
Journal of Colloid and Interface Science 419 (2014) 102–106
Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

www.elsevier .com/locate / jc is
A program for the fitting of Debye, Cole–Cole, Cole–Davidson,
and Havriliak–Negami dispersions to dielectric data
0021-9797/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcis.2013.12.031

E-mail address: cgrosse@herrera.unt.edu.ar
Constantino Grosse
Departamento de Física, Universidad Nacional de Tucumán, Avenida Independencia 1800, 4000 San Miguel de Tucumán, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Rivadavia 1917, 1033 Buenos Aires, Argentina
a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 October 2013
Accepted 12 December 2013
Available online 23 December 2013

Keywords:
Levenberg–Marquardt algorithm
Debye
Cole–Cole
Cole–Davidson
Havriliak–Negami
Non-linear parameter fitting
Dielectric dispersion
The description and interpretation of dielectric spectroscopy data usually require the use of analytical
functions, which include unknown parameters that must be determined iteratively by means of a fitting
procedure. This is not a trivial task and much effort has been spent to find the best way to accomplish it.

While the theoretical approach based on the Levenberg–Marquardt algorithm is well known, no freely
available program specifically adapted to the dielectric spectroscopy problem exists to the best of our
knowledge. Moreover, even the more general commercial packages usually fail on the following aspects:
(1) allow to keep temporarily fixed some of the parameters, (2) allow to freely specify the uncertainty
values for each data point, (3) check that parameter values fall within prescribed bounds during the fit-
ting process, and (4) allow to fit either the real, or the imaginary, or simultaneously both parts of the com-
plex permittivity.

A program that satisfies all these requirements and allows fitting any superposition of the Debye, Cole–
Cole, Cole–Davidson, and Havriliak–Negami dispersions plus a conductivity term to measured dielectric
spectroscopy data is presented. It is available on request from the author.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction by many other programs in the book so that they have a gen-
A recurring problem present in all dielectric spectroscopy labo-
ratories is the necessity to describe measured data using analytical
functions. These expressions, arising from theoretical or empirical
models, include unknown parameters that must be determined by
means of a fitting procedure. If the model expression depends non-
linearly on at least one of the unknown parameters, an iterative
procedure becomes necessary to determine the best parameter
set. This is not a trivial task and much effort has been spent to find
the best way to accomplish it.

One of the best widely known solutions is presented in the Ref.
[1], which discusses in detail the Levenberg–Marquardt algorithm
that iteratively finds the parameter values that best fit the data,
starting with guess values of these parameters provided by the
user. It also includes the source code that makes it possible to
implement a program that makes the calculations.

While this constitutes, in principle, an excellent way to solve
the above mentioned problem, a series of difficulties arise in
practice:

(1) The code is written in the form of a calling program (xmrq-
min) and a series of subroutines (mrqmin, mrqcof, gaussj,
covsrt, fgauss, gasdev, and ran1). These subroutines are used
eral character and behave as black boxes. The whole system
works, but it is not easy for a non-professional programmer
to fully understand the code. Unfortunately, this becomes
necessary since the code needs to be modified in order to
make the program perform a function not envisioned by
the authors.

(2) The calling program accomplishes two tasks: it first gener-
ates an artificial data set using an analytical expression
together with parameter values input by the user and ran-
dom ‘‘noise’’ used to simulate real data. It then determines
the parameter values that best fit this data. Therefore, in
order to use the code it is first necessary to strip from the
calling program all the code used to generate the artificial
data and then add the code required to read real data from
a file. It is also necessary to add a subroutine corresponding
to the model expression chosen by the user to describe the
experimental data.

While these modifications required to perform the fitting pro-
cess are not especially difficult, they are usually not sufficient.
The main reasons for this are the following:

(3) Fixed parameters. When the model function includes many
parameters, the fitting process becomes a complex task:
the final parameters strongly depend on the initial guess

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcis.2013.12.031&domain=pdf
http://dx.doi.org/10.1016/j.jcis.2013.12.031
mailto:cgrosse@herrera.unt.edu.ar
http://dx.doi.org/10.1016/j.jcis.2013.12.031
http://www.sciencedirect.com/science/journal/00219797
http://www.elsevier.com/locate/jcis

C. Grosse / Journal of Colloid and Interface Science 419 (2014) 102–106 103
values, the iteration often diverges, or it converges to a set
that is clearly wrong. This leads to the necessity to include
in the program the possibility to perform an initial fitting
with some of the parameters kept at fixed values. This
requirement is then progressively released in successive
program runs. Fortunately, this capability is included in
the original code.

(4) Parameter uncertainties. The obtained results also depend
quite strongly on the uncertainties of each measured data
point. While the program uses uncertainty values, it
assumes that these uncertainties are proportional to each
data value with a proportionality constant that is the same
for all data points. While this assumption might be adequate
in some cases, a practical program should allow the free
input of the data uncertainties (using information provided
by the manufacturer of the measuring instrument, for
example).

(5) Parameter bounds. In many cases, the parameters included
in theoretical or empirical models have natural bounds:
must be positive, or smaller than one, for example. It is then
necessary to include these bounds in the fitting process in
order to avoid unacceptable solutions. This capability is
not included in the original code and should be
implemented.

(6) Complex data. Experimental impedance spectroscopy data
usually includes both the real and the imaginary parts of
the measured magnitude. It is therefore essential that the
fitting program is able to determine the goodness of fit from
the distances on the complex plane between the measured
and the calculated points rather than just their real or their
imaginary parts. Again, this capability is absent in the origi-
nal code.

In this work we present a program: DielParamFit.exe, that al-
lows to fit any superposition of the Debye, Cole–Cole, Cole–David-
son, and Havriliak–Negami dispersions plus a conductivity term to
measured dielectric spectroscopy data. The program is based on
the theory, not the code, presented in Ref. [1], and includes all
the above-mentioned extensions. A detailed account of the pro-
gram implementation is presented as Supplementary material.
The executable program is available on request from the author
at cgrosse@herrera.unt.edu.ar.

2. Theory

We consider a data set made of N measured data points (xi, yi)
with 1 6 i 6 N, where x and y are the independent and depen-
dent variables, respectively. We want to represent these data by
means of an analytical expression y(x) that depends on M parame-
ters ak with 1 6 k 6 M. The problem is to determine the set of ak

parameter values that leads to the best agreement between the
measured and the calculated data points. More precisely, we wish
to determine the parameter set that minimizes the function:

v2 ¼
XN

i¼1

yi � yðxiÞ
ri

� �2

ð1Þ

Note that this expression, called Chi-squared, also depends on
the data point uncertainties ri.

We so set to zero the derivatives of the above expression with
respect to the parameters ak, which leads to M equations:

XN

i¼1

yi � yðxiÞ
r2

i

@yðxiÞ
@ak

� �
¼ 0 ð2Þ

In the case that all the model parameters are linear:
yðxÞ ¼
XM

k¼1

ak
@yðxÞ
@ak

� �
ð3Þ

Eq. (2) transforms into the final expression

XM

j¼1

ðakjajÞ ¼ bk ð4Þ

where

bk ¼
XN

i¼1

yi

r2
i

@yðxiÞ
@ak

� �
ð5Þ

akj ¼
XN

i¼1

1
r2

i

@yðxiÞ
@ak

@yðxiÞ
@aj

� �
ð6Þ

Eq. (4) constitutes a set of M linear equations that can be solved
for the parameters ak using any of the standard methods.

However, if at least some of the parameters are non-linear, Eq.
(3) and following expressions no longer hold, so that a different ap-
proach must be used. Imagine a plot of v2 in the M parameter
space. Since it is impossible, in practice, to systematically explore
all the resulting ‘‘surface’’ looking for the lowest minimum, we
have to start at an initial guess point and follow a path that des-
cends to the closest minimum. Note that the outcome of this ap-
proach depends on the coordinates of the initial guess point. A
bad guess could easily lead to a local minimum rather than the
lowest minimum. Also note that the whole ‘‘surface’’ depends on
the values of the uncertainties ri as also do the coordinates of
the local minimum.

The problem is, therefore, to find a systematic algorithm that
finds the way from the initial guess point to the local minimum.
Any intermediate stage of the process is characterized by the posi-
tion vector ~a in the parameter space, which has the components
a1 . . .aM. We seek to determine the next point ~aþ d~a that is closer
to the local minimum. The simplest approach is the steepest des-
cent method that consists in following the direction of minus the
gradient of v2:

dak ¼ �constant
@v2

@ak
ð7Þ

The constant in this expression should be sufficiently small so
that the downhill direction does not change too much over a single
step. This method is good for points far from the minimum but be-
comes extremely slow close to the minimum where the gradient
tends to zero.

Close to the minimum we can write down the second order
expansion of v2:

v2ð~aþ d~aÞ ¼ v2ð~aÞ � 2
XM

k¼1

ðbkdakÞ þ
XM

k¼1

XM

j¼1

ðakjdakdajÞ þ . . . ð8Þ

where

bk ¼ �
1
2
@v2

@ak
ð9Þ

akj ¼
1
2

@2v2

@ak@aj
ð10Þ

Eq. (8) makes it possible to calculate the gradient of v2 at~aþ d~a:

@v2

@ak

����
~aþd~a

¼ �2bk þ 2
XM

j¼1

ðakjdajÞ ð11Þ

At the minimum the gradient should vanish so that the last
parameter change d~a required to attain the minimum is deter-
mined by:

104 C. Grosse / Journal of Colloid and Interface Science 419 (2014) 102–106
XM

j¼1

ðakjdajÞ ¼ bk ð12Þ
2.1. Levenberg–Marquardt algorithm

This algorithm first proposes a way to satisfy the requirement
that the constant appearing in Eq. (7) is sufficiently small so that
the downhill direction does not change too much over a single
step. Consider an expansion of v2 with respect to each parameter:

v2ðak þ dakÞ ¼ v2ðakÞ þ
@v2

@ak
dak þ

1
2
@2v2

@a2
k

da2
k þ . . . ð13Þ

Since the second order term determines the deviation from a
linear behavior, the constant should be inversely proportional to it:

dak ¼ �
1

k @2v2

@a2
k

@v2

@ak
ð14Þ

where k is a dimensionless constant (large if the step should be
small). Using Eqs. (9) and (10), this expression reduces to

kakkdak ¼ bk ð15Þ

Eqs. (12) and (15) are then regarded as limiting cases of the fol-
lowing expression:

XM

j¼1

ða0kjdajÞ ¼ bk ð16Þ

where

a0kk � akkð1þ kÞ; a0kj � akj for k – j ð17Þ

For small values of k, Eq. (16) reduces to Eq. (12) corresponding
to points close to the minimum. On the contrary, for large k values,
the a0kk terms become dominant and Eq. (16) reduces to Eq. (15)
corresponding to points far away from the minimum.

The basic implementation of the Levenberg–Marquardt algo-
rithm includes the following steps:

(1) Pick an initial guess for each of the unknown parameters ak.
(2) Pick a small initial value for k ¼ 0:001.
(3) Compute: akj, bk, and v2ð~aÞ.
(4) Alter the akj matrix: a0kk � akkð1þ kÞ; a0kj � akj for k – j.
(5) Solve for d~a the linear equations

PM
j¼1a0kjdaj ¼ bk.

(6) Compute v2ð~aþ d~aÞ.
(7) If v2ð~aþ d~aÞ < v2ð~aÞ accept the new~a, decrease k by 10, and

go back to (3).
(8) If v2ð~aþ d~aÞ P v2ð~aÞ reject the new~a, increase k by 10, and

go back to (4).

At each iteration step the following magnitudes, Eqs. (9) and
(10), must be evaluated:

bk ¼
XN

i¼1

yi � yðxiÞ
r2

i

@yðxiÞ
@ak

� �
ð18Þ

and

akj ¼
XN

i¼1

1
r2

i

@yðxiÞ
@ak

@yðxiÞ
@aj

� �
ð19Þ

Note that Eq. (19) does not include the last addend appearing in
the full expression for the second derivative of v2:

1
2

@2v2

@ak@aj
¼
XN

i¼1

1
r2

i

@yðxiÞ
@ak

@yðxiÞ
@aj

� ½yi � yðxiÞ�
@2yðxiÞ
@ak@aj

()
ð20Þ
The main justification for this simplification is that the second
order derivative is multiplied by [yi � y(xi)], which should be close
to zero for random errors.

Finally, the code should include some criterion to finish the cal-
culation and should also display the obtained results. These should
include estimated values of the uncertainties of the obtained
parameters, which are determined by the diagonal elements of
the inverse akj matrix:

r2ðakÞ ¼ ½a��1
kk ð21Þ

The actual implementation of the program presented in this
work includes a series of additional steps, which are described in
Supplementary material.
2.2. Dielectric spectrum

In the present implementation of the program, the dielectric
spectrum is represented by the following terms:

e� ¼ �i
r0

e0x
þ e1 þ

Ad

1þ ixsd
þ Acc

1þ ixsccð Þ1�acc

þ Acd

1þ ixscdð Þbcd
þ Ahn

1þ ixshnð Þahn
� �bhn

ð22Þ

In this expression, e� ¼ e0 � ie00 is the relative permittivity (the
asterisk denotes a complex magnitude); x is the angular fre-
quency; r0 (S/m) is the limiting low frequency conductivity; e1
is the limiting high frequency permittivity; Ad, Acc, Acd, and Ahn,
are the Debye [2], Cole–Cole [3], Cole–Davidson [5], and Havril-
iak–Negami [6,7] dispersion amplitudes, while sd, scc, scd, and shn,
are the corresponding relaxation times (s). Note that the symbols
used for the exponents appearing in Eq. (22) have no universal
acceptance: in [4], for example, the exponent bcd is replaced by
1 � acd while in [8], the exponent ahn is replaced by 1 � ahn. This
should pose no problem, however, for the use of the proposed
program.

Eq. (22) includes 14 parameters: r0, e1, 4 dispersion ampli-
tudes, 4 relaxation times, and 4 exponents. Each addend in this
equation can be selected or rejected. Furthermore, each parameter
of the selected addends can be chosen to be adjustable or to remain
fixed. This last feature makes it possible to make transformations
of the different terms: setting bcd = 1 and making it fixed trans-
forms the Cole–Davidson dispersion into an additional Debye dis-
persion, for example.
3. Discussion

In order to evaluate the proposed program we shall compare it
with the original code presented in [1], considering a dielectric
spectrum characterized by two Cole–Cole dispersions with param-
eter values given in Table 1. Note that since Eq. (22) only includes a
single Cole–Cole term, the second one is represented by a Havril-
iak–Negami dispersion with bhn = 1 (and kept fixed during the cal-
culation). This corresponds to a Cole–Cole dispersion with
Acc2 = 10, scc2 = 10�9 s, and acc2 = 0.1.

The spectrum extends from 1 kHz to 1 GHz with 10 data points
per decade that are equally spaced in a log scale.

We first consider that the data points are calculated using the
above parameters without any random errors, white diamonds in
Figs. 1 and 2. Under these conditions both implementations are
able to fit exactly the model spectra to the data points with the fol-
lowing differences:

Table 1
Dielectric spectrum terms and parameter values used for the calculation of the
sample data.

Conductivity r0 = 10�4 S/m
Epsilon infinity e1 = 5
Cole–Cole Acc = 100 scc = 10�6 s acc = 0.3
Havriliak–Negami Ahn = 10 shn = 10�9 s ahn = 0.9 bhn = 1 kept fixed

Fig. 2. Cole–Cole plot with logarithmic scale for the ordinate, necessary due to the
large low frequency e0 0 values arising from the conductivity term, Eq. (22). Data
points obtained with parameters in Table 1 without random errors (white
diamonds) and with absolute uncertainties of 2.5 dielectric units (black squares).
Spectra drawn using parameters from Table 4: original code (gray line) and
proposed program (black line).

Table 2
Initial guess value ranges that lead to the expected results given in Table 1.

Original code Presented program

scc (s) 3� 10�7
6 guess 6 3� 10�6 5� 10�8

6 guess 6 3� 10�1

acc 0 6 guess 6 5� 10�1 0 6 guess 6 7� 10�1

shn (s) 2� 10�10
6 guess 6 9� 10�9 4� 10�14

6 guess 6 1� 10�6

ahn 4� 10�2
6 guess 6 1 2� 10�4

6 guess 6 1

C. Grosse / Journal of Colloid and Interface Science 419 (2014) 102–106 105
(1) The original code requires two calculations, one for the real
part of the data (providing all the parameters except r0) and
another for the imaginary part (providing all the parameters
except e1).

(2) The presented program requires just one calculation using
both the real and the imaginary parts of the data and provid-
ing all the parameters at once. However, it can also be used
in the same way as the original code.

(3) The ranges of the allowed guess values that lead to the
expected results are essentially the same for both programs
except for the parameters given in Table 2.

For both programs, the calculations were performed using only
the real part of the data. The guess values of all the parameters, ex-
cept the one whose range was being determined, were set initially
to their ‘‘exact’’ values (but allowed to change during the
calculation).

As can be seen, the original code requires a much higher preci-
sion in the determination of the guess values than the proposed
program. In the case of the relaxation times, the differences attain
several orders of magnitude. This is a very important advantage of
the proposed program since, in practice, it is very difficult to pro-
vide precise initial guesses of all the parameters.

The observed differences occur because of the following fea-
tures introduced in the proposed program:

(1) At each iteration step when new parameter values are deter-
mined, these values are only accepted when they fall within
the allowed parameter bounds. For example, all the disper-
sion amplitudes must be positive.

(2) Rather than using the relaxation times as adjustable param-
eters, the program uses internally their logarithm. This way
of doing greatly improves the calculation stability since it
automatically avoids negative relaxation time values during
the fitting procedure (see Supplementary material for more
details).
Fig. 1. Cole–Cole plot with logarithmic scale for the ordinate, necessary due to the
large low frequency e0 0 values arising from the conductivity term, Eq. (22). Data
points obtained with parameters in Table 1 without random errors (white
diamonds) and with 5% relative uncertainties (black squares). Spectra drawn using
parameters from Table 3: original code (gray line) and proposed program (black
line). Both lines overlap almost exactly.
We next consider the influence of random errors of the sample
data on the performance of the considered programs in the follow-
ing simple cases:

(1) Relative uncertainties of 5%.
(2) Absolute uncertainties of 2.5 dielectric units.

In both cases, the data were generated using the procedure de-
scribed in Ref. [1]. In order to assure the best possible fit to the
data, the programs were run using the ‘‘exact’’ parameter values,
Table 1, as initial guesses.

The results obtained using data with Relative uncertainties,
black squares in Fig. 1, are given in Table 3. As expected, the two
programs lead to very similar parameter values: the gray and black
lines in Fig. 1 almost overlap. This happens because both programs
implement relative uncertainty values that match the data uncer-
tainties. However, the original code has the disadvantage of lead-
ing to two values for each parameter (except for r0 and e1) since
real and imaginary parts of the data have to be processed individ-
ually. Note that the parameter values provided by the proposed
program, Table 3, always lie in between these two values.
Table 3
Parameter values obtained using data with relative 5% uncertainties.

Part of data Original code Presented program

Real Imaginary Real and imaginary

r0 (S/m) NA 0.999 � 10�4 0.996 � 10�4

e1 5.51 NA 4.99
Acc 101 98.3 99.7
scc (s) 1.03 � 10�6 0.967 � 10�6 1.00 � 10�6

acc 0.314 0.295 0.302
Ahn 8.75 10.2 9.92
shn (s) 0.963 � 10�9 1.02 � 10�9 1.00 � 10�9

ahn 0.986 0.872 0.884

Table 4
Parameter values obtained using data with absolute 2.5 dielectric unit uncertainties.

Part of data Original code Presented program

Real Imaginary Real and imaginary

r0 (S/m) NA 0.977 � 10�4 1.00 � 10�4

e1 4.95 NA 6.03
Acc 101 112 99.8
scc (s) 0.952 � 10�6 1.35 � 10�6 0.992 � 10�6

acc 0.296 0.382 0.296
Ahn 8.29 3.96 8.99
shn (s) 1.28 � 10�9 0.398 � 10�9 1.09 � 10�9

ahn 1.17 0.918 0.846

106 C. Grosse / Journal of Colloid and Interface Science 419 (2014) 102–106
The results obtained using data with Absolute uncertainties, black
squares in Fig. 2, are given in Table 4. The two programs lead now to
quite different parameter values since the original code can only use
relative uncertainties, while the proposed program uses in this case
absolute uncertainties that match the data uncertainties. The differ-
ences are particularly important for the high frequency dispersion
since the relative data scatter is most important for low permittivity
values, Fig. 2. Note the huge difference between the two shn values
obtained using the original code, Table 4. Also note in this table
the ahn value greater than unity, which is possible using the original
code since it does not perform any bounds checking.

These results illustrate the importance of including into the fit-
ting procedure the uncertainties of the data values. Actually, rela-
tive and absolute uncertainties are just the two simplest situations.
In real data, the uncertainties are usually much more complex and
can depend on the frequency and on the impedance of the mea-
surement cell. For instance, the modulus of the impedance could
have a relative uncertainty while the uncertainty of the phase an-
gle has an absolute value. In order to obtain the best fit parameters,
the user should use the information provided by the instrument
manufacturer, calculate the e0 and e00 uncertainties, include these
results in the data file, and select in the proposed program the
‘‘use uncertainties from file’’ option.

4. Conclusion

A program is presented that allows to describe dielectric spec-
troscopy data by means of a superposition of the most frequently
used dispersion functions: Debye, Cole–Cole, Cole–Davidson, and
Havriliak–Negami, plus a conductivity term. The program is based
on the theory given in [1], that has been adapted to the dielectric
dispersion problem including data input from file, output of results
to file, and the coding of the above mentioned dispersion functions.

It incorporates, furthermore, a series of extensions with respect
to the implementation presented in that reference, the most
important being the possibility to include data uncertainty values,
the use of parameter bounds during the fitting process, and the
possibility to fit simultaneously the real and the imaginary parts
of the data. Other improvements, as well as a full description of
the program can be found in Supplementary material.

We hope that this work will contribute to save unnecessary
repetitive work and, hopefully, improve the quality of fitted dielec-
tric dispersion parameters.

Acknowledgments

The author wishes to acknowledge financial support for this
work provided by CIUNT (Project 26/E419) of Argentina.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jcis.2013.12.031.

References

[1] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in
Fortran 77. The Art of Scientific Computing, second ed., Cambridge University
Press, New York, 1995.

[2] P. Debye, Polar Molecules, Dover Publications, New York, 1929.
[3] K.S. Cole, R.H. Cole, J. Chem. Phys. 9 (1941) 341–351.
[4] D.W. Davidson, R.H. Cole, J. Chem. Phys. 18 (1950) 1417.
[5] D.W. Davidson, R.H. Cole, J. Chem. Phys. 19 (1951) 1484–1490.
[6] S. Havriliak, S. Negami, J. Polym. Sci. C14 (1966) 99.
[7] S. Havriliak, S. Negami, Polymer 8 (1967) 161–210.
[8] C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization. Dielectrics in Time-

Dependent Fields, vol. II, Elsevier, New York, 1978.

http://dx.doi.org/10.1016/j.jcis.2013.12.031
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0005
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0005
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0005
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0005
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0010
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0010
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0015
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0020
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0025
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0030
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0035
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0040
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0040
http://refhub.elsevier.com/S0021-9797(13)01108-9/h0040

	A program for the fitting of Debye, Cole–Cole, Cole–Davidson, and Havriliak–Negami dispersions to dielectric data
	1 Introduction
	2 Theory
	2.1 Levenberg–Marquardt algorithm
	2.2 Dielectric spectrum

	3 Discussion
	4 Conclusion
	Acknowledgments
	Appendix A Supplementary material
	References

SUPPLEMENTARY MATERIAL

Program operation

 In order to operate, the program requires two text files located in the same folder as

"DielParamFit.exe":

(1) An Options file containing the 45 option and initial guess parameter values needed for

the fitting process.

(2) A Data file containing at least two space or tab separated columns: frequency (Hz)

and real or imaginary parts of the relative permittivity. At most, it can contain five columns:

frequency, real and imaginary parts of the permittivity, and their uncertainty values.

 After processing this information, the program generates three new files:

(3) A Results file containing the options used, results of each iteration step, and final

results of the calculation.

(4) The "Last_Options.txt" file containing the options used in the last calculation.

(5) The "New_Options.txt" file containing the options used in the last calculation except

for the guess parameter values that are replaced by the results obtained in the last calculation.

These last two files are the only ones that overwrite, if necessary, existing files with the same

name.

 When started, the program displays a blank screen with two options:

(1) Program information

(2) Run the program

 If (1) is chosen, the program displays two pages of text that briefly describe the

purpose and capabilities of the program, as well as its operation.

 If (2) is chosen, the program looks for the file "Last_Options.txt" that contains the

options used in the last calculation. If not found, two new files are created:

(1) "Example_Options.txt" containing sample options for a spectrum made of

conductivity, epsilon infinity, Debye dispersion, and Cole-Cole dispersion terms.

(2) "Example_Data.txt" containing the corresponding sample "data": a column of

frequencies and columns of real and imaginary permittivity values.

"Example_Options.txt" is read and the user is presented with the main menu showing all the

options. The program can be immediately run using these option values or they can be freely

edited before performing the calculation.

 1

 If "Last_Options.txt" is found, this file is read and the main menu with the options

used in the last calculation is presented. At this stage, a new calculation can be rapidly

performed with or without minor option changes. Usually, the only option change required by

the program is a new name for the Results file since it will not overwrite any file except

"Last_Options.txt" and "New_Options.txt". Replacing "Last_Options.txt" by

"New_Options.txt" allows to start a new calculation using as guess values the parameter

values obtained in the preceding calculation (this is useful when, as discussed below, some of

the parameters have to be kept fixed and are progressively released in successive

calculations). Finally, a completely new calculation can be performed replacing

Last_Options.txt by the name of another existing Options file.

 New Options files can be created inside the program changing the options presented

on screen to the desired values, running the program, and finally renaming the

"Last_Options.txt" file. They can also be created outside the program editing with a pure text

editor any Options file. Any Results file can also be used for this purpose since these files

contain both the options used in the calculation and the results of the fitting process.

Main menu

 After either Example_Options.txt or Last_Options.txt are read by the program, the

following screen is presented:

FILE NAMES

1 Options File = Options file name

2 Data File = Data file name

3 Results File = Results file name

INPUT DATA COLE-DAVIDSON

4 Real permitt. column = [y/n] 25 Use for fitting = [y/n]

5 Imag permitt. column = [y/n] 26 Guess Amplitude = [value]

6 Uncertainty columns = [0/1/2] 27 Adjust or keep Fixed = [a/f]

CONDUCTIVITY 28 Guess Tau (sec) = [value]

7 Use for fitting = [y/n] 29 Adjust or keep Fixed = [a/f]

8 Guess value = [value] 30 Guess Beta = [value]

9 Adjust or keep Fixed = [a/f] 31 Adjust or keep Fixed = [a/f]

 2

EPSILON INFINITY HAVRILIAK-NEGAMI

10 Use for fitting = [y/n] 32 Use for fitting = [y/n]

11 Guess value = [value] 33 Guess Amplitude = [value]

12 Adjust or keep Fixed = [a/f] 34 Adjust or keep Fixed = [a/f]

DEBYE 35 Guess Tau (sec) = [value]

13 Use for fitting = [y/n] 36 Adjust or keep Fixed = [a/f]

14 Guess Amplitude = [value] 37 Guess Alpha = [value]

15 Adjust or keep Fixed = [a/f] 38 Adjust or keep Fixed = [a/f]

16 Guess Tau (sec) = [value] 39 Guess Beta = [value]

17 Adjust or keep Fixed = [a/f] 40 Adjust or keep Fixed = [a/f]

COLE-COLE FIT OPTIONS

18 Use for fitting = [y/n] 41 Use Real permittivity = [y/n]

19 Guess Amplitude = [value] 42 Use Imag. permittivity = [y/n]

20 Adjust or keep Fixed = [a/f] 43 Uncertainties from File = [y/n]

21 Guess Tau (sec) = [value] 44 Absolute uncertainties = [y/n]

22 Adjust or keep Fixed = [a/f] 45 Relative uncertainties = [y/n]

23 Guess Alpha = [value]

24 Adjust or keep Fixed = [a/f]

Invalid value in option # (explanation of the problem)

0 Run the program with the above options

1-45 Modify the corresponding option

 Actually, of the last three lines, only the first or the second appear at a given time.

Therefore, in order to run the program, all the option problems such as: invalid file names, or

contradictory options, must be previously solved. Any option can be modified by typing a

number in the range 1 to 45. An input menu is then presented showing the allowed values or

data ranges for the selected option. After entering the new value and pressing Enter the

program returns to the main menu, which now includes the modified value.

 Option 1 allows to start a completely new calculation typing the name of an existing

Options file that has been previously created.

 Option 2 allows to change the data file with respect to that used in the previous

calculation.

 3

 Option 3 makes it possible to select the name of the Results file for the next

calculation. It also avoids the possibility that the program overwrites an existing Results file.

 Options 4 to 6 provide a description of the Data file structure: besides the frequencies

column, this file should contain 1 or 2 data columns and 0 to 2 uncertainty columns.

 Options 7, 10, 13, 18, 25, and 32, specify the dispersion terms to be used in the fitting

process: a "y" selects the term while a "n" rejects it.

 Options 8, 11, 14, 16, 19, 21, 23, 26, 28, 30, 33, 35, 37, and 39, specify the initial

guess values for the corresponding parameters. These values must be specified for all the

dispersion terms selected for the fitting process while, for the rejected terms, their values are

irrelevant. When any of the above option numbers is selected, an input menu is presented

specifying the allowed range and possibly units: S/m for the conductivity and sec for the

relaxation times.

 Options 9, 12, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 38, and 40, specify whether the

corresponding parameter should be adjusted, "a", or kept fixed at its guess value, "f",

throughout the fitting process. This choice allows to transform dispersion terms: selecting the

Cole-Davidson dispersion, for example, setting its beta guess value to 1, and choosing it to be

fixed, transforms this dispersion into a second Debye term. It is also useful in those cases

when a fitting process with many parameters fails with a "singular matrix ..." message. This

might be solved keeping at first some of the parameters fixed, and releasing them

progressively when the values of the remaining parameters become better known.

 Options 41 and 42 specify whether the fitting should be performed using the real, the

imaginary, or both parts of the permittivity. Usually both parts should be used, if available.

However, when the conductivity term is present, the inclusion of the imaginary part could

lead to a failure in the fitting process, since the conductivity term diverges at low frequencies.

It is then advisable to first fit only the real part and then use the obtained parameters to fit the

imaginary part. Note that in the first of these steps, the program will require to set the

conductivity as fixed while, in the second one, it is epsilon infinity that should be set as fixed.

 Options 43 to 45 specify the use of the data uncertainties. If the Data file contains 1 or

2 uncertainty columns, option 43 can be set to "y", which is usually the best option. In the

case that there are 2 uncertainty columns the real and imaginary parts of the permittivity will

have different uncertainties (they will share the same uncertainty values otherwise). If there

are no uncertainty columns in the Data file, either option 44 or 45 should be set to "y". In the

first case all the data points will have the same uncertainty (its actual value is irrelevant)

while, in the second, each data point will have an uncertainty that is proportional to its own

 4

value (the proportionality constant value is irrelevant). The user should choose between these

two possibilities using, at best, information supplied by the instrument manufacturer or, at

least, looking at the "noise" amplitude of the measured data and its dependence on the

permittivity value. However, the Relative uncertainties option should usually be chosen when

the conductivity term is included since, otherwise, the value will be mostly determined by

just the low frequency imaginary data points.

2χ

 Once the zero option appears on the Main menu, the parameter fitting can be

performed. After typing zero, a new "Last_Options.txt" file is created, the Data file is read

and its data shown. Then, the successive iterations with the corresponding parameter values

and their uncertainties are displayed until the finishing condition is attained. Finally, the

options used in the calculation and the successive iteration data are written to the new Results

file, while the options used in the calculation with the guess values replaced by the

corresponding calculated values are written to the "New_Options.txt" file.

Program implementation

 The program was written in Fortran 90 and compiled using the Visual Digital Fortran

compiler. The code includes the CleanWin subroutine that was modified in order to obtain a

single output window with white background when compiled with the QuickWin option. The

chosen window size of 1024x600 pixels should fit into even the smallest netbook display. The

main steps of the program are:

(1) Select input an output options: name of the Data file
 number of data columns
 number of uncertainties columns
 name of the Results file

(2) Select the dispersion terms to use: , , D, CC, CD, HN 0σ ε∞

(3) Select initial parameter values: 1 kguess k M≤ ≤

(4) Select parameters to be adjusted or kept fixed:
 or 1kia = 0kia = 1 k M≤ ≤

(5) Select data fitting options: use real, imaginary, or both parts of the data

(6) Select uncertainties options: read from file, equal absolute, equal relative

 5

(7) Save all options to "Last_Options.txt"

(8) Read data from file

(9) Generate uncertainties if not read from file:
 1 iσ i N≤ ≤

(10) Generate model parameters: ka 1 k M≤ ≤

(11) Generate parameters to be adjusted kp 1 k mfit≤ ≤

(12) Compute: , kjα kβ 1 ,k j mfit≤ ≤

 and 2χ

(13) Copy Last_Options.txt to the new Results file

(14) Display and write to the Results file: 1 ka k M≤ ≤

 and 2χ

(15) Set: and 0.001λ= 0test =

(16) Alter : kjα '

kj kjα α= 1 ,k j mfit≤ ≤

 (' 1kk kkα α λ= +) 1 k mfit≤ ≤

(17) Solve for kpδ : ()'

1

mfit

kj j k
j

pα δ β
=

=∑ 1 k mfit≤ ≤

(18) Save: old

kj kjα α= 1 ,k j mfit≤ ≤

 and old
k kβ = β old

k kp p= 1 k mfit≤ ≤

 old
ka = ka

k

1 k M≤ ≤

 2 2
oldχ χ=

(19) Compute respecting bounds: k kp p pδ= + 1 k mfit≤ ≤
 and 1 ka k M≤ ≤

(20) Compute: , kjα kβ 1 ,k j mfit≤ ≤

 and 2χ

(21) Compute: 1 [] 1

kjα − ,k j mfit≤ ≤

 and jcovkk from [] 1
kkα − 1 k M≤ ≤

 6

(22) Display and write to the Results file: Iteration #, , λ 2χ
 and ka jcovkk 1 k M≤ ≤

(23) IF (success) IF 2 2
oldχ χ<

2 2
3

2 2 10old

old

χ χ
χ χ

−− <
+

 1test test= +

 IF 4te GO TO (25) st ≥
 GO TO (16) 0.λ= 1λ

(24) IF (failure) IF 2 2
oldχ χ≥

2 2
9

2 2 10old

old

χ χ
χ χ

−− <
+

 GO TO (25)

 old
kj kjα α= 1 ,k j mfit≤ ≤

 and old
k kβ β= old

k kp p= 1 k mfit≤ ≤

 old
k ka a= 1 k M≤ ≤

 2 2
oldχ χ=

 and , GO TO (16) 1λ= 0λ

k

0test =

(25) Create "New_Options.txt" file using current option and parameter values.

(26) End program execution.

 Steps (1) to (6) correspond to the user interface that has been described in the

preceding section. Step (4) follows the method commented in ref [1] that consists in defining

an array , together with the parameters , which contains the value 1 for the parameters

to be adjusted and 0 for those kept fixed.

kia ka

 Normally, step (10) would simply set the initial values of the parameters to their guess

values:

ka guess= (1)
However, in the dielectric spectrum expression (22) in the Article, all the relaxation times

always appear multiplied by the frequency. Since the frequency has a logarithmic nature

(when comparing two frequency values what matters is their quotient, not their difference)

this nature should also be shared by all the jτ . Therefore, the following expression was used

for these parameters instead of eq (1):

(10logka guess=)k (2)

 7

Moreover, wherever appears it the calculations, it was replaced by . This way of

doing greatly improves the calculation stability since it automatically avoids negative

relaxation time values during the fitting procedure.

kaω 10 kaω

 Step (11) separates from all the M parameters included in the selected dispersion

terms those that should be adjusted (options 9, 12, ... set to "a"). These parameters are named

kp with 1 . k mfit≤ ≤

 Step (12) would be trivial, except that it allows to compute , , and , eqs (19),

(18), and (1) in the Article, in the case that both the real and imaginary parts of the

permittivity are to be fitted. In the general case that the measured data are complex:

kjα kβ
2χ

* ' "y y iy= +

eq (1) in the Article takes the form:

() () ()
2 2* * ' ' " "

2
2 2

1 1

N N
i i i i i i

i ii i

y y x y y x y y x
χ

σ σ= =

⎡ ⎤ ⎡− − + −⎢ ⎥ ⎢⎣ ⎦ ⎣= =∑ ∑
2⎤⎥⎦ (3)

In fact, the uncertainties of the real and imaginary parts of the data may well be different.

Therefore, the most general expression for used by the program is: 2χ

() ()
2 2' ' " "

2
2

1 1

N N
i i i i

i iRi Ii

y y x y y x
χ

σ σ= =

⎡ ⎤ ⎡− −⎢ ⎥ ⎢= +⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

∑ ∑ 2

⎤
⎥
⎥
⎥⎦

 (4)

while eqs (18) and (19) in the Article become:

() () () ()' ' ' " " "

2 2
1 1

N N
i i i i i

k
k ki iRi Ii

iy y x y x y y x y x
a a

β
σ σ= =

⎡ ⎤ ⎡− ∂ − ∂⎢ ⎥ ⎢= +⎢ ⎥ ⎢∂ ∂⎢ ⎥ ⎢⎣ ⎦ ⎣
∑ ∑

⎤
⎥
⎥
⎥⎦
 (5)

() () () ()' ' " "

2 2
1 1

1 1N N
i i i

kj
k j k ji iRi Ii

iy x y x y x y x
a a a a

α
σ σ= =

⎡ ⎤ ⎡∂ ∂ ∂ ∂⎢ ⎥ ⎢= +⎢ ⎥ ⎢∂ ∂ ∂ ∂⎢ ⎥ ⎢⎣ ⎦ ⎣
∑ ∑

⎤
⎥
⎥
⎥⎦
 (6)

 The analytical expressions used to calculate the real and imaginary parts of the

permittivity were deduced from eq (22) in the Article written as:

() () () ()* ' " * * * *0

0
d d cc cc cd cd hn hni i A F A F A F A Fσε ε ε ε ω ω ω ω

ε ω ∞= − =− + + + + + (7)

where:

()
()

*
2

1

1
d

d
d

iF ωτω
ωτ

−=
+

 (8)

 8

()
() ()

() () ()

1 1

*
1 2

1 sin cos
2

1 2 sin
2

cc cc

cc cc

cc cc
cc cc

cc
cc

cc cc

i
F

α α

α α

α π α πωτ ωτ
ω α πωτ ωτ

− −

− −

+ −
=

+ + 1
2

)

 (9)

() () () () (* cos cos cos sincd cd
cd cd cd cd cd cd cdF iβ βω ϕ β ϕ ϕ β ϕ= − (10)

() () ()

() ()

*

22

cos sin

1 2 cos
2

hn

hn hn

hn hn hn hn
hn

hn
hn hn

i
F β

α α

β ϕ β ϕ
ω

α πωτ ωτ

−
=

⎡ ⎤
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

 (11)

and

(arctancd cdϕ =)ωτ (12)

()

()

sin
2arctan

1 cos
2

hn

hn

hn
hn

hn
hn

hn

α

α

α πωτ
ϕ α πωτ
=

+
 (13)

The corresponding derivatives with respect to the linear parameters: , , , , ,

and , are determined analytically using these same equations. As for the remaining non

linear parameters: relaxation times and exponents, the derivatives are calculated numerically.

0σ ε∞ dA ccA cdA

hnA

 Step (14) displays on screen and writes to file the initial parameter values. The only

non trivial detail is that for the relaxation times the displayed values are 10 rather than . ka
ka

 Step (15) is the last one before the main iteration loop. Two variables are initialized:

, the main variable in the Levenberg-Marquardt algorithm, and te , used for the finishing

condition. As stated in ref [1], it is generally unnecessary to iterate to convergence: machine

accuracy or round off limit. One might stop on the first or second occasion that decreases

by a small relative amount such as . To be on the safe side we adopted the criterion that

the iteration should stop after 4 successive iterations when the following two conditions are

met:

λ st

2χ

310−

2 2
oldχ χ< and () ()2 2 2 2 10old oldχ χ χ χ −− + < 3 (14)

However, this condition proved to be not sufficient: often the iterations stabilize at and

 values that are numerically equal. Because of this, the iteration also stops when:

2χ

2
oldχ

() ()2 2 2 2 10old oldχ χ χ χ −− + < 9 (15)

Moreover, the result of each iteration step is written to file together with the estimated

uncertainties of the fitted parameters (in the implementation of ref [1] the uncertainties are

 9

only shown at the end of the calculation) . Therefore, if for some reason the program fails to

stop after a reasonable amount of time while the results of successive iterations appearing on

screen have stabilized, the program can be manually interrupted and the results used.

 Step (17) consists of the solution of linear equations in the unknowns mfit kpδ .

Unlike the implementation presented in ref [1], the LU decomposition with implicit pivoting

rather than the Gauss-Jordan method is used, since it is considered in this same reference as

the preferred method.

 Step (19) consists in the calculation of the new parameter values k k kp p pδ= + and

. Unlike the implementation in ref [1], this is done forcing the new values to respect the

parameter bounds:

ka

0, , , , ,d cc cd hnA A A Aσ ε∞ ≥0 ; 0 ; (16) 1ccα≤ < 0 , , 1cd hn hnβ α β< ≤

As already noted under step (10), no bound checking is necessary on the relaxation time

values.

 Step (21) consists in calculating [] , the inverse of the matrix. This is done

using the LU decomposition as explained in ref [1]. The diagonal elements [] are then

used to construct the diagonal elements of the covariance matrix

1
kjα −

kjα

1
kkα −

jcovkk . These last elements

are set equal to zero for the parameters that are kept fixed and equal to [] for the

parameters that are adjusted.

1
kkα −

 Step (22) displays on screen and writes to file the results of the iteration that has just

been completed. These results include the uncertainties of the current parameter values that

are given by jcovkk , eq (21) in the Article. However, for the relaxation times, the presented

values are ()1010 logka
je covkk⎡ ⎤⎢ ⎥⎣ ⎦ .

 Step (23) is performed if the outcome of the last iteration was successful. The first

termination condition, eq (14) is evaluated and, if satisfied, the program exits the iteration

loop. Otherwise, the value of λ is reduced and a new iteration is started.

 Step (24) is performed if the outcome of the last iteration was unsuccessful. The

second termination condition, eq (15) is evaluated and, if satisfied, the program exits the

iteration loop. Otherwise, all the variables are given their previous values, the value of λ is

increased, and a new iteration is started.

 10

 Step (25) saves the obtained parameter values together with the remaining options to

the "New_Options.txt" file, which can be used if the fitting process is to be continued starting

with the last calculated parameter values.

For any questions, comments, requests, or suggestions please contact the author at:

cgrosse@herrera.unt.edu.ar.

 11

