respectively. The presence of copper on the surface of the
e(MWCNT)/GC is confirmed by quantitative analysis (Fig. 4a). The
uONP are non-uniform and they are not uniformly distributed on
he surface of Pe(MWCNT)/GC (Fig. 4b).

. Results and discussion

.1. Glycerol oxidation. Preliminary results

The oxidations of aliphatic alcohols on GC electrodes are practi-
ally not possible due to high over-potentials required for oxidation

o occur (higher than 1 V). Thus, it is necessary to work on an
ctive modified GC surface for this purpose. It is known that the
xidation of aliphatic alcohols occurs at carbon electrodes modi-
ed with Pt and/or Au nanoparticles [28,30,56]. Oxidation of GLY
ators B 244 (2017) 949–957

in 0.1 mol  dm−3 NaOH at the CuNP/Pe (MWCNT)/GC electrode
shows an oxidation current at about 0.70 V. When the CuONP/Pe
(MWCNT)/GC electrode is used, an oxidation current starts to
appear at approximately 0.5 V (Fig. A in Supplementary Material).
The current difference between these two  electrodes is approxi-
mately 87% higher at a potential about 0.8 V when copper oxide
nanoparticles are present.

3.2. Glycerol oxidation on CuONP/Pe(MWCNT)/GC electrode

The oxidation of GLY was studied using both the bare and the
modified GC electrodes in each stage of modification. No oxidation
of glycerol was  observed neither on bare GC nor on Pe(MWCNT)/GC
electrodes in 1 × 10−3 mol dm−3 GLY + pH 8 PBS (Fig. 5A, line a).
When the Pe(MWCNT)/GC electrode was  further modified with
copper oxide nanoparticles to form the CuONP/Pe(MWCNT)/GC
electrode a significant increase in current was found in the same
solution (Fig. 5A, line b). Despite an oxidation peak was not
observed, an increase in current was  observed at potentials above
0.6 V, due to the presence of copper oxide nanoparticles, which
undoubtedly promote the oxidation of GLY. This increase in oxi-
dation currents is more evident at higher GLY concentrations.
Thus, studies of the current as a function of GLY concentra-
tion, c∗

GLY, were performed in the GLY concentration range from
1 × 10−6 mol  dm−3 to 1 × 10−3 mol  dm−3 in pH 8 PBS (Fig. 5B).
The dependence between the GLY oxidation charge (Q) obtained
by the integration of cyclic voltammograms and c∗

GLY was  linear
up to 5 × 10−4 mol  dm−3 (data not shown). At c∗

GLY higher than
5 × 10−4 mol  dm−3 Q grows more slowly and reaches a saturation
value. This behavior is characteristic of processes where the reac-
tant is adsorbed on the electrode surface [57].

3.3. Optimization of copper oxide nanoparticles generation

The magnitude of the Q obtained for the oxidation of GLY
depends on the amount of deposited electro-generated cop-
per oxide nanoparticles. Therefore, CuCl2 concentration, copper
electro-deposition time and the number of cycles required to obtain
their oxides were optimized. As GLY does not show any oxidation
peak, the GLY oxidation charge was  used to optimize the gener-
ation of the copper oxide nanoparticles. The integration of anodic
sweeps was  performed after subtraction of the corresponding blank
currents.

3.3.1. Dependence of Cu electrodeposit with the electrodeposition
time

CuCl2 concentration was varied in the concentration range
from 1 × 10−6 mol  dm−3 to 1 × 10−3 mol  dm−3. The GLY oxida-
tion current decreased as the CuCl2 concentration increased
(results not shown). Thus, a concentration of 1 × 10−6 mol  dm−3

was chosen for the CuONP formation. Moreover, different copper
electro-deposition times (tdep) were tested in a 1 × 10−6 mol  dm−3

CuCl2 + 0.1 mol  dm−3 KCl non-stirred solution. The tdep was varied
from 90 to 360 s. The GLY oxidation was  carried out pH 8 PBS at a
GLY given concentration after the generation of CuONP in alkaline
solution. A maximum charge was reached at tdep = 180 s (Fig. 6). The
electrode surface activity decreased for tdep higher than 180 s.

3.3.2. Formation of nanoparticles of copper oxides
The generation of CuONP was  conducted by successive voltam-

perometric cycles in 0.1 mol  dm−3 NaOH in the potential range from

−0.5 to 0.3 V. Oxidation currents to generate CuONP decreases up
to a constant value as the number of cycles was increased (Fig. 3b)
indicating the transformation of electro-deposited copper to Cu2O,
Cu(OH) and CuO. The charge obtained for the oxidation increased
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Fig. 4. a) Quantitative elemental analysis of the CuONP/Pe(MWCNT)/GC electro

s the amounts of CuONP on the electrode surface was increased.
uch behavior is reflected in the variation of the charge obtained
rom cyclic voltammograms recorded for the GLY oxidation with
he number of cycles performed to obtain oxides (Fig. 7). Therefore,

 constant GLY oxidation charge was obtained after 160 cycles, and
his value was chosen for all subsequent experiments.

.4. Analytical characteristics of the electrochemical sensor

The response of the CuONP/Pe(MWCNT)/GC electrode towards
LY was evaluated by amperometric experiments under constant
tirring. Thus, 1 × 10−5 dm3 of a GLY standard solution were added
o the electrochemical cell containing 3 × 10−3 dm3 of pH 8 PBS
nder stirring at 350 rpm. Amperometric experiments were con-
ucted at different values of applied potentials. The GLY oxidation
face. b) SEM image of the CuONP/Pe(MWCNT)/GC electrode surface. 200,000×.

started at about 0.6 V. Thus, calibration curves were performed by
amperometric measurements by applying a potential in the range
from 0.6 to 1.1 V. The sensitivity was higher when the potential was
close to 1 V (data not shown). Thus, 1 V was used for all subsequent
experiments. Fig. 8 shows the current variation after the addition
of different aliquots of GLY in pH 8 PBS. Steady state currents (Iss)
were reached at 50 s after the addition of GLY. The insert of Fig. 8
shows the calibration curve obtained using the same electrochem-
ical sensor.

The linear range of the calibration curve was from 9 × 10−6 to
1 × 10−3 g dm−3. It can be represented by the following equation:
ISS(nA) = (6.6 ± 1.6)(nA) + (5.5 ± 0.3) × 1O4(nAg−1dm3)c∗GLY

r = 0.9853
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Fig. 5. A) Cyclic voltammograms of 1 × 10−3 mol  dm−3 GLY+ pH 8 PBS recorded
at: a) Pe(MWCNT)/GC electrode; b) CuONP/Pe(MWCNT)/GC electrode. B) Cyclic
voltammograms recorded at different GLY concentrations in pH 8 PBS at the
CuONP/Pe(MWCNT)/GC electrode. c∗

GLY = 1) 0, 2) 1 × 10−6, 3) 1 × 10−5, 4) 1 × 10−4,
5)  5 × 10−4 and 6) 1 × 10−3 mol  dm−3. v = 0.1 V s−1.

Fig. 6. Charge variation for the GLY oxidation on CuONP/Pe(MWCNT)/GC
electrode in 0.1 mol  dm−3 NaOH with copper electro-deposition time.
c∗

CuCl2
= 1 × 10−6 mol  dm−3. Applied potential for copper deposition = − 0.6 V.

Fig. 7. Variation of GLY oxidation charge obtained from cyclic voltammograms
with the number of cycles carried out at the CuONP/Pe(MWCNT)/GC electrode in
0.1 mol  dm−3 NaOH. c∗

CuCl2
= 1 × 10−6 mol  dm−3. Applied potential for copper depo-

sition = − 0.6 V.

Fig. 8. Amperometric measurements performed in pH 8 PBS for different GLY
concentrations. c∗

GLY: 1) 9.21 × 10−6, 2) 4.60 × 10−5, 3) 9.21 × 10−5,  4) 4.60 × 10−4,
5) 9.21 × 10−4, 6) 4.60 × 10−3 and 7) 9.21 × 10−3 g dm−3. Insert: calibration curve

obtained for GLY determination. Each point represents the average of four repli-
cated measurements. The bars represent corresponding errors. Eapp = 1 V. Stirring
speed: 350 rpm.

where r is the linear correlation coefficient.
A limit of detection (LOD) of 5.8 × 10−6 g dm−3 and a limit

of quantification (LOQ) of 9.2 × 10−6 g dm−3 were obtained for a
signal-to-noise ratio of 3:1 and 10:1, respectively. The LOD was
about 3 × 104 fold lower than the permitted limit of glycerol in
biodiesel [5] and about 5 fold lower than the lowest LOD reported
(Table 1). Statistical coefficients were analyzed for the same sen-
sor and for different sensors in the same day. As summarized in
Table 2, the sensor for GLY determination showed a good accu-
racy and reproducibility. Besides, the linear range of determination
is two  orders of magnitude lower than those reported previously,
which allows to perform dilution of regular samples of GLY for anal-
ysis with the consequent diminution from possible interference
signals.

3.5. Determination of free GLY in biodiesel samples
From the extracts obtained as described in Section 2.1, cyclic
voltammetry was performed in pH 8 PBS, in the potential range
from 0 to 1.1 V. No peak current appeared in this potential range,
but it was  observed an increase in current, which corresponds to
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Table  1
Analytical performance of several methods for the determination of glycerol in biodiesel samples.

Detection Meth5od Steps of Gly extraction LOD/ mg  L−1 Linear range/ mg  L−1 Reference

Spectrophotometric assay Yes 0.92 5.0–50.0 [17]
Spectrofluorimetric assay Yes 0.037 0.10–5.0 [18]
DPV, Electrochemical assay Yes 3.04 46.04–1.10 × 103 [7]
CV, Electrochemical assay Yes 0.28 3.04–1.56 × 102 [58]
CV, Electrochemical assay Yes 2.30 3.04–1.56 × 102 [59]
Amperometry, Electrochemical assay Yes N.I. 14.73–1.47 × 102 [60]
Amperometry, Electrochemical gas assay No 0.51 0.92–92 [24]
Amperometry, Electrochemical assay Yes 

−3 −3

DPV: differencial pulse voltammetry; CV: cyclic voltammetry.
N.I.: not informed.

Table 2
Reproducibility data obtained for the determination of GLY using the electrochem-
ical sensor.

c∗
GLY/g dm−3 Intra-assay Inter-assay

Iss
a/nA %CVb Iss

a/nA %CVb

4.6 × 10−5 17.8 8.7 18.3 8.8
9.0 × 10−4 60.1 7.9 56.0 10.6

t
a
C
[
a
M
b
g
d
m
a
T
8
t
o
1
b

w

c
c
t
s
A
w
o
a
c

4

t
b
o
t

a Average stationary current.
b Percent coefficient of variation.

he oxidation of GLY. Methyl esters of linoleic acid and unsaturated
cids, methanol, mono-, di- tri acyl glycerols, total glycerol, Na+, K+,
a2+ and Mg2+ cations and phosphates are present in the biodiesel
6]. After extraction of GLY (Section 2.1), it is expected that in the
queous phase are found alcohols, all cations and phosphate ions.
ethanol is a potential interference for the determination of GLY

y using our proposed electrochemical sensor. Cyclic voltammo-
rams were obtained in pH 8 PBS in the presence of 3.2 × 10−2 g
m−3 of methanol. No oxidation current was observed. Anyway, to
inimize the effects of matrix of the biodiesel extract, the standard

ddition method was used to determine GLY in biodiesel samples.
hus, the extract obtained from the partition of biodiesel with pH

 PBS was spiked with different amounts of GLY standard solu-
ion in order to achieve desired concentrations. The Iss vs. c∗

GLY plot
btained for spiked sample was linear in the range from 5 × 10−6 to

 × 10−3 g dm−3. The standard addition curve can be represented
y a least-square procedure as:

ISS(nA) = (105 ± 2)(nA) + (1.93 ± 0.03) × 104
[

nAg−1dm3] c∗GLY

r = 0.9989

Thus, the GLY concentration obtained for the biodiesel sample
as 1.17 g dm−3.

These results were compared with those obtained by gas
hromatography/FIT methodology proposed by ASTM [6]. GLY con-
entration determined by gas chromatography was considered as
he reference value. A calibration curve (peak area vs c∗

GLY) was con-
tructed using standard solutions of GLY and mono and di-glycerols.

 concentration of 1.2 g dm−3 of free GLY in the biodiesel sample
as obtained. Thus, the GLY concentration in the biodiesel sample

btained from both methodologies agrees satisfactorily, indicating
 very good performance for the CuONP/Pe(MWCNT)/GC electro-
hemical sensor.

. Conclusions

This paper describes the development of a sensitive elec-

rochemical sensor to determine glycerol in biodiesel samples
ased on the electrochemical oxidation of glycerol at copper
xide nanoparticles supported on a multiwalled carbon nano-
ubes + pectin composite on glassy carbon electrodes. A very good
5.80 × 10 9.0 × 10 –1.0 This work

limit of detection of 5.8 × 10−6 g dm−3 and a percent coefficient of
variation smaller than 10% was found in all concentration range.
The limit of detection obtained was  about 3 × 104 fold lower than
the permitted limit of glycerol in biodiesel and about 5 fold lower
than the lowest limit of detection reported. This electrochemical
sensor is more sensitive compared with others reported in litera-
ture. On the other hand, the construction of the sensor was carried
out with a cheap metal, as it is copper, which promotes the electro-
chemical oxidation of glycerol in pH 8 phosphate buffer solution,
opening the possibility of using this platform for the construction of
an electrochemical biosensor using the lipase enzyme as the biolog-
ical recognition element. Therefore, the proposed electrochemical
sensor exhibits good performance, stability, reproducibility, repet-
itiveness, detection limit and a good linear concentration range for
quantification of glycerol in biodiesel samples.
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