
Ann Oper Res (2017) 259:327–350
DOI 10.1007/s10479-017-2520-5

ORIGINAL PAPER

An ILP-based local search procedure for the VRP
with pickups and deliveries

Agustín Montero1 · Juan José Miranda-Bront1,2 ·
Isabel Méndez-Díaz1

Published online: 15 May 2017
© Springer Science+Business Media New York 2017

Abstract In this paper we address the Vehicle Routing Problemwith Pickups and Deliveries
(VRPPD), an extension of the classical Vehicle Routing Problem (VRP) where we consider
precedences among customers, and develop an Integer Linear Programming (ILP) based
local search procedure. We consider the capacitated one-to-one variant, where a particular
precedence must be satisfied between pairs of origin-destination customers. We extend the
scheme proposed in De Franceschi et al. (Math Program 105(2–3):471–499, 2006) for the
Distance-ConstrainedCapacitatedVRP,which has been successfully applied to other variants
of the VRP. Starting from an initial feasible solution, this scheme follows the destroy/repair
paradigm where a set of vertices is removed from the routes and reinserted by solving
heuristically an associated ILP formulation with an exponential number of variables, named
Reallocation Model. In this research, we propose two formulations for the Reallocation
Model when considering pickup and delivery constraints and compare their behavior within
the framework in terms of the trade off between the quality of the solutions obtained and the
computational effort required. Based on the computational experience, the proposed scheme
shows good potential to be applied in practice to this kind of problems and is a good starting
point to consider more complex versions of the VRPPD.

Keywords VRP with pickups and deliveries · Integer linear programming · Matheuristic

B Juan José Miranda-Bront
jmiranda@dc.uba.ar

Agustín Montero
aimontero@dc.uba.ar

Isabel Méndez-Díaz
imendez@dc.uba.ar

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires, Pabellón I, Ciudad
Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Ciudad Autónoma de Buenos Aires, Argentina

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2520-5&domain=pdf


328 Ann Oper Res (2017) 259:327–350

1 Introduction and literature review

Vehicle Routing Problems (VRPs) is the name given to a wide family of Combinatorial
Optimization problems related to goods distribution and service provision through a trans-
portation network. This kind of problems arise typically in the industry and the service sector,
and many different variations are defined according to practical situations and operational
constraints imposed by the context of the applications. In general, VRPs are easy to for-
mulate and to understand but difficult to solve since they are NP-Hard problems. Toth and
Vigo (2014), Golden et al. (2008) provide a very complete description as well as heuristic
and exact approaches for different variants of the VRP. An important family of VRPs is the
so-called VRP with Pickups and Deliveries (VRPPD), where goods are transported from an
origin location towards a destination. These problems appear, among others, in the courier
service industry, robotics and in transportation of people (see, e.g. Cordeau and Laporte
2007). Many different formulations and definitions can be found in the related literature.
Berbeglia et al. (2007) provide an extensive and complete review, including a classification,
for the VRPPD. Compared with the standard VRP, the characteristics of the VRPPD natu-
rally induce precedence constraints among customers that must be satisfied by every feasible
solution.

In the last decade, due to the advances obtained in the resolution of Integer Linear Pro-
gramming Problems (ILPs), there has been a trend aiming to formulate and solve auxiliary
subproblems as ILPs.When considering algorithms for ILPs in general, this technique is usu-
ally referred as MIPping. For example, Local Branching Fischetti and Lodi (2003), Hansen
et al. (2006) is a branching technique used to strategically explore the enumeration tree
in order to obtain early good quality primal solutions by exploring neighborhoods of the
incumbent solution. Another example is proposed in Danna et al. (2005). Following a similar
approach, Matheuristic (Mathematical Programming Heuristics) is the name given to the
(meta) heuristics developed for particular problems that include the resolution of an auxil-
iary ILP at some point in the algorithm. Ball (2011) provides an extensive survey of heuristic
approaches using mathematical programming models in general and Archetti and Speranza
(2014) perform a similar task but focusing in VRPs.

An interesting approach is proposed inDe Franceschi et al. (2006) for the exploration of an
exponential neighborhood of a Distance-Constrained Capacitated VRP (DCVRP). Starting
from a feasible solution for the problem, following the destroy/repair paradigm, a subset of
customers is extracted from the solution and an ILP is formulated in order to re-insert them,
maintaining feasibility and aiming to obtain an improved solution. The ILP formulation,
named Reallocation Model (RM), has an exponential number of variables. However, for
practical purposes, only a restricted subset of variables is heuristically generated in a pricing
step and an upper limit on the execution time is imposed for the solution of the resulting ILP.
This procedure is iteratively executed by introducing a randomization step for the selection
of the customers to be removed in order to escape from local optimum solutions. This scheme
is extensively studied in a large set of benchmark DCVRP instances, obtaining remarkable
results and being able to improve the best-known solution in 13 cases.

In a follow up paper, Toth and Tramontani (2008) propose an improvement for the solution
of the RM by reducing (heuristically) the size of the neighborhood and exploring it by solv-
ing, again heuristically, the Column Generation Problem associated with the LP relaxation.
The authors evaluate this improved scheme in 50 benchmark CVRP and DCVRP instances
obtaining good quality results and being able to find 11 newbest solutions. A similar approach
has been considered in Salari et al. (2010) for the Open Vehicle Routing Problem (OVRP),
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where the approach showed to be effective being able to obtain in most cases the best known
solutions and to find new best solutions in 10 instances. Finally, Naji-Azimi et al. (2012)
insert this scheme as a Local Search operator within a Variable Neighborhood Search (VNS)
framework for the m-Capacitated Ring Star Problem, where it is combined with standard
operators such as swap and an adaptation of a Lin-Kernighan operator (see, e.g., Lin and
Kernighan 1973; Helsgaun 2000). As a result, the approach shows to be competitive with the
most effective algorithms present in the literature for the problem.

These experiences prove the approach to be quite effective on different variants of the
VRP, with potential to be used in practice, and that it is worth extending the scheme and the
RM in order to incorporate new operational constraints. Indeed, De Franceschi et al. (2006)
suggest to extend the RM to incorporate precedence constraints, including both modeling
aspects as well as an experimental study. Our aim goes in this direction. We consider a
variant of the VRPPD where a fleet of vehicles has to visit an even number of customers
that are grouped in pairs, one of them indicating the origin and the other the destination of a
commodity, imposing a precedence that must be satisfied by every feasible route.

The contribution of the paper is threefold. Firstly, from a theoretical point of view, we
extend the RM and the overall scheme for the case where the precedences mentioned above
are present. Comparedwith the original scheme, the overall framework has to be reconsidered
and it is necessary to redefine and extend some basic notation, definitions and procedures.
In order to guarantee the feasibility of the solutions, the algorithm is modified to handle
these particular constraints. For instance, if from a pair of pickup and delivery only one of
them is removed, then it can only be reinserted within the same route due to the precedence
constraints. Secondly, we propose two different ILP formulations to adapt the RM to this
context. The modeling of the precedence constraints has a direct impact on the pricing step
of the algorithm. In addition, we also slightly modify the pricing step of the scheme by
introducing a dynamic criterion for the selection of candidate variables to be included in
the final RM. Finally, from a computational standpoint, we implement the framework and
compare the behavior of these twomodels experimentally over a large set of instances having
more than 400 customers. The results obtained show that the overall approach has potential
to be used in practice and also gives a strong evidence towards one of the ILPs, which obtains
consistently better results than the other.

The remainder of the paper is organized as follows. In Sect. 2 we present the definition
of the VRPPD considered as well as some basic notation used along the paper and a general
overview of the scheme. In Sect. 3 we formulate the extensions of the RM for our problem
and the adaptations required to the scheme. In Sect. 4 we show and discuss the computa-
tional results and finally, in Sect. 5 we draw some conclusions and discuss future research
alternatives.

2 Basic definitions and the SERR algorithm

As mentioned in the introduction, we address the Vehicle Routing Problem with pickups
and deliveries (VRPPD). Formally, let G = (V, E) be an undirected complete graph, with
V = {v0, v1, . . . , v2n} the set of vertices and E the set of edges, where v0 represents the
depot. We consider an homogeneous fleet with m vehicles, each of them having capacity Q.
Each edge (vi , v j ) ∈ E has an associated cost cviv j ≥ 0 and the objective is to transport
n different commodities. Each commodity k (k = 1, . . . , n) has to be transported from
vk to vn+k . Therefore, a precedence relation between vertices vk, vn+k is established, for
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k = 1, . . . , n, where vk is called the pickup vertex and vn+k the delivery vertex. Such a
commodity requires qvk units of capacity in a vehicle.We further define P = {v1, . . . , vn} and
D = {vn+1, . . . , v2n} the sets of pickups and deliveries respectively, where V = {v0}∪P∪D.
The demand for vertex vk ∈ V is denoted by dvk , where dvk = qvk , vk ∈ P , and the demand
for vertex vn+k ∈ D is dvn+k = −qvk , i.e., indicating that the commodity is collected at
the pickup vertex vk and occupies space in the vehicle until it is delivered at vertex vn+k .
We assume that the demand for vertex 0 is d0 = 0. The objective is to find exactly m
routes covering each vertex exactly once, satisfying the precedences between vk and vn+k ,
for k = 1, . . . , n, without exceeding the capacity of the vehicles and at minimum total cost.

Following the three-field notation proposed in Berbeglia et al. (2007), the problem can
be classified as a capacitated 1− 1|P/D|m, meaning that the distribution is one-to-one, i.e.,
each commodity has to be distributed from a unique origin to a unique destination; each
vertex is either a pickup or a delivery, but not both; and that (exactly) m vehicles have to be
used. A similar version of the problem has been considered in Hernández-Pérez and Salazar-
González (2009) with an exact approach and in Rodríguez-Martín and Salazar-González
(2012) in a heuristic framework. The main differences with respect to our case are that they
consider the single-vehicle case, i.e. m = 1, and that they allow a vertex to be a pickup and
a delivery at the same time. In the related literature, in many cases the VRPPD involves also
time windows, in which customers must be visited (see, e.g., Toth and Vigo 2014).

We begin by describing the main idea behind the general scheme suggested by De
Franceschi et al. (2006), called SERR (Selection, Extraction, Recombination and Reallo-
cation), which aims to consider an exponential neighborhood of a feasible solution. The
sketch of the procedure is shown in Algorithm 1. Following their notation, let Z be the set of
all feasible solutions for the DCVRP, and consider z0 ∈ Z an initial (feasible) solution. By
applying the destroy/repair paradigm, heuristically select a set of vertices, named F , remove
these vertices from z0, and generate a restricted solution z0(F) by linking consecutive ver-
tices in z0 after the extraction. Theremay bemore than one removal criterion, and the strategy
to combine them is reflected in Step 2. Each arc in z0(F) is called an insertion point, and we
denote as I = I(z0,F) the set of all insertion points in z0(F). The neighborhood is denoted
by N (z0,F) and is defined as follows. Let S = S(F) be the set of all possible sequences,
without repetitions and of any possible length, obtained by recombinations of the vertices in
F . Each s ∈ S can be assigned to one of the insertion points in I, and to each insertion point
at most one sequence can be assigned. The neighborhood N (z0,F) considers all feasible
solutions that can be obtained by assigning sequences in S to insertion points I, and the
aim is to obtain an improved solution by exploring such neighborhood by solving an ILP.
Clearly, the number of variables in the formulation could be extremely large and therefore
only a subset of them are heuristically generated. The ILP is also heuristically solved using
a general purpose ILP solver.

Figure 1 illustrates an example of the VRPPD and how the SERR could be applied in
our context. We consider an instance with V = {0} ∪ P ∪ D, where P = {p1, . . . , p6}
and D = {d1, . . . , d6}, and vertex pi denotes the pickup vertex of the delivery di ,
i = 1, . . . , 6. For simplicity, we assume that the capacity is not restrictive and there-
fore the demands are omitted. Figure 1a shows a starting feasible solution, and in Fig.
1b the selected vertices to be extracted are marked. In addition, dashed arcs denote arcs
which are also removed from the solution, due to the selected vertices. In this case, the
set F = {p2, p4, p5, d2, d3, d4, d5}. Figure 1c shows how the restricted solution z0(F) is
constructed, where I = {i1 = (0, p1), i2 = (p1, d1), i3 = (d1, 0), i4 = (0, p3), i5 =
(p3, 0), i6 = (0, p6), i7 = (p6, d6), i8 = (d6, 0)}. Finally, Fig. 1d shows the new solution,
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Fig. 1 Example of extraction and reallocation of vertices a initial solution b selected vertices c restricted
solution (infeasible) d new solution

which is the result of assigning sequence s1 =< p2, d2 > to insertion point i4, s2 =< d3 >

to i5, s3 =< p4, p5 > to i6, s4 =< d5 > to i7 and s5 =< d4 > to i8.
Finally, we note that the presence of precedence constraints in the VRPPD introduces

several limitations to the framework when compared to the DCVRP or the CVRP. Clearly,
the ILP formulated for the reallocation stepmust account for precedences, in order to generate
feasible solutions. Moreover, some other steps which are quite general for the CVRP and the
DCVRP must be adapted as well. In the next section we study and describe in detail each
step of the scheme adapted for the VRPPD.

3 Extension to the VRP with pickups and deliveries

In this section we describe the adaptation of the SERR to the VRPPD. Due to the inclusion of
precedences between pairs of vertices, the adaptation is not limited to the ILP formulation of
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Algorithm 1 SERR: Selection, Extraction, Recombination and Reallocation (De Franceschi
et al. 2006)

1. (Initialization) Apply an initial heuristic to find a feasible solution z0.

2. (Selection) Apply one of the criteria to select the vertices to be extracted.

3. (Extraction) Extract the vertices selected in Step 2 and construct the restricted solution by short-cutting the
consecutive extracted vertices. The set I contains all the edges in the restricted solution, called insertion
points.

4. (Recombination) The sequences of consecutive vertices extracted in the previous step, called basic
sequences, are stored in a sequence pool. Then, heuristically generate new sequences using the vertices
in F and add them to the sequence pool. This procedure is repeated iteratively and the dual information
provided by the LP relaxation of the Reallocation Model RM (see Step 5) is used to determine which
sequences to keep in the pool. In addition, each sequence in the pool is heuristically associated with a
subset Is ⊆ I of insertion points, indicating that sequences s can be inserted in insertion point i ∈ Is . In
particular, a basic sequence s contains in Is the original insertion point from which it has been removed,
called a pivot. In this fashion, the current solution can be retrieved.

5. (Reallocation) Decide a feasible assignment of sequences in the pool to insertion points by formulating
and heuristically solving an ILP (Reallocation Model, RM) using a general purpose solver. Define binary
variables xsi to take value 1 if sequence s ∈ S is assigned to insertion point i ∈ Is . Impose an upper limit
on the execution time for the solver and obtain the best solution found.

6. (Termination) If an improved solution has been found in the last K iterations, repeat fromStep 2. Otherwise,
return the best solution found.

the reallocation step. For instance, the vertex selection criteria and the sequence generation
stage that remain unchanged for other VRPs, must be reconsidered regarding the VRPPD
and further decisions are required.

3.1 Initial solution

In order to evaluate the behavior of the RM, we implement an ad-hoc heuristic procedure
consisting of a greedy construction phase followed by a Variable Neighborhood Descent
(VND) procedure. We remark, as stated in previous research regarding the RM and validated
in our preliminary computational results, that the initial solution has an impact on the final
solution and on the overall behavior of the scheme. Therefore, we initially consider a standard
constructive approach, followed by a local search procedure. The approach is then generalized
in a randomized fashion with some minor modifications. These two alternatives are used in
different experiments to assess the quality of the approach and to give some insights regarding
its behavior, which are shown in Sect. 4.

We begin by pointing out that the problem of finding a feasible solution for the VRPPD
considered in this paper can be easily solved by grouping pairs of pickup and deliveries and
generating exactly m routes -recall that we are imposing to use exactly m vehicles. In this
way, the capacity of a vehicle is never exceeded since each commodity travels alone in the
vehicle. Indeed, the construction phase implements this idea in a greedy fashion. Initially, for
each request we compute the cost of using a route to satisfy it, and select them requests with
smaller cost. Once the m routes are generated, we iteratively add one unattended request at a
time by selecting the request and the route that, when extended by adding the request at the
end, generates the smallest increment in the cost of the current solution.

The second step is to apply a VND procedure to improve the current solution. For this
purpose, we consider an adaptation of three local search operators proposed in Nanry and
Barnes (2000) which are applied iteratively with a best move criterion, until no improvements
can be achieved. These operators are:
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– Single paired insertion (SPI): For every request (vk, vn+k), k = 1, . . . , n in route r ,
remove vertices vk and vn+k and evaluate every feasible insertion in every other route
r ′ �= r . Select the request and insertion generating the least cost solution.

– Swapping pairs between routes (SBR): Given two requests (vk, vn+k) and (vl , vn+l)

allocated to different routes r and r ′, respectively, evaluate swapping (vk, vn+k) to r ′ and
(vl , vn+l) to r , considering also the best feasible insertion within each route. Select the
pair of requests generating the least cost solution.

– Within route insertion (WRI): This is a route improvement operator. For every route
and, for every request in it, evaluate every feasible allocation of both the pickup and the
delivery and select the one generating the least cost route.

Within the VND procedure, the operators are applied in the order they are presented and
we consider the next operator once no improvements can be foundwith the actual one. Finally,
define z0 as the solution found by this procedure when no improvement can be found by any
of the operators.

Asmentionedbefore,we consider aswell a randomizedversion of this algorithm inorder to
provide some variability on the initial solution. The randomized step is rather straightforward,
and consists of applying the same procedure described in the greedy step but the order
of the requests is randomly determined beforehand. A predefined number of orderings is
considered, obtaining as a result a basic multistart scheme. For each of these initial solutions,
the VND procedure is applied with some minor modifications. The SBR operator, which is
the most time consuming, is not considered.We also noted that the quality of the results is not
considerably affected. In addition, the remaining operators are applied in a first-improvement
fashion. These two modifications result in a faster approach than the original one.

3.2 Vertex selection strategy

The precedence between vertices imposed by requests has an impact on the vertex extraction
step, and the decisions made at this point affect the definition of the neighborhood N (z0,F)

as well as the subsequent stages of the procedure. In particular, given that precedences
are established between pairs of vertices, we observe two possible scenarios regarding the
extracted vertices in F . Suppose that at least one vertex of the request (vk, vn+k) is in F , for
some vk . Then: (i) either for some vk ∈ F or vn+k ∈ F , but not both; (ii) both vertices are
extracted, i.e., vk, vn+k ∈ F . In the former, the reallocation of the extracted vertex is limited to
its original route, which is somehow restrictive. On the contrary, the latter is more general and
allows the request to be eventually reallocated in another route. Moreover, when considering
a sequence s ∈ S containing both vk and vn+k we must guarantee that they appear in the
correct order. In addition, removing the complete request also guarantees that the non-empty
routes left in the restricted solution are always feasible, which is not necessarily true in the
other case. This fact may have an impact regarding the feasibility of the ILP formulation
considered and the overall scheme described in the following sections.

Recall the example in Fig. 1, in particular the extraction of vertex d3. Since the pickup
vertex p3 is left in the restricted solution, d3 can only be assigned to the route where p3
is present and, furthermore, it must be assigned to an insertion point that appears after p3,
otherwise the solution would be infeasible. Regarding the second situation, observe that
sequence s1 =< p2, d2 > satisfies the precedence imposed by the request. This intuition is
formalized in the following result.

Proposition 1 Let z0 ∈ Z, G ⊆ F ⊆ P ∪ D. Then, N (z0,G) ⊆ N (z0,F).
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Proof We show that for any feasible solution in N (z0,G) we can construct an equivalent
one in N (z0,F). Consider an initial solution z0 and a feasible solution z1 ∈ N (z0,G).
For each insertion point i = (a, b) ∈ I(z0,F), given that G ⊆ F , either one of the fol-
lowing holds: (i) i = (a, b) ∈ I(z0,G), or (ii) a sequence of consecutive insertion points
i0 = (a, u0), i1 = (u0, u1), . . . , ik = (uk−1, b) ∈ I(z0,G), with u1, . . . , uk ∈ F since
in both cases we are starting from the same initial solution z0. To construct z1, starting
from z0(F), we proceed as follows. Consider each insertion point i = (a, b) ∈ I(z0,F)

separately. In case condition (i) holds, then assign exactly the same sequence as in z1, if
any. Otherwise, condition (ii) holds and let, w.l.o.g., s̄0, . . . , s̄k be the sequences assigned to
i0, . . . , ik , respectively. Eventually, some of them (or even all) can be the empty sequence,
indicating that no assignment has been made in z1 to the corresponding insertion point.
Then, construct the sequence s̄ as the concatenation among the intermediate vertices and the
assigned sequences, i.e., s̄ =< s̄0, u0, s̄1, u1, . . . , uk−1, s̄k >, where we abuse notation and
allow the concatenation of sequences with simple elements. Then, the sequence of vertices
between a and b is the same as in z1. Applying this same reasoning for all insertion points
we obtain z1 the resulting feasible solution. �	
Based on this discussion we decided to remove requests instead of vertices, obtaining as a
result a more general neighborhood.

De Franceschi et al. (2006) suggest three different schemes for (randomly) selecting
the vertices to be included in F for the DCVRP, which are also considered with minor
modifications in Toth and Tramontani (2008), Salari et al. (2010):

– Random- Alternate: randomly selects some routes and, also randomly, removes ver-
tices depending on the parity of the position in the solution;

– Scattered(p): each vertex can be removed from the solution with uniform probability
p;

– Neighborhood: randomly select some vertices v ∈ V and consider a small neighbor-
hood for each of them. Remove some of the vertices in such neighborhood according to
a pre-defined criterion (we refer the reader to De Franceschi et al. (2006) for a detailed
explanation).

We adapt these schemes to the VRPPD in the following fashion: execute the selection
scheme over the vertices in P and, whenever a pickup vertex vk is selected, extract also the
corresponding delivery vn+k defining the request. All the three schemes have been imple-
mented and tested, including several combinations among them.

3.3 Reallocation models

In this section we formalize some of the ideas mentioned in the previous sections and propose
two ILPs to explore N (z0,F). Recall that we denote by Z the set of all feasible solutions
for the VRPPD, z0 ∈ Z an initial feasible solution, F the set of extracted vertices from z0
and z0(F) the resulting restricted solution having the set of insertion points I, and S the set
of all feasible sequences composed by vertices in F . We further denote with R to the set of
routes in a (restricted) solution.

Given an insertion point i = (a, b) ∈ I, we say that i allocates vertices {v j ∈ F : j =
1, . . . , h} through sequence s = (v1, . . . , vh) ∈ S if arc (a, b) in the restricted solution is
replaced by arcs (a, v1), (v1, v2), . . . , (vh, b) in the new solution. In order to obtain a new
feasible solution, sequences s ∈ S considered for reallocation have to satisfy some basic
properties. In the VRPPD, precedences clearly have an impact in the order in which vertices
must appear in the sequence as well as capacities, since visiting a delivery vertex increases
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the remaining capacity in the vehicle. For a sequence s = (v1, . . . , vh), let V (s) ⊆ F be the
set of vertices in s and we define the total demand of s as

d(s) =
h∑

j=1

dv j (1)

and maximum demand consumption of s as

d̄(s) = max

{
0, max

l=1,...,h

l∑

j=1

dv j

}
. (2)

Therefore, a sequence of vertices s is feasible if the following conditions are satisfied:

1. for every pair of vertices defining a request (vk, vn+k) ∈ V (s), for some k = 1, . . . , n,
vk must appear before vn+k , and

2. it does not exceed the capacity of the vehicle at any point in the sequence, i.e., d̄(s) ≤ Q.

In addition to feasibility, wemust account for the incurred cost when allocating a sequence
s ∈ S into insertion point i = (a, b) ∈ I. For s = (v1, . . . , vh), let

c(s) =
h−1∑

j=1

cv j v j+1

denote the cost of sequence s and γsi = cav1 +c(s)+cvhb−cab denote the cost incurred when
replacing arc (a, b) by sequence s, including the cost of the linking arcs with the endpoints of
i . This definition differs from the previous research regarding the CVRP and DCVRP, where
γsi considers the cost of the best insertion between s and the reverse of s, reducing in this way
the number of sequences. In the VRPPD, however, if s includes among its vertices a complete
request, then by the condition established in 1 the reverse of s is not feasible. We further
denote with S(v) ⊆ S for v ∈ F as the set of sequences containing vertex v and SE (v) to
the set of sequences containing vertex v but not its corresponding delivery if v is a pickup, or
its corresponding pickup if v is a delivery. For s ∈ S, we define the set V E

P (s) ⊆ P ∩ V (s)
as the set of pick-up vertices appearing in s that are exclusive, that is, vertices vk such that
the corresponding delivery vn+k /∈ V (s). Similarly, we define V E

D (s) ⊆ D ∩ V (s) for the
deliveries.

Regarding the restricted solution z0(F), we also need to introduce some notation. A route
r ∈ R has an orientation and we define I(r) to the set of insertion points in r , where we
also assume that insertion points in I(r) are numbered according to their relative position
in r . Therefore, given i, j ∈ I(r), i �= j , either i < j or j < i . This is consistent with the
previous remark regarding the orientation of sequences, since otherwise we cannot guarantee
the new solution to be feasible. Conversely, given i ∈ I(r) we define ri = r , i.e., ri is the
unique route containing insertion point i ∈ I.

To account for the capacity constraint, given an insertion point i ∈ I(r) we define the
accumulated restricted demand for i as

da(i) =
∑

j=(a j ,b j )∈I(r)
j≤i

da j , (3)

which accounts for the accumulated demand of the restricted solution if no sequence is
assigned before i . Finally, we consider the case where all customers in a route are removed.
In this case, a unique insertion point i = (0, 0) is considered. We abuse notation and denote
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r = {0} to indicate that the route has only the depot, and i = (0, 0) is the unique insertion
point in the route.

Let binary variable xsi , s ∈ S and i ∈ I, take value 1 iff sequence s is allocated at insertion
point i . We proceed to show a first ILP formulation to explore N (z0,F) in the case of the
VRPPD that we name RMPD.

min
∑

s∈S

∑

i∈I
γsi xsi (4)

s.t.
∑

s∈S(v)

∑

i∈I
xsi = 1 v ∈ F (5)

∑

s∈S
xsi ≤ 1 i ∈ I (6)

∑

s∈S
d̄(s) xsi ≤ Q − da(i) −

∑

j<i
j∈I(ri )

∑

s∈S
d(s) xs j i ∈ I (7)

1 ≤
∑

s∈S
xsi r ∈ R, r = {0}

i ∈ r (8)

xs1,i + xs2, j ≤ 1 ∃ vk ∈ P ∩ F, s1 ∈ S(vk), ;
s2 ∈ S(vn+k), ri �= r j , i, j ∈ I (9)

xs2,i + xs1, j ≤ 1 ∃ vk ∈ P ∩ F, s1 ∈ S(vk),

s2 ∈ S(vn+k), ri = r j , i < j, i, j ∈ I (10)

xsi ∈ {0, 1} s ∈ S, i ∈ I (11)

The objective function (4) minimizes the total cost obtained by reallocating sequences of
vertices, aiming to obtain the best feasible reinsertion. Constraint (5) force each removed
vertex to be covered by exactly one sequence, and therefore visited exactly once in the new
solution. Constraint (6) establish that at most one sequence is assigned to each insertion point,
and thus guaranteeing the correct computation of the cost of the new solution. Restrictions
(7) force the assignment of a sequence to an insertion point to not exceed the capacity of
the vehicle, considering also the (possible) assignments made to insertion points appearing
before in the route. Constraint (8) guarantee that exactly m routes are used in the solution,
by forcing at least one assignment if all vertices have been removed from a route. Finally,
constraints (9) and (10) account for the precedences imposed by requests. Given a request
(vk, vn+k), the former are referred as inter route precedence constraints and establish that
two sequences containing the pickup and the delivery, respectively, cannot be assigned to
different routes. The latter are referred as intra route precedence constraints and establish
that, within a route, these two sequences must be assigned to insertion points satisfying the
corresponding precedence. Finally, constraint (11) define the decision variables as binaries.

The first two sets of constraints are exactly the same as in the formulation proposed
by De Franceschi et al. (2006). Constraint (7) have been adapted to capture the particular
characteristics of the VRPPD regarding the load of the vehicle. Constraints (8), (9) and (10)
are new with respect to the previous research. Although they are an intuitive and natural
way of modeling precedences, constraints (9) and (10) present a few drawbacks from a
computational standpoint. Firstly, we note that the number of constraints to be included in the
ILP formulation can increase considerably since constraints are defined by pairs of sequences
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and pairs of insertion points. This require a significant computation time to generate as well
as to solve the LP relaxation.

The second drawback concerns the heuristic resolution of the RMPD where, as proposed
in De Franceschi et al. (2006), the ILP is not solved to optimality but instead a restricted
set of variables are generated, added to the formulation and then a general purpose ILP
solver is used. To generate the variables, De Franceschi et al. (2006) suggest to heuristically
generate sequences and, based on the dual information, compute the reduced costs to decide
which variables to include in the ILP formulation. Toth and Tramontani (2008) suggest for
the DCVRP to use column generation techniques by heuristically solving the associated
column generation subproblem. Regarding the RMPD, these two approaches need to be
carefully reconsidered. Both the pricing step as well as the column generation mentioned
before require the dual information to be available. If the RMPD has been populated only
with a restricted set of variables, the constraints (9) and (10) present in the current restricted
formulation will refer only to variables in this set. On the contrary, constraints (9) and (10)
concerning variables which have not been included so far will not be part of the formulation.
Therefore, the reduced cost of a candidate variable to be included in the restricted set cannot
be computed using the current present dual information in the restricted ILP formulation.
This type of problems are known asColumn-Dependent Rows (CDR) and a possible approach
could be to adapt some of the strategies proposed in, e.g., Muter et al. (2012), Muter et al.
(2012) to formulate the RMPD. However, we consider that such an approach would be too
complex and very time consuming when in the end the resulting ILP is solved heuristically.

In order to adapt the pricing scheme proposed in De Franceschi et al. (2006), which is
described in the next section, we consider approximating the reduced cost heuristically using
the information available at the time. Consider a reduced RMPD having only a subset of
variables and constraints and that the corresponding LP relaxation has been solved. Let also
(π̃1, π̃2, π̃3, π̃4) be the vector of dual variables associated with constraints (5), (6), (7) and
(8), respectively. Let s ∈ S and i ∈ I such that xsi has not been already added to the reduced
LP, then the truncated reduced cost of variable xsi , r̂ csi , can be computed as:

r̂ csi :=

⎧
⎪⎪⎨

⎪⎪⎩

γsi − ∑
v∈V (s)

π̃1
v − π̃2

i − d̄(s)π̃3
i + π̃4

ri if ri = {0}
γsi − ∑

v∈V (s)
π̃1

v − π̃2
i − ∑

i<k
k∈I(ri )

d(s)π̃3
k − d̄(s)π̃3

i otherwise. (12)

To overcome these issues, we strengthen the ILP and substitute the precedence constraints
(9) and (10) by a new set of constraints. Indeed, the idea relies in the fact that for a request
(vk, vn+k), by constraint (5) there will be exactly one sequence containing pickup vertex
vk and exactly one sequence containing delivery vertex vn+k . As a result, both inter and
intra route precedences can be defined by including one constraint for each combination of
a request and an insertion point. This reduces the size of the formulation and, with a proper
initialization of the ILP formulation, allows the exact computation of the reduced cost of a
variable. The resulting formulation, named Strengthened RMPD (S-RMPD), is shown below.

min
∑

s∈S

∑

i∈I
γsi xsi

s.t.(5) − (8)
∑

j∈I
r j �=r

∑

s∈SE (vn+k )

xs j +
∑

i∈I(r)

∑

s∈SE (vk )

xsi ≤ 1 vk ∈ P ∩ F, r ∈ R (13)
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∑

s∈SE (vk )

xsi ≤
∑

j>i
j∈I(ri )

∑

s∈SE (vn+k )

xs j vk ∈ P ∩ F, i ∈ I

xsi ∈ {0, 1} s ∈ S, i ∈ I (14)

Consider again (π̃1, π̃2, π̃3, π̃4) the vector of dual variables associated with constraints
(5), (6), (7) and (8), respectively. Let also (ρ1, ρ2) be the dual variables associated with
constraints (13) and (14), respectively. Therefore, the reduced cost r̄ csi , for s ∈ S and i ∈ I,
assuming |ri | > 0, is

r̄ csi = γsi −
∑

v∈V (s)

π̃1
v − π̃2

i −
∑

i<k
k∈I(ri )

d(s)π̃3
k − d̄(s)π̃3

i + π̃4
ri

−
∑

vk∈V E
P (s)

ρ1
vkri −

∑

r j∈R
r j �=ri

∑

vk :
vn+k∈V E

D (s)

ρ1
vkr j

−
∑

vk∈V E
P (s)

ρ2
vk i +

∑

i>l
l∈I(ri )

∑

vk :
vn+k∈V E

D (s)

ρ2
vk l (15)

where for the sake of notation the case having ri �= {0} is omitted and can be easily computed
similarly to (12).

Note that, as opposed to the RMPD, Eq. (15) computes the reduced cost of a variable
xsi . In addition, the number of constraints in the formulation is known a priori and does not
depend on the number of sequences generated. This is particularly important because it has
a direct impact on the quality of the heuristic set of variables considered, as explained in the
pricing stage in the next section, as well as in the size of the resulting ILP formulation.

3.4 Vertex recombinations and construction of the RM

We finally present the details involved in the resolution of the RM, starting with the construc-
tion of the ILP formulation. As mentioned in the introduction, only a subset of the variables
xsi is considered, and such subset is constructed in a heuristic fashion. We remark that the
procedure is similar for the two ILP formulations presented in the previous section, RMPD
and S-RMPD, and the difference relies in the computation of the reduced costs in each case,
as expressed in Eqs. (12) and (15), respectively.

Initially, we associate each basic sequence to its pivot position, in order to guarantee that
the original solution can be reconstructed, and that any solution obtained will be at least as
good as the starting solution. In addition, for implementation purposes, we add an arbitrary set
of variables to ensure that all constraints have at least one variable with a nonzero coefficient
and that the ILP is feasible. For each insertion point i ∈ I in the restricted solution, we
consider unitary sequences s =< v >, v ∈ F , and add the variables corresponding to the
25% sequences with the smallest insertion cost.

Having these variables in the model, as well as their corresponding constraints, solve the
LP formulation and compute the dual information in order to heuristically generate candidate
variables and, based on their reduced cost, select the best ones in a pricing step. Once a new
subset of variables has been included, the restricted LP is re-optimized in order to update the
dual information available. This procedure is repeated until a particular stopping criterion is
met.
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The pricing step considers each insertion point independently. For each i ∈ I, sequences
s ∈ S of at most length Lmax are generated and the reduced cost of the corresponding variable
xsi , rcsi , is used to determine whether the variable is a candidate one or not. Limiting the
size of the sequences has an impact both on the computation time required for building the
model, which cannot be neglected, and also on the behavior of the ILP formulation. For
example, considering large sequences may produce many incompatibilities among them due
to precedence violations. The sequences are constructed by iteratively increasing their length
and, in each iteration, the best Nmin sequences -in terms of the reduced costs- are added to
the formulation and used in the next iteration. From the remaining sequences, those having
the corresponding reduced cost below a threshold value RC are considered as well, selecting
at most Nmax of them. The parameters Lmax , Nmin, Nmax and value RC are determined
experimentally.

For the parameter RC , we propose a modification regarding the procedure developed
by De Franceschi et al. (2006). Instead of considering a fixed value, we suggest to dynam-
ically update this threshold using the average of the candidate variables selected so far,
and to reset this value whenever new dual information becomes available. On prelimi-
nary computational results, this modification produced very good results compared to the
static version with different values. The motivation behind this change is that, as opposed
to the other parameters, RC is very sensitive to the characteristics of the instance and defin-
ing a general value seems to be difficult to adjust experimentally. To avoid confusions,
we redefine this value and denote it as rcdyn. Before starting, rcdyn = ∞ and initially it
is computed as the average of the first Nmin + Nmax variables with the smallest reduced
cost.

The sketch of the pricing step for a particular insertion point i ∈ I is shown in Algo-
rithm 2. We remark that the LP relaxation is re-optimized after the pricing step has been
applied for all insertion points, and we set rcdyn = ∞ and start the pricing procedure
again. Intuitively, the value of rcdyn is recomputed from scratch whenever the dual infor-
mation is updated. The procedure is applied iteratively until a limit of 5 consecutive LP
re-optimizations without improvements is reached, or a maximum of 200 iterations overall.
Then, the resulting ILP formulation is constructed and solved by a general purpose solver. To
avoid generating duplicated variables, hashing techniques were used in the implementation
of the algorithm.

Algorithm 2 VRPPD Pricing Step
Input: insertion point i , π̃ optimal dual variables for the current LP, Nmin , Nmax , Lmax .

1. (Initialization) Set L := 0, S := {<>}
2. L = L + 1 represents the actual size of the generated sequences.

3. (Generation) For each s ∈ S, v ∈ F such that v /∈ s, generate all sequences of size L obtained by feasible
insertions of v into s, that is, without violating the maximum capacity and the precedences.

4. (Evaluation) For each s generated in Step 3, consider the variable xsi and evaluate its corresponding reduced
cost rcsi (π̃ ). Set S = ∅.

5. (Selection) Sort sequences increasingly according to their reduced cost rcsi . Insert in S the first Nmin
sequences, and at most Nmax from the remaining such that rcsi (π̃ ) ≤ rcdyn. Insert in the RM the variables
xsi corresponding to the selected variables. Update rc

dyn using the reduced costs of the candidate variables.
6. (Termination) If L < Lmax , start again from Step 2. Otherwise, terminate the procedure.
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4 Computational experiments

The method described in the previous section has been implemented in c++, using
g++ 4.8.2, CPLEX 12.4 as a general purpose LP and ILP solver, and a CentOS 6.4
as operating system. The experiments are run on an Intel Core i7 3.40 GHz with 16Gb of
RAM.

Regarding the instances, we report over four different sets from related problems, previ-
ously adapted to the version of the VRPPD considered in this paper:

– Set 1: Instances for theDCVRP from theVRPLIB 1, where the pairs defining each request
are randomly generated. The number of vehicles is fixed to the maximum established in
each instance.

– Set 2: Homberger instances2, adapted by discarding time windows and randomly gen-
erating the pairs defining each request, similarly to the previous case. We consider all
instances with n = 200, and a subset of the instances with n = 400. We set m = 20 for
the instances having n = 200, and m = 10 when n = 400. This decision relies on the
fact that, on preliminary experiments, we observed that the solutions tend to be mainly
small routes satisfying each of them a few requests when having many routes. Therefore,
in order to allow more flexibility to the solution set, we decided to reduce the number of
routes.

– Set 3: A subset of the instances for the single vehicle case and infinite capacity, known
as PDTSP, used in Dumitrescu et al. (2008)3. From the instances used in this paper, we
consider the subset of random instances. We use these instances to assess for the quality
of the results obtained by our approach given that the optimal solution is known for many
of them. We remark that PDTSP is a particular case and some of the constraints are
relaxed (i.e., capacity and inter-route movements).

– Set 4: PDVRPTW instances from Li and Lim (2003), also considered in Ropke and
Pisinger (2006)4. Similar to Set 1, the information regarding the time windows is dis-
carded. Since our problem requires a fixed number of routes, we set this parameter using
the information of the Best Known Solution (BKS) for each instance.

In sets 1 and 2, the demand of a request is computed as the average of the demands from the
corresponding two customers in the original instance. This prevents the instance to become
infeasible due to capacity limitations. For Set 1, for the instances having an odd number of
customers the one having the highest number is discarded.

Regarding the methods evaluated, we consider two approaches following the scheme
described in the previous section and where the difference relies in the ILP formulation used
for the reallocation step. Therefore, we abuse notation and refer to the methods as RMPD and
S-RMPD to account for the standard and lifted RMs, respectively. We also remark that we do
not restrict the execution time of the ILP solver, in order to study and obtain a deeper insight
on the behavior of the formulation in practice. Preliminary experiments were conducted in

1 Instances retrieved from http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html.
Last access: July 2016.
2 Instances retrieved from http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-with-time-windows-
instances/. Last access: July 2016.
3 Instances retrieved from http://www.diku.dk/~sropke/DataSets/. Last access: July 2016.
4 Instances retrieved from http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/.
Last access: July 2016. Due to some differences regarding the solutions obtained in some of the instances with
respect to the ones published by Li and Lim (2003), we consider the optimal and best known solutions for the
instances in this site.
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order to define the combination of parameters for each method. We observed that the best
results were obtained by Scattered(p) using p = 0.35. Therefore, this scheme will be
the one considered for the experiments. The intuition behind the length of the sequences is
the following. For RMPD, having long sequences generate a large number of precedence
constraints, which results in a considerable time to generate the ILP formulation. Regarding
the S-RMPD, the lifted precedence constraints allow to consider longer sequences and the
impact regarding the size of the resulting ILP formulation is manageable. As to the values of
Nmin and Nmax , we observe better results by deciding whether to include or not a variable in
the formulation based on the dual information. This is of course influenced by the presence
of the dynamic pricing. The resulting combinations are:

– RMPD: We set Lmax = 3, Nmin = 1, Nmax = 6, Scattered(p) with p = 0.35,
– S-RMPD: We set Lmax = 7, Nmin = 1, Nmax = 6, Scattered(p) with p = 0.35.

The computational results are divided in two parts. First, we conduct a series of exper-
iments over sets 1 and 2 to compare the results obtained for RMPD and S-RMPD, where
the latter produces the best results in terms of quality and computational times. Based on
these results, we conducted further experiments on a larger set of instances to analyze the
particular behavior of S-RMPD.

4.1 Comparison between RMPD and S-RMPD

For each instance, both methods start from the same initial feasible solution as described in
Sect. 3.1. We report the value of the solution obtained by the initial heuristic and the compu-
tation time required. For both RMPD and S-RMPD, we report the improvement percentage
obtained at two different moments during the process, i.e., a partial improvement %Im-p and
an overall improvement%Im-t, to be specified later, as well as the overall number of iterations
#it and the total time spent for the optimization of the ILP formulation, ILP-T. Regarding
the execution time, for instances having less than 400 customers we impose a maximum of
3600 s. However, since the time required for both the construction and the resolution of the
ILP is considerable and depends on n, for instances having n ≥ 400 we impose a maximum
of 9000 s for the execution time. We remark that this value represents the limit to start the
optimization of an ILP, and both methods may eventually use some extra time to perform
the last optimization. In addition, we let %Im-p be the value of the improvement obtained at
900 s when n < 400, and the improvement obtained after 3600 s when n ≥ 400. This partial
improvement aims to give an insight of the behavior of the algorithms during the whole
process and not only at the end. In both cases, %Im-t represents the overall improvement
obtained for the instance. In the tables shown below, the best improvements are shown in
bold.

We show in Table 1 the results obtained for Set 1. The columns n and m stand for the
number of customers and vehicles considered, respectively. The main message of this table is
that S-RMPD obtains better results than RMPD in almost all instances, and in the remaining
ones the values obtained by S-RMPD are very close to the ones produced by RMPD. For
instances having a few vertices, the methods find similar solutions and only small differences
can be observed in some of the instances, always in favor of S-RMPD. For medium and
large instances, i.e. n ≥ 200, the improvements obtained by S-RMPD are significantly larger
compared to those obtained byRMPD,where in almost all cases the improvements are at least
the double and we remark that on some instances it behaves also three or four times better.
This difference is justified by the number of iterations performed, where we can observe
that S-RMPD is able to perform more iterations than RMPD, and also in the time spent for
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solving the corresponding ILP formulation. These two factors, combined with the fact that
S-RMPD allows to exactly assess the quality of a variable by the complete computation of its
corresponding reduced cost, increase the chances of finding better solutions. Furthermore, we
can make the following observation: in almost all instances, the solution found by S-RMPD
in the intermediate evaluation, reported in column %Im-p is better than the final solution
obtained by RMPD. This suggests that the lifting formulation produces, as expected, better
results in less computation times.

In Table 2 we present the results for the instances in Set 2 where n = 200 andm = 20. The
tendency is similar as in the previous experiment, with S-RMPD outperforming RMPD in
58 out of the 60 instances. Furthermore, even considering the results obtained after 900 s S-
RMPDobtains better results thanRMPD.The latter is only able to obtain better improvements
in 3 of the instances, and the results obtained by S-RMPD are comparable. We remark the
special case of instance RC2_2_1, where neither RMPD nor S-RMPD are able to find any
improvement. We conducted further experiments, firstly varying the order of the local search
operators, and noted that the initial solutions are indeed worse than the actual (around 5%)
and that the final results obtained are approximately 1% below the reported one. In addition,
we tested also 5 different seeds for the current configuration, and only in one case the solution
is 0.66% better than the reported one. This suggests that, for this case, the initial solution is
indeed a good one and obtaining an improved solution is difficult.

Finally, we report in Table 3 the results obtained for the 12 instances in Set 2 consisting
of 400 customers. S-RMPD outperforms RMPD in 11 out of the 12 cases (some of them
remarkably better, for example instances C1_4_2 and RC1_4_2), and it is comparable in
the only instance where RMPD produced better results. This is consistent with the previous
experiments and we observe the same tendency. However, in this case the improvements
obtained by S-RMPD are significantly higher compared with the ones produced by RMPD.
This seems to be related with the number of iterations performed and the time required to
solve the corresponding ILP formulation. Indeed, once the ILP is defined, we can clearly
observe that S-RMPD requires, in general, only a small portion of the time required by
RMPD. Our conjecture is that the variables generated for the S-RMPD are of better quality
than those generated for the RMPD, and as expected the lifting procedure applied over the
precedence constraints produces a tighter formulation.

4.2 Evaluation of S-RMPD

Given the results reported in the previous section, we now concentrate on the particular
behavior of the S-RMPD. Firstly, we analyze the impact of the quality of the initial solution
on the final results obtained by the algorithm. For this purpose, we consider the randomized
version of the initial heuristic described in Sect. 3.1. Within this framework, we generate
10 different initial solutions, on which the modified VND procedure is applied. From the
resulting solutions, we select the best three among them as starting solutions. We name this
approach S-RMPD(10,3). In addition, in order to obtain a fair comparison regarding the
quality of the solutions and the computing time required for their computation, the total time
assigned for the execution of S-RMPD is evenly divided among the 3 starting solutions for
S-RMPD(10,3). Regarding the results, for S-RMPD(10,3) we report the objective value of
the initial solution which, after applying the overall framework, resulted in the best solution
found by S-RMPD(10,3). For both methods, we report the objective value of the best solution
found (Obj-t) instead of the improvement percentages. For S-RMPD(10,3), we also report
the average computing time for the 10 initial solutions.
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Table 2 Computational results on Homberger adapted instances, n = 200 and m = 20

Instance Start RMPD S-RMPD

Obj. Time %Im-p %Im-t #it ILP-T %Im-p %Im-t #it ILP-T

C1_210 4941.23 2.4 1.5 2.3 39 1033.7 4.2 5.3 223 201.58

C2_210 4038.27 6.3 4.5 4.6 54 749.6 5.8 6.2 197 81.39

R1_210 5543.26 1.6 3.9 7.0 18 2249.8 9.7 11.1 229 205.97

R2_210 4743.28 4.4 2.3 3.9 59 673.0 8.0 8.0 199 90.20

C1_2_1 5481.69 1.5 2.7 5.9 24 1296.7 8.2 8.2 220 218.02

C1_2_2 5237.93 2.1 1.9 2.6 23 1441.7 4.3 4.9 227 278.48

C1_2_3 4900.27 3.8 0.1 1.3 12 1724.6 11.5 11.7 193 365.15

C1_2_4 5373.86 3.9 1.1 3.7 18 1437.1 6.1 6.1 174 520.33

C1_2_5 5200.77 1.3 0.7 2.7 13 1563.3 7.0 7.7 208 306.84

C1_2_6 5314.53 2.8 3.6 3.6 8 2437.4 8.7 10.2 174 542.11

C1_2_7 5173.74 2.5 3.7 5.2 30 1208.7 6.7 7.3 217 237.13

C1_2_8 5369.94 3.3 3.5 3.8 27 1236.7 4.3 4.3 217 295.02

C1_2_9 4980.07 2.1 3.0 4.2 28 1239.3 5.3 6.3 201 311.04

C2_2_1 3900.40 20.6 1.5 2.3 56 729.2 3.8 3.8 186 124.35

C2_2_2 3771.91 28.0 1.9 2.2 56 701.9 2.5 2.8 178 127.54

C2_2_3 3907.69 10.1 3.5 4.7 50 852.2 4.4 4.5 189 144.14

C2_2_4 3984.96 7.0 1.5 1.9 58 644.7 3.1 8.8 199 84.04

C2_2_5 3962.39 19.8 6.2 7.3 48 821.8 8.6 8.8 180 108.63

C2_2_6 4003.66 6.2 0.1 0.2 56 675.9 0.3 1.0 201 95.95

C2_2_7 4199.97 20.8 5.2 5.6 45 971.6 3.1 5.3 166 224.89

C2_2_8 3906.58 6.1 0.7 0.8 57 696.5 0.9 1.8 199 113.99

C2_2_9 3550.32 13.3 0.2 0.3 60 611.5 1.1 1.5 178 82.04

R1_2_1 5195.44 4.5 0.7 0.8 37 1068.4 0.8 0.8 229 204.10

R1_2_2 5348.37 2.6 1.0 2.1 27 1229.8 5.3 6.2 214 252.09

R1_2_3 5244.79 3.2 2.3 3.1 29 1193.0 5.8 6.2 213 243.21

R1_2_4 5364.92 4.4 1.0 1.5 29 1176.5 4.3 5.0 213 281.28

R1_2_5 5622.63 3.7 1.3 1.9 16 2786.8 5.7 8.4 160 657.44

R1_2_6 5395.59 2.4 1.1 5.7 29 2056.0 7.1 7.1 221 236.79

R1_2_7 5368.91 3.4 0.6 1.4 21 1873.3 6.7 6.7 198 387.19

R1_2_8 5593.93 2.1 1.0 2.7 13 1800.4 6.0 6.3 225 224.17

R1_2_9 5337.44 2.9 3.5 4.4 38 1002.1 5.2 5.3 236 210.37

R2_2_1 4348.15 10.2 4.4 5.0 60 662.6 5.8 5.8 191 120.45

R2_2_2 4387.83 17.2 4.0 4.8 59 671.8 4.8 4.8 175 119.49

R2_2_3 4644.41 8.7 5.6 8.9 52 830.2 11.4 11.5 169 138.77

R2_2_4 4624.38 8.3 2.2 3.1 56 699.3 6.1 6.6 182 88.17

R2_2_5 4339.37 19.2 3.6 4.7 59 655.5 7.4 7.6 170 121.65

R2_2_6 4099.04 9.5 4.1 4.3 62 705.7 4.5 4.6 167 133.68

R2_2_7 4743.23 6.4 4.5 4.9 58 687.5 6.4 10.1 189 93.38

R2_2_8 4250.89 4.9 0.2 0.6 62 617.8 1.0 1.0 187 89.44

R2_2_9 4270.29 11.4 1.1 1.2 60 622.7 2.1 2.4 193 85.32

RC1_210 5448.18 1.5 0.7 1.4 31 1176.0 3.0 3.2 215 390.21
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Table 2 continued

Instance Start RMPD S-RMPD

Obj. Time %Im-p %Im-t #it ILP-T %Im-p %Im-t #it ILP-T

RC2_210 4484.72 7.9 0.0 0.4 60 685.3 6.2 6.2 182 98.48

RC1_2_1 4750.28 4.1 3.8 5.0 23 1319.3 6.6 7.8 187 384.68

RC1_2_2 5290.72 2.1 2.6 5.7 11 1609.9 5.5 7.8 176 528.6

RC1_2_3 5138.55 2.8 0.2 0.8 20 1514.9 1.9 2.8 193 409.52

RC1_2_4 5121.29 2.7 1.7 2.6 28 1266.1 5.5 6.5 190 431.23

RC1_2_5 5152.87 6.7 1.8 1.9 7 1804.5 4.5 4.7 190 472.49

RC1_2_6 4889.95 5.2 1.5 1.7 8 1893.9 4.1 4.7 143 807.29

RC1_2_7 5260.66 4.7 2.8 2.9 14 1513.5 5.5 7.1 184 471.36

RC1_2_8 5250.98 1.3 1.8 3.8 33 1142.7 4.5 5.2 224 270.48

RC1_2_9 5137.59 4.4 0.6 1.3 9 1604.8 2.9 3.2 181 496.00

RC2_2_1 4151.95 7.7 0.0 0.0 58 647.2 0.0 0.0 216 61.99

RC2_2_2 4138.40 14.7 1.4 1.7 62 681.0 1.9 2.5 182 114.17

RC2_2_3 4197.74 17.8 1.7 1.9 55 753.5 3.8 4.3 169 121.17

RC2_2_4 4314.48 3.9 2.2 2.2 57 696.5 2.2 2.2 210 99.01

RC2_2_5 4622.44 9.7 6.0 6.2 64 643.3 8.6 10.2 180 138.91

RC2_2_6 4182.00 19.2 0.9 1.0 61 669.9 2.2 3.8 191 115.55

RC2_2_7 4360.36 10.1 4.2 4.6 57 715.3 6.5 8.4 192 110.76

RC2_2_8 4391.38 6.9 3.6 3.6 60 635.2 3.8 6.5 203 102.64

RC2_2_9 4264.23 10.0 0.9 1.0 59 682.3 3.3 3.5 173 162.17

Table 3 Computational results on Homberger instances, n = 400 and m = 10

Instance Start RMPD S-RMPD

Obj. Time %Im-p %Im-t #it ILP-T %Im-p %Im-t #it ILP-T

C1_4_1 7543.64 382.0 0.2 0.7 10 8199.8 4.0 6.8 155 1818.75

C1_4_2 8244.04 283.7 0.9 2.6 10 8908.5 10.4 15.7 128 2848.77

C2_4_1 5426.59 730.4 1.1 6.5 42 3685.3 4.9 5.3 159 528.42

C2_4_2 5860.51 806.5 0.5 3.1 47 2963.3 3.4 5.0 158 373.25

R1_4_1 8719.48 246.0 0.4 1.4 8 7828.9 4.3 8.6 151 2160.08

R1_4_2 8512.00 260.6 0.0 0.1 7 7906.4 8.9 11.1 167 1856.76

R2_4_1 6249.83 639.1 0.3 2.0 56 2595.3 0.4 4.2 143 692.97

R2_4_2 6450.44 448.6 1.3 4.1 48 3287.6 4.1 7.5 166 498.95

RC1_4_1 7879.39 233.2 0.2 0.2 6 8618.8 5.4 7.4 187 1170.97

RC1_4_2 8570.19 211.8 0.2 0.9 13 7234.1 7.9 13.6 155 2020.04

RC2_4_1 6298.29 2586.8 1.2 4.8 35 2892.5 4.0 5.1 115 443.90

RC2_4_2 7111.61 132.1 0.6 2.0 52 2706.3 7.0 14.1 184 478.13

In Table 4 we report the comparison between S-RMPD and S-RMPD(10,3) for the
instances in Set 1. Recall that a time limit of 1800 s is imposed to instances having less
than 400 vertices, and 9000 s for the remaining three instances. Therefore, S-RMPD(10,3)
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Table 4 Computational results on VRPLIB instances

Instance n m S-RMPD S-RMPD(10,3)

Init. Obj. Init. Time Obj-t #it Init. Obj. Avg. Time Obj-t #it

D022-04g 20 4 485.70 0.0 471.72 70686 499.74 0.00 471.72 26264

D023-03g 22 3 815.57 0.0 815.57 63221 802.36 0.00 784.10 21473

D030-03g 28 3 687.97 0.0 665.81 31461 690.05 0.00 665.81 12314

D033-04g 32 4 949.06 0.0 922.65 18962 905.39 0.00 905.39 7638

D051-06c 50 6 830.42 0.0 755.21 5744 858.74 0.01 730.32 2057

D076-11c 74 11 1269.05 0.1 1235.60 2137 1292.87 0.02 1185.00 776

D101-09c 100 9 1322.06 0.3 1244.21 885 1265.54 0.09 1219.69 328

D101-11c 100 11 1720.02 0.1 1504.02 887 1740.39 0.07 1541.60 296

D121-11c 120 11 1795.78 1.6 1769.00 497 1922.33 0.23 1628.82 180

D151-14b 150 14 1826.37 2.7 1822.42 388 1941.17 0.28 1738.38 137

D151-14c 150 14 1702.51 1.7 1665.24 388 1767.09 0.29 1657.73 145

D200-18b 198 18 2344.25 3.6 2171.68 219 2460.54 0.65 2253.92 65

D200-18c 198 18 2364.66 4.1 2157.92 225 2495.06 0.69 2210.53 75

D201-05k 200 5 10916.14 27.4 10043.28 219 10376.77 4.22 9628.85 80

D241-10k 240 10 8926.83 41.9 8021.72 96 9081.84 3.67 8526.54 39

D281-08k 280 8 14354.97 56.5 13773.46 86 13995.92 13.34 13498.59 27

D321-10k 320 10 13967.40 130.7 13718.56 71 14069.67 13.96 13246.27 25

D361-09k 360 9 17681.01 298.7 16768.70 33 17736.52 40.39 16623.80 11

D401-10k 400 10 18759.52 1205.1 17209.13 11 18166.54 56.29 16714.09 39

D441-11K 440 11 19970.15 879.0 18712.93 7 20319.90 63.75 18731.33 32

D481-12k 480 12 25212.01 1796.0 22394.35 5 25208.57 113.25 22832.23 27

considers 600 s for each initial solution in the first case, and 3000 s in the latter. Themainmes-
sage of this table is that the approach is sensitive to the initial solution. The results obtained
by S-RMPD(10,3) in general are better than the original results. In this particular table, given
an instance we identify the best initial solution between the two methods by underlining its
objective value. We can observe that in this case there is no clear tendency indicating that a
better initial solution would lead to a better final solution. In this sense, the results are aligned
with the ones reported in De Franceschi et al. (2006), being able to achieve a considerable
improvement when starting from solutions of different quality.

For the three instances having 400 vertices or more, the S-RMPD(10,3) produced better
results. This is justified by the fact that each initial solution of the S-RMPD(10,3) consumes
the whole time assigned for the execution, and further improved solutions could be found if
more time is available. On the other hand, S-RMPD is able to find further improvements by
using the available timewith a unique starting solution. Althoughwe do not report the details,
a similar behavior is observed on the instances in Set 2. S-RMPD(10,3) produces slightly
worse results than S-RMPD, around 1% on average for n = 200 and 2% for n = 400, but
in all cases we observe that S-RMPD(10,3) is still improving the incumbent solution when
approaching to the time limit imposed.

Based on this analysis, we report in Table 5 the results obtained on instances in Set 3.
The objective is to analyze the quality of the solutions obtained by the S-RMPD(10,3). We
report the results obtained on these instances by Dumitrescu et al. (2008). Optimality gaps
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Table 5 Computational results on m = 1 instances

Instance n S-RMPD S-RMPD(10,3)

Best Best LB Time Opt Start Obj-t Time %Im-t

prob15a 30 5150 – 8 � 5309 5286 0.00 2.64

prob15b 30 5391 – 21 � 5769 5457 0.83 1.22

prob15c 30 5008 – 0 � 5008 – – 0.00

prob15d 30 5566 – 14 � 6034 5566 4.07 0.00

prob15e 30 5229 – 0 � 5811 5229 1.15 0.00

prob20a 40 5698 – 12 � 6116 5698 1.65 0.00

prob20b 40 6213 – 20 � 6241 6213 0.43 0.00

prob20c 40 6200 – 19 � 7043 6200 2.12 0.00

prob20d 40 6106 – 17 � 6830 6243 10.97 2.24

prob20e 40 6465 – 58 � 6551 6465 3.01 0.00

prob25a 50 7332 7168.14 14400 2.29 7781 7386 64.98 0.74

prob25b 50 6665 – 3138 � 7346 6956 17.76 4.37

prob25c 50 7095 – 291 � 8153 7347 33.29 3.55

prob25d 50 7069 – 14323 � 7712 7405 56.69 4.75

prob25e 50 6754 – 72 � 7740 7058 7.39 4.50

prob30a 60 7309 7196.27 14400 1.57 7900 7412 21.11 1.41

prob30b 60 6857 – 2843 � 8087 7116 125.56 3.78

prob30c 60 7723 – 1891 � 9019 8007 26.91 3.68

prob30d 60 7310 – 573 � 7947 7310 28.30 0.00

prob30e 60 7213 7166.34 14400 0.65 7746 7294 514.33 1.12

prob35a 70 7746 – 2104 � 9091 8026 149.52 3.61

prob35b 70 7904 7496.03 14400 5.44 8956 8595 234.67 8.74

prob35c 70 7949 7858.39 14400 1.15 8777 8151 478.97 2.54

prob35d 70 7905 7686.77 14400 2.84 10006 8386 82.90 6.08

prob35e 70 8530 8069.74 14400 5.70 10057 9070 69.48 6.33

are computed with respect to the best solution reported by them. For instances having 10
and 20 vertices, the initial heuristic is able to find the optimal solution and therefore are
omitted. For the remaining instances, the average optimality gap is 2.55%, obtaining optimal
or near-optimal solutions in many cases. We can observe gaps below 1% for instances with
30 and 40 vertices, and below 4% for instances having 50 and 60 vertices. We can also
observe that the time required to find the best solution is considerably below the time limit
imposed for each initial solution in most of the cases. We remark that both S-RMPD and
consequently S-RMPD(10,3) are tunned considering a multi-vehicle context. Indeed, some
of the algorithmic decisions are taken assuming multiple routes, such as the node removal
procedure. Despite that inter-route and capacity restrictions in the S-RMPD(10,3) are not
binding, removing requests (i.e., a pair pickup and delivery) are not necessary for the single
vehicle route. These kind of decisions may clearly affect the overall performance of the
approach, for which further investigations could be conducted.

We extend the results to the instances in Set 4. Since the VRPPD represents a relax-
ation of the problem studied in Li and Lim (2003), Ropke and Pisinger (2006), we compare
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the improvements obtained with respect to the solutions reported for the PDVRPTW. The
aggregated results by type of instances are shown in Table 6. For each group of instances,
we report the average objective value of the Best Known Solution (BKS) and the aver-
age of vehicles used for the PDVRPTW. In addition, we report the results obtained by
S-RMPD(10,3) in terms of the average objective value of the starting solution that pro-
duced the best solution, as well as the relative improvement percentage with respect to the
BKS.We further include in our experiments a variation of S-RMPD, named S-RMPD(BKS),

Table 6 Computational results on Li and Lim (2003) instances

Instance Avg. BKS Avg. m S-RMPD(10,3) S-RMPD(BKS)

Avg. Init %Im-t %Im-t

LC1 874.12 9.67 796.32 9.61 9.15

LC2 589.86 3.00 667.74 −4.83 0.44

LR1 1219.62 11.92 1051.48 15.68 15.40

LR2 970.84 2.73 844.73 18.03 14.94

LRC1 1386.74 11.50 1132.19 21.46 20.19

LRC2 1133.12 3.25 909.75 21.99 16.06

Fig. 2 Objective values versus number of iterations for two instances a instance C2_2_2, initial iterations b
instance R2_2_2, initial iterations c instance C2_2_2, first 100 it d instance R2_2_2, first 100 it
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where the BKS is set as the unique initial solution. As expected, since we are considering a
relaxation of the problem, the improvements obtained are significant. There is a particular
behavior for LC2 type instances, where S-RMPD(10,3) is not able to improve the solu-
tion. This is related to the quality of the initial solutions, and the results show that when
starting from the BKS we are able to improve these solutions. Another interesting observa-
tion regards the quality of the solutions depending on the instance type. The improvements
obtained are smaller for the clustered instances LC1 and LC2 compared to the rest of the
instances.

Finally, we make some remarks regarding the impact of the number of iterations for both
RMPD and S-RMPD. If instead of limiting the execution time, we impose a limit on the
number of iterations, in general the results obtained are somehow mixed and do not show
a clear tendency. When comparing the evolution of the objective function of the incumbent
solution in terms of the number of iterations executed, RMPD finds better solutions than
S-RMPD on some instances, and the opposite occurs in other cases. We show in Fig. 2 two
representative examples. In Fig. 2a, bwe show the first 17 iterations for two different instances
showing the two situations. We remark that both methods start from the same initial solution.
In addition, in Fig. 2c, d, we show the results for the first 100 iterations. We remark that
in these instances, RMPD is not able to reach this number due to the time required in each
iteration. These last two images illustrate the advantage of considering formulation S-RMPD
as a local search operator.

5 Conclusions and future research

In this paper we consider the Vehicle Routing Problemwith Pickups andDeliveries (VRPPD)
and propose an adaptation of the Reallocation Model (RM) proposed by De Franceschi
et al. (2006), which involves exploring a large neighborhood of a feasible solution by the
resolution of an ILP formulation. To account for the precedences among customers, we adapt
and redefine some basic notation and propose a first ILP formulation, RMPD, which is then
improved by applying strengthening techniques to limit the number of precedence-related
constraints in the formulation, S-RMPD. In both cases, we also adapt the formulation in
order to account for the problem where exactly m vehicles have to be used. The overall
scheme proposed by De Franceschi et al. (2006) is adapted for the VRPPD and the two
ILP formulations are evaluated experimentally on a large number of instances having up
to 481 customers. The computational results show that S-RMPD outperforms RMPD in
almost all instances, and that their behavior in terms of the improvements obtained as well as
regarding the computational effort required makes S-RMPD a suitable option to be applied
in practice.

As future research, it would be interesting to extend the S-RMPD to the case where the
VRPPD includes time windows at the customers as well. Similarly to our case, the inclusion
of time windows may require considerable modifications to the overall scheme, both at a
modeling and at an experimental level, due to feasibility issues. In terms of the RM, due to
the presence of timewindows, the assignment of a sequence to an insertion point may become
infeasible depending on which sequences are assigned previously in the route, and how this
affects the arrival times at its vertices. One alternative could be to control the feasibility of
the assignments of sequences to insertion points by adapting the idea of infeasible paths (see,
e.g., Ascheuer et al. (2000)) within each route, and incorporate them on demand during the
optimization of the RM.
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