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Summary

Alien plants produce severe environmental and eco-

nomic losses in the territories they invade. Modelling

the spatial distribution of alien species as a function of

the environment in the native range has therefore

become an essential first step in the struggle against

invasions. Phyla nodiflora var. minor is a fast-growing

perennial herb native to South America that has spread

through three continents, where it poses a major threat

to biodiversity and significantly impacts on conserva-

tion and grazing systems, mainly in riparian areas. To

assess the distribution of native Argentine populations

of P. nodiflora as a function of the environment, we

conducted long-term roadside surveys and associated

the occurrence of the plant with climatic, geographical,

demographical and vegetation cover variables in a gen-

eralised linear mixed model. The plant was recorded in

230 of 431 sites, mostly east of 66°W and north of

39°S. According to the best model, which predicted the

data 58% better than random assignment, its occur-

rence was associated with temperature variables (mean

annual values and daytime range) and relative humid-

ity. Based on these associations, we generated a pres-

ence probability map for the occurrence of P. nodiflora

in southern South America. Understanding the envi-

ronmental determinants of the distribution of weeds in

their native range provides valuable baseline data to

further manage the spread of alien species.
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Introduction

Plant invasions are a serious threat to natural and

managed ecosystems worldwide (Manchester & Bul-

lock, 2000). Invading species degrade human health

and wealth, alter the structure and functioning of

undisturbed ecosystems and threaten native biological

diversity (Vitousek et al., 1997). In this context, the

increasing need to understand and manage plant inva-

sions has generated interest in predicting the
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distribution of weeds in both anthropogenic and natu-

ral systems (Peltzer et al., 2007). Spatial modelling of

species distributions has therefore become a central

tool in the study of biological invasions, placing pre-

dictive modelling of species occurrence as a function of

the environment at the forefront of invasion research

(Steiner et al., 2008).

The problem of invasive alien plants that are likely

to have an adverse environmental or economic effect

on their invaded ranges is frequently addressed by dif-

ferent weed management strategies, biological control

among them. This consists in the deliberate introduc-

tion of host-specific insects or pathogens that reduce

the plant’s ability to invade. Potential biocontrol can-

didates are subjected to rigorous specificity tests to

minimise the risks of direct or indirect non-target

effects. Under these conditions, the method is consid-

ered safe, environmentally sound and cost-effective

(Cruttwell McFadyen, 1998). The first step of any

weed control programme therefore involves native-

range surveying, that is searching for the weed and its

naturally co-occurring enemies in the region of origin.

Consequently, the identification and characterisation

of the native range and the centre of origin of a weed

are crucial in all biological control programmes

(McClay et al., 2004).

Phyla nodiflora var. minor (Hook.) O’Leary &

M�ulgura (ex. P. canescens (Kunth) Greene) is a fast-

growing member of the Verbenaceae, a mat-forming

perennial herb that develops on floodplains and in pas-

tures, mainly in heavy clay soils, but also in lighter and

sandier soils. It reproduces sexually and vegetatively,

both in association with water; the seeds require inun-

dation to be released from dormancy, whereas clonal

plant fragments are dispersed by water courses. It can

also tolerate long periods of inundation and drought or

frost conditions (Macdonald et al., 2012). Such adapt-

ability has been taken into consideration when mod-

elling its potential distribution in Australia under

different climate change scenarios (Murray et al., 2012).

The weed is native to South America, distributed

from southern Ecuador, throughout Peru, Paraguay,

Bolivia and Brazil, to Chile, Argentina and Uruguay

(O’Leary & M�ulgura, 2011). It has also been recorded

from fossil pollen in Argentina (Stutz et al., 2014),

reinforcing this area as the centre of origin. Commonly

referred to as Lippia, the species is found worldwide in

tropical to temperate regions (O’Leary & M�ulgura,

2011). In Australia, it poses a major threat to biodiver-

sity and riparian areas and has a significant impact on

conservation and grazing systems, due to its increasing

density and distribution (Julien et al., 2004). The great-

est impact occurs in the Murray Darling Basin, costing

$38 million per year to the grazing industry and

producing an estimated annual loss of environmental

services of $1.8 billion (Earl, 2003). There, biological

control has been proposed as part of its management,

particularly in reserve areas, woodlands, forests and

along stream banks.

The quantification of the species–environment rela-

tionship through models may be regarded as hypothe-

ses as to how environmental factors control the

distribution of species (Guisan & Zimmermann, 2000).

In this study, we assessed the distribution of native

populations of P. nodiflora in Argentina as a function

of the environment. To do so, we developed an

approach combining field surveys, geographic informa-

tion systems (GIS) and generalised linear mixed models

(GLMM) to generate a spatial model for the distribu-

tion of plant populations in southern South America.

The main objectives were to identify the environmental

variables that affect the distribution of P. nodiflora in

its native range and to obtain a presence probability

map. Such a map can contribute to select areas where

one should search for potential biological control

agents in the native range. Finally, we aimed to discuss

aspects hampering the search for such biological con-

trol agents for P. nodiflora and their potential applica-

tions to the introduced range, within an integrated

weed management programme.

Materials and methods

Study area

Continental Argentina extends from 21°460S to 55°030S
and 53°380W to 73°340W, with a surface of

2 791 810 km2 distributed in 23 provinces and the Fed-

eral District (Fig. 1). The country encompasses several

climatic regions from subtropical in the north to cold

temperate in the south. Autochthonous vegetation is

highly variable throughout the territory, which leads to

the definition of 11 phytogeographical regions (Cabrera,

1976). The population is approximately 40 million peo-

ple with >60% concentrated in three provinces, namely

Buenos Aires, C�ordoba and Santa F�e (INDEC, 2010).

Phyla nodiflora has been recorded throughout

Argentina, in 17 provinces. The weed P. nodiflora var.

minor, originally known as P. canescens, was recently

included as a variety of P. nodiflora, along with other

two varieties (P. nodiflora var. nodiflora and P. nodi-

flora var. reptans) and possible intermediate forms

(O’Leary & M�ulgura, 2011). In its exotic range in Aus-

tralia, the plant is sometimes confused with P. nodi-

flora var. nodiflora (Xu et al., 2015). For further

analyses in this work, all varieties were pooled and

hereafter referred to as P. nodiflora following O’Leary

and M�ulgura (2011).
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Fig. 1 Main river basins considered for the modelling of Phyla nodiflora within its native range in Argentina.
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Field surveys

In Argentina, roadside surveys were conducted from

41°S northwards from December 2004 to January

2011. As the plant is small and prostrate and often

grows in the understory, it is difficult to see from a

moving vehicle. Therefore, stopping inspection sites

were assigned according to the following criteria: the

first stopping site was randomly selected within the

first 50 km away from Buenos Aires along main routes

and subsequent inspections were systematically placed

every 50, 100 and 180 km, giving a total of 431 visited

sites. Additionally, in December 2007, a survey was

conducted in Chile along a North–South transect from

Copiap�o (27°220S, 70°200W) to Valdivia (39°490S,
73°170W). There, sampling was conducted in locations

with previous herbarium records, about every 50 km

along the transect and in river beds, where the habitat

is suitable for plant growth. In all cases, each stopping

site was thoroughly scanned for the occurrence of the

weed in a fixed area of approximately 100 m along the

road 9 3 m wide. If present, taller herbaceous plants

were set aside to search beneath them, near the

ground. Plant specimens from all locations were

collected and dried for further identification.

Geographical database

Data on the occurrence of P. nodiflora were georefer-

enced in a GIS. Although the search criterion was to

stop at 50 km in each survey, several surveys were con-

ducted each year, and the main routes inspected were

repeated in some surveys performed in different years.

Therefore, when pooling all surveys, some sampling

pairs were closer than 50 km to each other. Given the

fact that local absences near positive records may be

due to stochastic factors or unmeasured microenviron-

mental features, to evaluate a potential spatial autocor-

relation a semivariogram of the data set was

performed (Creesie, 1993). The range was approxi-

mately 40 km, therefore negative points within a

40 km radius of a positive point were excluded from

further analyses. This led to the exclusion of 115 nega-

tive points; in the resulting subset of 316 sampling

sites, P. nodiflora was present in 219 sites and absent

in 97.

Distribution model

We used GLMM to analyse the relationship between

the distribution of P. nodiflora and the environment.

The model was fitted using a maximum likelihood

method, assuming a binomial distribution of errors

and applying the logistic function as a link between

the response variable and the linear predictor

(McCullagh & Nelder, 1989).

Presence/absence of P. nodiflora per sampling site

(ca. 300 m2) was the response variable, whereas

explanatory variables were selected based on previous

information on the ecology and environmental require-

ments of the plant (Gross et al., 2010; Xu et al.,

2010a). Thematic layers of each explanatory variable

considered (see Table 1) were built in grid format cov-

ering the study area and its surroundings. Some vari-

ables (climatic features, percent vegetation cover and

elevation above sea level) were directly available in

grid format of dissimilar spatial resolution, ranging

from 0.5 9 0.5 to 18.5 9 18.5 km (Table 1). Distance

to permanent rivers and to any kind of river or water

body were calculated from vector-based digital maps.

Finally, demographic variables were available as points

and interpolated using the inverse weighted distance

method. The values of all environmental variables at

each sampling site were obtained with the GIS to run

the model.

Initially, the Wilcoxon 2-sample test was used to

compare the values of each explanatory variable

between sites grouped according to presence or absence

of P. nodiflora. All continuous variables were then cen-

tred and squared and preliminary univariate GLM

were run for each variable, either categorical or contin-

uous and, in the latter case, for the sum of the variable

and its square to account for any potential quadratic

relationships (Table 1). Subsequently, a manual

upward stepwise multiple regression procedure was

performed. Term additions were evaluated by Akaike’s

Information Criterion (AIC) and the model that

yielded the lowest AIC was selected from all possible

models (Zuur et al., 2009). Two-way interactions were

evaluated in each step of the procedure. To deal with

collinearity between explanatory variables, the variance

inflation factors (VIFs) were calculated, and a combi-

nation of explanatory variables was considered valid if

all VIF values were ≤5 (Zuur et al., 2009). Once the

most complete set of significant explanatory variables

were selected, and to account for the dependence of

P. nodiflora upon water courses for reproduction and

dispersion, the river basin of each presence/absence

register was entered as a random factor. In the final

model, the presence of flowers and the sampling year

were included as factors to control for differential

effects of plant detection due to blossom or a particu-

lar trend in time, whereas latitude and longitude were

also tested to discard any remnant spatial gradient not

absorbed by the explanatory variables.

The presence probability distribution map was built

by applying the final GLMM formula pixel to pixel in

the GIS. Because of the deliberate 40 km exclusion

© 2017 European Weed Research Society

4 A J Sosa et al.



T
a
b
le

1
U
n
iv
a
ri
a
te

st
a
ti
st
ic
s
o
f
th
e
ex
p
la
n
a
to
ry

v
a
ri
a
b
le
s
u
se
d
to

m
o
d
el

d
is
tr
ib
u
ti
o
n
o
f
P
h
y
la

n
o
d
ifl
o
ra

in
A
rg
en
ti
n
a
.
T
h
e
W
il
co
x
o
n
2
-s
a
m
p
le

te
st

(W
il
co
x
o
n
P
)
w
a
s
u
se
d
to

co
m
p
a
re

th
e

v
a
ri
a
b
le
s
b
et
w
ee
n
si
te
s
g
ro
u
p
ed

a
cc
o
rd
in
g
to

p
re
se
n
ce

(P
P
)
o
r
a
b
se
n
ce

(P
A
)
o
f
P
.
n
o
d
ifl
o
ra

g
en
er
a
li
ze
d
li
n
ea
r
m
o
d
el
s
p
a
ra
m
et
er

(B
)
a
n
d
st
a
n
d
a
rd

er
ro
r
(S
E
)
a
re

g
iv
en

fo
r
ea
ch

u
n
iv
a
ri
a
te

fi
t

(t
-t
es
t
B
/S
E
a
n
d
1
d
eg
re
e
o
f
fr
ee
d
o
m

[d
f]
)
fo
r
co
n
ti
n
u
o
u
s
v
a
ri
a
b
le
s;
ch
i-
sq
u
a
re

te
st

o
n
th
e
d
ev
ia
n
ce

a
n
d
1
d
f
fo
r
th
e
u
rb
a
n
/r
u
ra
l
fa
ct
o
r.
F
o
r
co
n
ti
n
u
o
u
s
v
a
ri
a
b
le
s,
b
es
t
fi
t
b
et
w
ee
n
li
n
ea
r
(x
)
o
r
q
-

u
a
d
ra
ti
c
re
la
ti
o
n
s
(x

+
x
2
)
is
re
p
o
rt
ed
.
A
IC

o
f
th
e
n
u
ll
m
o
d
el

is
3
9
1
.7

V
a
ri
a
b
le

D
e
sc
ri
p
ti
o
n

U
n
it
s

C
e
ll
si
d
e

(k
m
)†

D
a
ta

so
u
rc
e

W
il
co

x
o
n

P

P
P
m
e
d
ia
n

(m
in
-m

a
x
)

P
A

m
e
d
ia
n

(m
in
-m

a
x
)

B
�

S
E

A
IC

A
lt
it
u
d
e

E
le
v
a
ti
o
n
a
b
o
v
e
se

a
le
v
e
l

m
1

1
*
*

2
0
3
.5

(�
3
3
to

2
9
9
1
)

9
6
(�

3
7
to

2
9
8
7
)

0
.0
0
0
3
5
�

0
.0
0
0
1
6
*

3
8
5
.9

T
re
e
s

P
e
rc
e
n
ta
g
e
o
f
su

rf
a
ce

w
it
h
tr
e
e
co

v
e
r

%
0
.5

2
n
.s
.

1
0
(0

to
7
8
)

9
(0

to
7
1
)

n
.s
.

3
9
3
.5

H
e
rb
s

P
e
rc
e
n
ta
g
e
o
f
su

rf
a
ce

w
it
h
h
e
rb

co
v
e
r

%
0
.5

2
n
.s
.

8
5
(2
2
to

1
0
0
)

8
3
(1
4
to

1
0
0
)

n
.s
.

3
9
1
.8

B
a
re

so
il

P
e
rc
e
n
ta
g
e
o
f
su

rf
a
ce

w
it
h
b
a
re

so
il
co

v
e
r

%
0
.5

2
n
.s
.

0
(0

to
5
4
)

0
(0

to
8
6
)

�0
.0
3
3
�

0
.0
1
3
*
*

3
8
6
.4

T
e
m
p
e
ra
tu
re

M
e
a
n
a
n
n
u
a
l
te
m
p
e
ra
tu
re

�C
1
8
.5

3
*
*
*

1
9
.8

(1
0
.3

to
2
3
.5
)

1
7
.7

(5
.7

to
2
2
.4
)

0
.1
4
�

0
.0
4
*
*
*

3
8
1
.1

A
m
p
li
tu
d
e

M
e
a
n
a
n
n
u
a
l
d
a
y
ti
m
e
te
m
p
e
ra
tu
re

ra
n
g
e

°C
1
8
.5

3
*
*

1
2
.9

(9
.8

to
1
6
.3
)

1
2
.2

(1
0
.6

to
1
6
.1
)

0
.1
8
9
�

0
.0
9
5
*

3
8
9
.7

P
re
ci
p
it
a
ti
o
n

M
e
a
n
a
n
n
u
a
l
cu

m
u
la
ti
v
e
p
re
ci
p
it
a
ti
o
n

cm
1
8
.5

3
*
*

6
7
.5

(1
4
.9

to
1
5
1
.6
)

7
9
.5

(1
1
.7
.9

to
1
4
9
.3
)

*
*
*
, ‡

3
7
8
.0

H
u
m
id
it
y

M
e
a
n
a
n
n
u
a
l
re
la
ti
v
e
h
u
m
id
it
y

%
1
8
.5

3
*

7
1
.5

(5
3
.9

to
7
9
.8
)

7
3
.5

(4
6
.8

to
7
9
.9
)

*
*
*
, ‡

3
6
6
.8

W
in
d
sp

e
e
d

M
e
a
n
a
n
n
u
a
l
w
in
d
sp

e
e
d

m
/s

1
8
.5

3
*
*
*

2
.7

(1
.7

to
5
.0
)

3
.0

(1
.8

to
5
.5
)

*
*
*
, ‡

3
7
5
.5

F
ro
st

A
n
n
u
a
l
fr
o
st

d
a
y
s
fr
e
q
u
e
n
cy

d
a
y
s

1
8
.5

3
n
.s
.

1
5
.7

(0
.1

to
1
4
3
.0
)

2
2
.3

(0
.1

to
1
7
2
.0
)

-0
.0
1
0
�

0
.0
0
4
*

3
8
8
.1

W
e
t
d
a
y
s

N
u
m
b
e
r
o
f
a
n
n
u
a
l
ra
in
y
d
a
y
s

d
a
y
s

1
8
.5

3
*

8
3
.6

(3
9
.9

to
1
0
4
.4
)

8
5
.5

(3
3
.6

to
1
1
6
.4
)

*
*
*

3
6
9
.0

R
iv
e
r
d
is
ta
n
ce

D
is
ta
n
ce

to
th
e
n
e
a
re
st

ri
v
e
r

km
1
2
.6

4
n
.s
.

4
.8

(0
.3

to
1
7
0
.7
)

4
.4

(0
.2

to
1
4
0
.1
)

n
.s
.

3
9
2
.9

W
a
te
r
d
is
ta
n
ce

D
is
ta
n
ce

to
th
e
n
e
a
re
st

w
a
te
r

b
o
d
y
o
r
co

u
rs
e
(e
x
cl
u
d
in
g
th
e
se

a
)

km
1
2
.6

4
*
*

3
.0

(0
.0

to
6
0
.0
)

2
.0

(0
.1

to
6
0
.5
)

*
, ‡

3
8
9
.0

P
o
p
u
la
ti
o
n

P
o
p
u
la
ti
o
n
co

u
n
ts

in
2
0
1
0

P
e
o
p
le

4
.6

5
n
.s
.

1
4
7
(1

to
9
1
5
5
4
)

1
3
9
(0

to
3
0
6
5
)

n
.s
.

3
8
8
.6

R
u
ra
l/
U
rb
a
n

F
a
ct
o
r
sp

e
ci
fy
in
g
ru
ra
l
o
r
u
rb
a
n
a
re
a
s§

0
.9

5
n
.s
.

3
9
3
.7

n
.s
.,
n
o
t
si
g
n
ifi
ca
n
t.

D
a
ta

so
u
rc
es
:
(1
)
U
n
it
ed

S
ta
te
s
G
eo
lo
g
ic
a
l
S
u
rv
ey

(2
0
0
5
)
C
en
te
r
fo
r
E
a
rt
h
R
es
o
u
rc
es

O
b
se
rv
a
ti
o
n
a
n
d
S
ci
en
ce

(E
R
O
S
).
S
h
u
tt
le

R
a
d
a
r
T
o
p
o
g
ra
p
h
y
M
is
si
o
n
,
D
ig
it
a
l
T
er
ra
in

E
le
v
a
ti
o
n
D
a
ta
;
(2
)

H
a
n
se
n
M
,
D
ef
ri
es

R
,
T
o
w
n
sh
en
d
JR

,
et

a
l.
(2
0
0
3
)
5
0
0
m

M
O
D
IS

v
eg
et
a
ti
o
n
co
n
ti
n
u
o
u
s
fi
el
d
s.

T
h
e
G
lo
b
a
l
L
a
n
d
C
o
v
er

F
a
ci
li
ty
,
C
o
ll
eg
e
P
a
rk
,
M
a
ry
la
n
d
;
(3
)
N
N
D
C

C
li
m
a
te

D
a
ta

O
n
li
n
e.

h
tt
p
:/
/w

w
w
.n
es
d
is
.n
o
a
a
.g
o
v
;
(4
)
S
u
b
se
cr
et
a
r� ı
a
d
e
R
ec
u
rs
o
s
H
� ıd
ri
co
s
(2
0
0
2
)
A
tl
a
s
d
ig
it
a
l
d
e
lo
s
re
cu
rs
o
s
h�
ıd
ri
co
s
su
p
er
fi
ci
a
le
s
d
e
la

R
ep

� u
b
li
ca

A
rg
en
ti
n
a
.
S
u
b
se
cr
et
a
r� ı
a
d
e
R
ec
u
rs
o
s
H
� ıd
ri
co
s,

P
re
si
d
en
ci
a
d
e
la

N
a
ci
� o
n
,
B
u
en
o
s
A
ir
es
,
A
rg
en
ti
n
a
;
(5
)
In
st
it
u
to

N
a
ci
o
n
a
l
d
e
E
st
a
d�
ıs
ti
ca
s
y
C
en
so
s
(2
0
1
0
)
C
en
so

N
a
ci
o
n
a
l
d
e
P
o
b
la
ci
� o
n
,
H
o
g
a
re
s
y
V
iv
ie
n
d
a
s
2
0
1
0
.
h
tt
p
:/
/w

w
w
.c
en
so
2
0
1
0
.i
n

d
ec
.g
o
v
.a
r/
.

**
*S

ig
n
ifi
ca
n
t
a
t
P

<
0
.0
0
1
;
**

P
<
0
.0
1
;
*
P

<
0
.0
5
.

†S
q
u
a
re

ce
ll
s.

‡B
es
t
fi
t
is

th
e
su
m

o
f
th
e
v
a
ri
a
b
le

a
n
d
it
s
sq
u
a
re
.
In

th
is

ca
se
,
n
o
p
a
ra
m
et
er

es
ti
m
a
to
rs

a
re

p
ro
v
id
ed

a
n
d
si
g
n
ifi
ca
n
ce

is
th
e
re
su
lt

o
f
th
e
A
N
O
V
A

te
st

co
m
p
a
ri
n
g
ea
ch

m
o
d
el

w
it
h
th
e
n
u
ll

m
o
d
el
.

§T
h
e
es
ta
b
li
sh
ed

n
a
ti
o
n
a
l
cr
it
er
io
n
d
efi
n
es

a
s
ru
ra
l
a
n
y
a
re
a
in

w
h
ic
h
p
o
p
u
la
ti
o
n
is

d
is
p
er
se
d
,
o
r
g
ro
u
p
ed

in
a
lo
ca
li
ty

o
f
≤2

0
0
0
in
h
a
b
it
a
n
ts
.
O
n
th
e
co
n
tr
a
ry
,
a
n
y
a
re
a
in

w
h
ic
h
>
2
0
0
0
in
h
a
b
i-

ta
n
ts

li
v
e
to
g
et
h
er

is
co
n
si
d
er
ed

u
rb
a
n
.

© 2017 European Weed Research Society

Predicting Phyla nodiflora distribution 5

http://www.nesdis.noaa.gov
http://www.censo2010.indec.gov.ar/
http://www.censo2010.indec.gov.ar/


criterion, all points were forced to be either positive or

negative within 40 km, therefore cell size of the output

map could be no smaller than 40 km. The resulting

map was smoothed with a 10 km moving window to

improve the graphic quality of the final product. The

software R version 3.2.3 (R Development Core Team,

2015) and Arcview GIS 3.2 (Environmental Systems

Research Institute, Inc., Redlands, CA, USA) were

used for modelling and mapping, respectively.

Model validation

To evaluate the classification effectiveness of the

selected model, the Cohen0s Kappa coefficient (K) was

calculated. This index assesses improvement of classifi-

cation of the model over chance and overcomes the

problem of unequal number of presences and absences

(Fielding & Bell, 1997). The quality of the model was

classified following the Landis and Koch (1977) ranges

of agreement: poor K < 0; slight 0 ≤ K ≤ 0.2; fair

0.2 < K ≤ 0.4; moderate 0.4 < K ≤ 0.6; substantial

0.6 < K ≤ 0.8; and almost perfect 0.8 < K ≤ 1. Given

that the predicted values of the binomial model are a

probability between 0 and 1, K was calculated for each

0.01 cut-off point between the whole range of possible

values (0–1) and the point that provided the best value

of K was reported as the optimal.

Finally, as an external validation data set, the pres-

ence probability according to the model for 64 P. nodi-

flora herbarium records from the Instituto de Bot�anica

Darwinion (San Isidro, Buenos Aires, Argentina; ISSN

2250-6365) was calculated. Such records were regis-

tered from 1900 to 1970’s, and included points

throughout the South American native range of the

plant, in Argentina, Chile and Uruguay.

Results

Phyla nodiflora was widely distributed across the land-

scape, in 56.6% (230/431) of the sampled sites. Its occur-

rence was registered mostly east of 66°W and north of

39°S, from sea level to 2100 m. Univariate comparison

of sites with and without P. nodiflora showed significant

differences for several of the environmental variables

considered, with the remarkable exception of vegetation

cover variables (Table 1). The univariate GLMs were

fairly consistent with these results.

The best model described the distribution of the

plant as a function of relative humidity and two tem-

perature variables – annual mean and amplitude

(Table 2). Flower and year factors were not significant

suggesting that the results were not influenced by the

sampling design. Latitude and longitude, along with

their interaction, were also not significant. Optimal

cut-off point was estimated at 0.55; this means that in

any given site or pixel in the map in which the proba-

bility of occurrence is ≥0.55, P. nodiflora is predicted

to occur. In contrast, plant presence is unlikely in any

site/pixel with a value <0.55. K value was 0.58, classify-

ing the predictive accuracy of the model as moderate.

Phyla nodiflora presence probability was higher in

areas of intermediate relative humidity and high mean

annual temperature, but with a relative minimum in

zones with intermediate temperature amplitude

(around 12°C, Fig. 2). The river basin (seven groups,

Fig. 1) was a significant random factor. The presence

probability of P. nodiflora was higher than for an ‘av-

erage’ basin (i.e. no correction of the linear predictor

by random effects) in four basins (Pampas de la Plata,

Patagonic, Paraguay and Mar Chiquita), whereas the

opposite occurred for the other three (Paran�a-

Uruguay, Serrano and Colorado). For example,

according to the model, P. nodiflora was predicted to

occur in areas with a mean annual temperature of

~14.5°C to warmer areas in the average basin; how-

ever, it should be found in colder areas (~10°C) in

Pampas de la Plata basin, but only from 20°C in

Paran�a-Uruguay basin (Fig. 2C).

In Argentina, the map of potential distribution shows

a high occurrence probability along the north and centre

of the country (Fig. 3), which falls towards the west all

along the country and in a circumscribed zone in the

north-east. The distribution gap around 31–32°S should

be regarded with care, as there are few sampling sites

within it. The map shows another zone of high probabil-

ity of presence in the southern end of the country.

To generate a distribution probability map for the

rest of southern South America (Chile, Uruguay and

south of Bolivia and Paraguay), the model was extrap-

olated considering an average basin. With this

approach, most records (64%, 7/11) from the survey in

Chile which had not been utilised to build the model,

Table 2 Generalised linear mixed model for the occurrence of

Phyla nodiflora in Argentina. Parameters for each variable are

given, along with their corresponding standard error (SE) and

degrees of freedom (df). Z value = Parameter/SE. Quadratic

terms are indicated with a superscript (2) next to each variable.

The river basin (seven groups) is included as a random factor.

AIC of the final model is 300.6

Variable Parameter SE df Z value

Intercept 1.529 0.549 1 2.784**

Humidity �0.010 0.057 1 �0.177

Humidity2 �0.018 0.005 1 �3.501***

Temperature 0.304 0.086 1 3.520***

Amplitude 0.481 0.221 1 2.171*

Amplitude2 0.284 0.104 1 2.725**

***Significant at P < 0.001; **P < 0.01; *P < 0.05.
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were correctly classified (Fig. 3). In Chile, plants were

associated with water courses in dry areas such as the

Atacama Desert. South of the desert region, plants

were found along railway lines, roadsides, footpaths

and in lawns. The samples were identified as either

P. nodiflora var. minor or P. nodiflora var. nodiflora.

They differed from Argentine populations in leaf

toughness and colour and shape of the inflorescence

(Sosa AJ & Julien M, unpubl. obs.).

Regarding the external validation data set, the per-

centage of correctly classified herbarium records was

51% (33/64), from which 27/55 were located within the

range of the model data (Argentina) and 6/9 were

located in neighbouring countries (Chile and Uruguay)

(Fig. 3).

Discussion

Plant invasions are a leading cause of biodiversity loss

for native communities, representing a significant

threat to ecosystem function and economic sustainabil-

ity (Cipriotti et al., 2010). In this context, understand-

ing the environmental determinants of the distribution

of weeds in their native range is essential for proper

management and control in introduced areas. This is

hindered by the fact that acquisition of native range

data is typically slow and expensive and the researcher

may face different sorts of difficulties, such as time

and budget constraints (Trethowan et al., 2011). Data

collected from diverse sources are also subjected to a

variety of biases, depending on both the purpose and

methodology of the register. Therefore, the exhaustive

native range survey presented herein is valuable, due

to its extent both in space and time, the record of

absence points in addition to occurrence and the uni-

formity in data gathering.

The spatial distribution of weeds and its environ-

mental associations can be analysed with GLMM, a

statistical approach which has been reported to reach

better models compared with other multivariate tech-

niques, such as Canonical Correspondence Analysis

(Guisan & Theurillat, 2000). The results presented

herein show that the distribution of P. nodiflora can be

modelled as a function of environmental variables to

obtain a regional presence probability map. Given that

the variables used are easily available, this kind of

approach might also be extended to other regions and

validated with external data sets in order to check for

model accuracy. A word of caution is that the models

predict the realised niche, rather than the fundamental

niche of the plant, which depends on biological inter-

actions in addition to environmental determinants

(Trethowan et al., 2011). Therefore, the same exact

model need not apply for areas in which the weed was

introduced. Care must be taken when exploring the

potential for the spread of species in invasive regions;

apart from being released from their natural enemies,

Fig. 2 Probability of presence of Phyla nodiflora as a function of

varying values of each environmental variable included in the final

generalised linear mixed model (A- relative humidity; B-mean tem-

perature; C-temperature amplitude) at mean values of the other

explanatory variables, for an ‘average’ basin (i.e. no random effect)

and for each of the seven basins included as random factors.
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Fig. 3 Presence probability map of the distribution of Phyla nodiflora in southern South America, shown in a grey scale. Presence is pre-

dicted in areas with probability values higher than 0.55. Sites used for model development are indicated by squares and records in Chile are

indicated by triangles (filled for presence and empty for absence of P. nodiflora). Validation sites (herbarium records) are plotted as circles.
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weeds may not be at equilibrium with the climate and

their niches may expand further (Beaumont et al.,

2009). Ideally, when modelling the potential distribu-

tion of invading species, data from both the native

and introduced ranges should be used to account for

both the niche evolved in the area of origin and the

potential niche shifts associated with cross-continental

transfer into abiotically and biotically different envi-

ronments (Dullinger et al., 2009).

Insight on the native range of an invasive species,

including its geographical extension, could help to

understand its invasiveness and enhance alternative

management strategies, including biological control.

For species in the family Cactaceae, Novoa et al.

(2016) found that the native range size, particularly of

the genus Opuntia, was correlated with both invasive-

ness and impact. They considered that invasive species

that can establish and spread under a variety of condi-

tions (and therefore become widespread in their native

range) are able to successfully establish and become

invasive when introduced to new regions. The native

range of P. nodiflora is in South America (O’Leary &

M�ulgura, 2011), and genetic evidence suggests that this

plant may be restricted to central and northern Argen-

tina and similar latitudes in coastal Chile (Xu et al.,

2010b). Therefore, this is probably the centre of origin

of this target weed, actually worldwide distributed, and

where potential biological control candidates should be

looked for.

However, it is difficult to define plant species limits

and to properly identify a specimen of Phyla found in

nature. In northern Argentina, P. nodiflora var. minor

occurs along with P. nodiflora var. nodiflora and

P. nodiflora var.reptans and probably some unknown

hybrid combinations. Preliminary studies have shown

that insects and pathogens seem to ‘recognise’ Phyla

specimens from different localities as different plants,

expressed as a differential feeding preference and larval

performance (Sosa et al., unpubl. obs.), but further

studies are necessary to elucidate such patterns. Similar

patterns have been recorded in other systems, such as

the weevil Stenopelmus rufinasus that utilised only clo-

sely related Azolla species. While the plant taxonomy

was only confirmed by molecular studies (Madeira

et al., 2016), these authors considered the weevil ‘an

excellent taxonomist’. On the other hand, populations

of insect species that are widely separated in the native

range should be evaluated as potential biocontrol

agents with care, as they could belong to cryptic spe-

cies (Paterson et al., 2016). These considerations can

dramatically affect the success of biological control

programmes, for better or for worse.

For the prioritisation of biocontrol agents, fre-

quency and host plant use of candidates should be

studied. To anticipate and prevent potential non-target

effects, host specificity, plant damage and geographical

extensions in the plant native range should be consid-

ered, particularly for weeds composed by a complex of

related species (Moffat et al., 2013). In the case of

P. nodiflora, we still cannot affirm that specimens from

different localities in Argentina represent species or

varieties (Xu et al., 2015), or if such natural enemy–
host plant associations respond to other mechanisms,

such as local adaptation (Kawecki & Ebert, 2004).

Genetic analyses, based on specific plant chemicals,

isozymes and DNA, are currently being used as part

of biocontrol programmes. These analyses sought to

identify and characterise different strains of a given

weed, to facilitate the collection of agents from the

same strain and place of origin as the target weed

(Cruttwell McFadyen, 1998). The taxonomical situa-

tion of Phyla as a genus is still unresolved due to

inconsistencies in morphology (O’Leary & M�ulgura,

2011) and genetics (Xu et al., 2015). Any potential bio-

control candidate, particularly for management in Aus-

tralia, undoubtedly needs to be tested against the

Australian native populations of P. nodiflora.

Conclusions

Within its native range, the spatial distribution of

P. nodiflora can be modelled as a function of the envi-

ronment, notably with temperature and relative humid-

ity. Expressed in a distribution map, these associations

have two important applications in the struggle against

weed invasion. They aid in the selection of areas within

the native range in which to search for potential bio-

logical control agents and they may also help under-

stand the potential spread of the weed in their invaded

range. Natural enemies that could be utilised as biolog-

ical control agents of P. nodiflora need to be sought in

different areas of the native range. Such potential can-

didates need to be studied under different environmen-

tal scenarios and considering new genetic insights in

plant taxonomy to get a better match between native

and exotic ranges, to predict impact and to attain suc-

cessful management.
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