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Abstract.—When doing a bootstrap analysis with a single tree saved per pseudoreplicate, biased search algorithms may
influence support values more than actual properties of the data set. Two methods commonly used for finding phylogenetic
trees consist of randomizing the input order of species in multiple addition sequences followed by branch swapping, or using
random trees as the starting point for branch swapping. The randomness inherent to such methods is assumed to eliminate
any consistent preferences for some trees or unsupported groups of taxa, but both methods can be significantly biased. In
the case of trees created by sequentially adding taxa, a bias may occur even if every addition sequence is equiprobable, and
if one of the equally optimal positions for each terminal to add to the tree is selected equiprobably. In the case of branch
swapping, the bias can happen even when branch swapping equiprobably selects any of the trees of better score in the
subtree-pruning-regrafting-neighborhood or tree-bisection-reconnection-neighborhood. Consequently, when the data set
is ambiguous, both random-addition sequences and branch swapping from random trees may (i) find some of the optimal
trees much more frequently than others and (ii) find some groups with a frequency that differs from their frequency
among all optimal trees. When the data set defines a single optimal tree, the groups present in that tree may have a different
probability of being found by a search, even if supported by equal amounts of evidence. This may happen in both parsimony
and maximum-likelihood analyses, and even in small data sets without incongruence. [Bootstrap; group support; jackknife;
phylogenetic analysis; resampling; tree searches.]

In phylogenetic analysis, the degree of support for
groups is most commonly evaluated by resampling
the original data set and recalculating the tree, as in
bootstrapping (Felsenstein 1985) and jackknifing (Farris
et al. 1996). When a pseudoreplicate supports alternative
trees, some authors propose using the strict consensus
to summarize those results (Farris et al. 1996; Davis
et al. 1998; Goloboff et al. 2003; De Laet et al. 2004).
But the most common approach is weighting each group
found by its frequency among the optimal trees for the
pseudoreplicate, as implemented in PAUP* (Swofford
1998) and Phylip (Felsenstein 2005). Felsenstein (2004,
p. 339) defended this approach on the grounds that, as
more trees are tied for a pseudoreplicate, the lower the
weight each tree has to receive to avoid overemphasizing
the results of that pseudoreplicate when the trees are
subsequently combined. When using such a treatment,
groups that are absent from some but present in the
majority of optimal trees will tend to be considered
as strongly supported (see Simmons and Goloboff
[2013], and references therein). Such groups will also
be considered as strongly supported (Goloboff and Pol
2005; Yang 2006) by the standard way of summarizing
the results of a Markov chain in a Bayesian analysis
(Yang and Rannala 1997), that is, from considering the
posterior probability of a group to be the frequency
of trees sampled from the posterior having that group
(Larget and Simon 1999; Huelsenbeck et al. 2002). In this
way, both methods (bootstrap and Bayesian analyses)
incorporate the idea that if the majority (but not all) of
the optimal trees for a data set display a group, then the
group should be considered as supported.

Since resampling requires extensive calculations,
a number of approximations have been proposed.

The most common simplification—used by RAxML
(Stamatakis et al. 2005), GARLI (Zwickl 2006), and
PhyML (Guindon and Gascuel 2003)—is saving a single
tree during the heuristic search for each pseudoreplicate
matrix, even when the (resampled) data would support
several equally likely alternatives. The simplification
of saving a single tree per pseudoreplicate could be
justified on the grounds that it produces the same results
(Goloboff and Pol 2005; Simmons and Goloboff 2013) as
the frequency-within-replicates approach implemented
in PAUP* and Phylip, if the tree search has the same
chances of finding any of the equally optimal trees—
that is, if the tree search is unbiased. However, the absence of
bias is an important requirement for this equivalence. If a
biased tree search on data with multiple equally optimal
trees finds some of the trees with higher probability, then
the results of resampling will not be solely determined
by the data. Rather, they will also be determined by the
bias in the search, and thus artifactual.

In the case of ties in the optimality criterion, using
stepwise Wagner trees (Farris 1970; also known as
“greedy” trees) with a consistent addition order may
produce high frequencies for some unsupported groups
(Backeljau et al. 1996; Farris et al. 1996). Given that
using the same taxon ordering to build the trees
can produce a systematic bias favoring some groups,
it has been assumed that the opposite would be
true: that randomizing the taxon ordering would
eliminate the bias favoring some groups. Although
few authors have discussed this idea explicitly (an
exception being Felsenstein [2004, p. 168–169]), the
notion that randomizing the addition sequences or using
random trees as starting points for branch swapping
eliminates bias is so intuitively appealing that it has
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never been questioned (and is often assumed more or
less explicitly; e.g., Goloboff and Farris [2001, p. S27];
Simmons and Goloboff [2013, p. 272]). The absence of
bias is also implicitly required for a bootstrap with
a single tree saved per pseudoreplicate to produce
meaningful values.

This article focuses on the most widely used methods
for tree searches—random-addition sequence trees and
branch swapping—demonstrating that these methods
are significantly biased, not only in the usual computer
implementations, but even when all of the possibly
deterministic elements of the algorithms are eliminated
(i.e., when every addition and insertion sequence
is equiprobable, and when branch swapping can
equiprobably start from any tree and equiprobably select
any of the trees of better score in the subtree-pruning-
regrafting [SPR]- or tree-bisection-reconnection [TBR]-
neighborhoods). This unexpected finding further calls
into question the approach of measuring group support
while saving a single tree per pseudoreplicate, and
suggests that, if appropriately implemented, measures
based on comparing tree scores (such as the likelihood
ratio test [Felsenstein 1988] or the Bremer support
[Bremer 1994]) may be preferable.

MATERIALS AND METHODS

The following programs were tested: PhyML version
4 December 2012, RAxML version 7.7.2 (compiled for
Windows with CygWin), GARLI version 2.0.1019, PAUP*
version 4.0b10, and TNT (Goloboff et al. 2008) version
September 2013. For simplicity of treatment, zero-
length branches were retained by all programs for all
tests. Note that tree searches themselves treat trees as
fully binary in most programs, only eliminating zero-
length branches at the end, so that any preference for
some binary trees will continue affecting the results
when zero-length branches are collapsed. In all of the
model-based programs but RAxML, a Jukes–Cantor
(1969) model (JC69) with a single rate of change was
used. In RAxML, the GTRGAMMA model was used
(while this may affect the specific values of bias, it
does not affect any of our main conclusions). The
programs for exact calculations of bias were written
in C and compiled with the OpenWatcom compiler;
code and binaries can be found at http://www.
lillo.org.ar/phylogeny/published/Search_bias.zip, and
as Supplementary Material in the Dryad data repository
at http://dx.doi.org/10.5061/dryad.tm80k. This article
is confined to small cases where the expected values
can be calculated exactly, because demonstrating the
existence of bias in searches requires certainty that all the
optimal trees are found (possible only for small data sets
via branch-and-bound or exhaustive searches). Larger
cases cannot be analyzed in this manner: there is no way
to know whether an unexpectedly high frequency for
a group absent from the consensus of optimal trees is
caused by the group being indeed present in the majority
of optimal trees, or caused by bias in the tree search.

TREE SEARCHES IN ACTUAL PROGRAMS

If heuristic searches are unbiased, the frequency for
each group found by branch-and-bound must match
almost exactly the frequency of the group when a
heuristic search saving a single tree is repeated with
different random seeds. This is not observed in either of
the computer programs examined here that are capable
of exact searches (TNT and PAUP*); both programs
produce very strong deviations for many data sets. The
results obtained with the programs that always use
heuristic searches to save a single tree per starting point
(RAxML, GARLI, and PhyML) resemble those obtained
when saving a single tree with TNT or PAUP*.

The bias observed in actual programs does not
prove that search algorithms themselves are biased,
since there is a number of ways in which a program
may fall short of ideal randomization. The first and
most obvious way is that any computer program uses
pseudorandom numbers (truly random numbers are
difficult to generate), but a program may introduce
determinism in other ways. In the case of Wagner trees,
even when the taxa are added to the growing tree with
a randomized sequence, positions for a given taxon
may be tied. Most programs simply select the first
best position, but which node is tried first depends
on the order in which the nodes are visited—that is,
on the insertion sequence (Simmons and Goloboff 2013,
p. 267). The easiest approach for the insertion sequence
is using a preorder or postorder traversal of the tree
(i.e., an up- or down-pass; e.g., as done by RAxML, and
the default option in TNT). But that approach might
conceivably introduce some determinism. Avoiding this
determinism would require making a list of the tree
nodes, randomizing it, and then trying to insert each
taxon following this randomized list; this is a Wagner
tree where both the insertion and addition sequences are
randomized. The same result is obtained by creating a list
of all positions tied for best, for each taxon added to the
tree, and then randomly choosing one of the positions in
the list (the former method has the advantage, from the
computational point of view, that the score calculation
for a given position can be abandoned as soon as the
best score is tied, but both produce the same final
result).

In the case of branch swapping, several
implementation details may add determinism. The
most obvious ones are the sequence in which clades to
be moved are clipped from the tree and the sequence of
reinsertion positions in the remaining subtree. Actual
programs may introduce a number of deviations from
randomness in these aspects, for the sake of speeding
up calculations.

EXACT CALCULATIONS OF TREE-SEARCH BIAS

For small data sets, instead of relying on existing
computer implementations, the probability of each
possible end result can be calculated analytically, both for
random-addition sequences and branch swapping. This
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FIGURE 1. Example to illustrate exact calculations of tree-search bias. The data set produces five optimal trees, under both parsimony and
maximum likelihood. A search is unbiased when it has the same probability of finding each of the optimal trees (0.200 in this case). Both Wagner
trees and branch-swapping starting from random trees are more likely to find some of the five optimal trees for this data set; tree 4 is the least
frequently found tree in both cases.

can be done by enumerating all possible outcomes of
each stage of a random-addition sequence Wagner tree,
or branch swapping from random starting trees.

Figure 1 shows one of the simplest examples where a
bias is evident. X is the taxon used to root the tree. We
will first consider parsimony as the optimality criterion.
Any tree in which B and C are closer to each other
than they are to A is most parsimonious; taxon R has
a missing entry for all three characters in the data set,
and thus could be placed at five alternative positions
(trees 1–5 in Fig. 1). For a tree search to be unbiased,
each of those five trees must be found equiprobably, with
probability 0.200.

Stepwise Addition
“As is”.—When the addition sequence is as given
in the data set, then a Wagner tree produces
exactly the expected result—if the insertion sequence
is randomized. Recall that a randomized insertion
sequence retaining the first best position found is
equivalent to creating for each taxon added to the tree
a list of all the best positions, and then choosing one
randomly. For the “as is” addition sequence, of the
three possible insertion points for taxon C in the subtree
X(AB), only the one that produces X(A(BC)) is best.
Taxon R can then be added at five possible branches,
each of which has the same score. If these five possible
insertion points are tried in a random sequence, then
each has a probability of 0.200 to be the first. Evidently,
only a randomized insertion sequence will produce
the expected result of 0.200 for each tree with the “as
is” addition sequence. An upward insertion sequence
will produce only tree 5, and a downward insertion
sequence (assuming the possible preorder traversals are
equiprobable) will produce only trees 1, 2, or 3, with
probability 0.333 each.

Other addition sequences.—Although an “as is” addition
with a random insertion sequence produces unbiased
results, that is not the case for all addition sequences.
Consider the results of using a sequence where XAB
are joined first, followed by R and then C. Terminal R
can be added at three locations in the subtree X(AB),
producing subtrees X(B(AR)), X(A(BR)), and X(R(AB))
with probability 0.333 each. On the first subtree, the
last terminal, C, can be added at only one position,
as sister of B, producing tree 1 as the final tree. On
the second subtree, C can be added at three positions,
producing trees 2, 3, or 4 as the final trees. On the third
subtree, C can be added at only one position, as sister
of B, producing tree 5 as the final tree. Thus, given the
addition sequence of XAB followed by R and then C,
the probability of obtaining tree 1 or tree 5 is 0.333 (a
probability of 1/3 that the first subtree is chosen, and
then a single choice leading to tree 1; likewise for the
third subtree, leading to tree 5), and the probability of
obtaining trees 2, 3, or 4 is 0.111 (a probability 0.333 that
the second subtree is chosen, and then three possible
choices leading to trees 2, 3, or 4). In other words, for this
addition sequence, a completely randomized insertion
sequence will produce some of the five trees with higher
probability than others.

Multiple random-addition sequences.—When all possible
addition sequences are equiprobable, the results are also
biased. If X (the root taxon) is always one of the first
three terminals placed in the initial subtree, then 12
distinct addition sequences for the remaining four taxa
exist (4 taxa have 24 orderings, but only 12 are relevant
because the first 2 taxa after the root can be placed
in any sequence: XAB is the same as XBA). When all
12 distinct sequences are considered, the probability of
selecting tree 1 through the sequence XAB followed by
R and then C (discussed in the previous section) is 1/12
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× 1/3 = 0.028, and the probability of selecting tree 2
through that sequence is 1/12 × 1/3 × 1/3 = 0.009.
The probability of selecting tree 1 or tree 2 through
the “as is” addition sequence is 1/12 × 1/5 = 0.017
in each case. Summing the probabilities of selecting
each of the possible trees through each of the possible
addition sequences, we obtain different probabilities
for the different trees: P(tree 1) = P(tree 5) = 0.244,
P(tree 2) = P(tree 3) = 0.189, and P(tree 4) = 0.133.

Cause of the bias.—The only way in which the different
tree probabilities could be equal when all possible
addition sequences are considered would be if the
differences in probability for the five different trees
exactly cancel out. Such an expectation of symmetry
(however aesthetically pleasing) is simply not fulfilled,
and the net result is a clear bias. The tree that places
the floating taxon R between the two partitions (tree 4 in
Fig. 1) is the least probable tree, and the trees that place
R at the first split or as sister of A (trees 1 and 5) are much
more probable than if one of the most parsimonious trees
was selected at random.

The difference in probabilities also affects the
probability of finding a tree with a given group, and the
probability of finding the group can be either increased
or decreased. Consider the groups BC and RBC: each is
present in three of the five possible trees for the data set in
Figure 1, so that their expected frequency in an unbiased
search is 0.600. But the probability of a Wagner tree
having group BC sums up to 0.622, so that the group will
appear more frequently than expected; the probability of
the tree having RBC sums to 0.511, so that the group will
appear less frequently than expected.

Implementation.—The example of Figure 1 is a small
data set, such that the calculations can be performed
manually. For cases with character conflict or more
taxa, this approach becomes intractable. For these
cases, the calculations were implemented in a small
program, wagbias. This program allows calculation of
exact probabilities of both trees and specific groups
in Wagner trees (optionally using a randomized, an
upward, or a downward insertion sequence), for data
sets with up to 10 taxa.

Variations in the stepwise tree.—The results reported above
for Figure 1 always included taxon X as the root in the
initial three-taxon subtree. Randomizing root taxon X
as well (i.e., considering also the addition sequences
where the first three-taxon subtree does not include
X), the net result continues being biased. Likewise,
using deterministic insertion sequences (either upward
or downward) produces greater deviations from the
expected frequencies.

Branch Swapping (Parsimony)
The previous sections showed that trees created

by stepwise taxon addition are irremediably biased,
but using fully random trees as starting points

for randomized branch swapping still may produce
unbiased results. Randomizing the swapping would
involve cutting the clades to swap in a random order,
and then reinserting (and rerooting, in the case of
TBR) at randomly chosen points. As an alternative
description of the same process, one may consider that
the neighborhood or vicinity of each tree T includes a
series of n trees {VT,1, VT,2 …VT,n} of a better score
than T . The set of neighbor trees when T is an optimal
tree is an empty set. SPR and TBR define different
neighborhoods. A fully randomized swapper would
pick any one of the n trees in {VT,1, VT,2 …VT,n}, with
uniform probability 1/n. Each of the Q possible (binary)
trees would be a starting point, with probability 1/Q.

An example worked out under SPR.—Consider the case
of Figure 1: tree 4 is found with a probability of 0.066
(1/15, as there are 15 possible trees for that data set)
by picking a random starting tree, but tree 4 can also
be found by using some of the 10 suboptimal trees
as starting points for swapping. Figure 2 shows all of
the possibilities for SPR branch swapping. For example,
given the suboptimal tree X((RC)(AB)) (i.e., the right
pointing horizontal arrow), SPR swapping will lead to
tree 4 with probability 1/4, since four SPR neighbors
of tree X((RC)(AB)) have fewer steps. Given that there
is a 1/15 probability that tree X((RC)(AB)) itself is the
starting point, then the probability of arriving at tree 4
through X((RC)(AB)) is 1/15 × 1/4 = 0.167. The sum of
probabilities of selecting (via SPR) tree 4 through each
of the possible trees totals P(tree 4) = 0.178. Repeating
similar calculations for the other trees, P(tree 1) = 0.255
and P(tree 2) = P(tree 3) = P(tree 5) = 0.189. Again, the tree
in which R is in the middle of the partition (tree 4 in
Fig. 1) is the least likely tree and P(group AB) = 0.622
(greater than expected) and P(group RBC) = 0.555 (smaller
than expected). As in the case of Wagner trees, the
expectation of symmetry when all possible starting
points are considered is unfounded. For example, tree
4 can be obtained by SPR swapping from 6 of the
10 suboptimal trees, while tree 1 can be obtained by
swapping from eight of those (and for two of those eight,
with conditional probability 0.5, as only two trees in their
SPR neighborhood improve the score). Those differences
make the sum of probabilities for the possible ways to
obtain tree 1 greater than the sum of probabilities to
obtain tree 4.

Implementation.—The approach illustrated in Figure 2
has been implemented in a small computer program,
tbrias. The program can handle up to 10 taxa; it operates
by generating all possible trees and calculating their
parsimony scores, then finding all of the TBR (or SPR
or NNI) neighborhoods for each tree, finally performing
the probability calculations. For faster calculation of the
probabilities of arriving at each final tree, the program
takes advantage of the fact that the neighborhoods are
ordered (including only trees of better score), so that the
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FIGURE 2. Calculation of the exact probabilities of each of the five trees in Figure 1 under SPR starting from random trees. The optimal trees
(1–5, numbered as in Fig. 1) can be found either by direct generation (with probability 1/15, since there are 15 possible trees for this data set), or
they can be found by swapping from 1 of the 10 suboptimal trees (each of which is the starting point with P= 1/15). Some of the optimal trees
(e.g., tree 1) can be found by swapping from eight suboptimal trees, whereas others (e.g., tree 4) can be found only from six suboptimal trees.
Therefore, the probability of finding tree 1 is higher than the probability of finding tree 4.

partial probabilities can be calculated first for the longest
trees, then for successively shorter trees. Note that the
SPR implementation in tbrias never moves the root taxon
(which it could do by moving the root taxon to other
parts of the tree and then rerooting—those moves are
considered in tbrias as only part of the repertoire of TBR
moves).

TBR swapping.—Unlike SPR, TBR is completely un-
biased for the example of Figure 2—all five trees have
exactly the same probability of P = 0.200. However, a
matrix with a single taxon floating in a subtree of more
than four taxa (as well as other examples shown in the
next section) does have a significant bias in TBR. TBR has
a slight (but not universal) tendency to be less biased
than SPR. Although in the case of SPR swapping the
root taxon might make a difference, there cannot be any
such hope in the case of TBR—the moves performed by
TBR include all rootings of the clipped clade, so that the
taxon chosen as root is not relevant for the calculation of
probabilities under TBR.

Variations in swapping algorithm.—Alternative ways to
perform branch swapping are biased as well. NNI,
known as a superficial and ineffective swapping
algorithm, is not only more strongly biased than SPR
and TBR; it can also fail to find the optimal tree even in

the simplest cases (e.g., for Fig. 1, NNI from a random
tree fails to find the optimal tree with P = 0.133).

The approach described in the previous sections
avoids redundant swaps (i.e., alternative swaps that
result in the same topology)—given that some better
trees exist in the neighborhood of a tree, each of those
is chosen equiprobably. However, one could think of
the algorithms as defined in terms of moves instead
of neighborhoods, in which case some of the moves
are redundant (implying that some of the transitions
between trees may be more likely than others). When
redundant moves are allowed, the bias in branch
swapping is generally intensified.

An alternative form of swapping (to our knowledge
implemented only in PAUP* and POY version 4; Varón
et al. 2010) is the “steepest descent” option. Given
that steepest descent is more time-consuming than the
standard algorithms, it is rarely used in phylogenetic
analyses. The exact calculation of possible outcomes
of steepest descent SPR and TBR (done by simply
selecting all of the best trees in {VT,1, VT,2 …VT,n}
and then picking one of those at random) shows that
in all examples given in this article swapping remains
biased. A closer examination of Figure 2 shows why:
each of the suboptimal trees may lead to an optimal
tree by just one SPR rearrangement—that is, without
passing through trees of intermediate length. Thus,
steepest descent makes no difference for the data set of
Figure 1.
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FIGURE 3. A case where maximum likelihood and parsimony produce the same two optimal trees, but because of differences in the ordering
of suboptimal trees, the two criteria have a SPR or TBR bias preferring a different optimal tree. Tree 1 and group FG are found with P = 0.475
under parsimony TBR, but with P = 0.545 under maximum likelihood. The probability of tree 2 and group EF is complementary (P = 0.524
under parsimony and P = 0.454 under likelihood).

We have demonstrated that all possible versions of
NNI, SPR, and TBR are biased: even when swapping
starts from fully random trees the final results are
more likely to contain some of the optimal trees than
others. This bias is introduced by intrinsic properties of
the swapping algorithms, and cannot be justified as a
property of the data.

Branch Swapping (Maximum Likelihood)
Parsimony trees are usually considered as acceptable

starting points for subsequent branch swapping under
maximum likelihood (as done in, e.g., RAxML and
PhyML). These starting points may introduce a bias
in the subsequent likelihood searches. An alternative
would be to use random trees as starting points
for swapping under likelihood. The same type of
calculations as in the preceding section can be done
for maximum likelihood. This has been implemented
in another small program, likbias, which calls PAUP* as
a daughter process to generate all trees and calculate
their likelihoods. Then, likbias reads the trees and their
likelihoods from PAUP* output files, and proceeds to
make calculations in exactly the same way as illustrated
in Figure 2. Given that calculation of the likelihood
of a tree is not exact (see Swofford et al. [1996] for
the basic principles), the values obtained with likbias
are thus “exact” only to the extent that the likelihood
scores calculated by PAUP* are accepted as correct. To
decrease the effect of this imprecision, likbias treats trees
differing by 10−5 or less units of log likelihood as having
“the same” likelihood (in small data sets, differences in
likelihood scores for different trees are normally much
larger than this).

For the example of Figure 1, maximum likelihood will
produce exactly the same results as parsimony: the five
optimal parsimony trees have the same likelihood, and
the probabilities of obtaining each of the possible trees
or groups, by swapping from fully random trees, are
exactly the same as before. But the bias in parsimony
and likelihood can be different for some data sets, even
in cases when the two criteria produce the same optimal
trees. This difference is because the bias depends on how

the suboptimal trees are arranged and interconnected
through successively better trees, and this ordering may
differ between the two optimality criteria. Figure 3 shows
an example, where G can float between two positions
(producing only two possible optimal trees, both under
parsimony or likelihood). In this case, an unbiased search
should display the groups EF and FG with a frequency
of exactly 0.500, but the bias toward one of the optimal
trees causes some group (EF for parsimony and FG for
likelihood) to appear with a higher frequency. Tree 1 and
group FG are found with P = 0.475 under parsimony
TBR, but with P = 0.545 under likelihood TBR. The
probabilities for tree 2 and group EF are complementary,
P = 0.524 under parsimony TBR, and P = 0.454 under
likelihood TBR. This is one of the situations where tree-
search bias typically occurs: when a terminal can float
between positions at different levels of nesting (i.e., when
the number of tree nodes between the floating terminal
and the root differs).

EFFECT OF SEARCH BIAS ON BOOTSTRAPPING

When each bootstrap pseudoreplicate saves a single
tree, the bias in tree searches may increase the frequency
of some groups, to the extent of making otherwise
unsupported groups seem supported. This is not
a problem with bootstrapping per se, or with the
optimality criterion used; the increase in frequency of
some groups is simply a distortion caused by the bias
in tree searches. While unbiased searches using Wagner
trees and/or branch swapping seem impossible without
saving multiple trees, actual implementations may (as
already discussed) add a number of deterministic factors
that increase the bias. This section illustrates the effect
of this bias on actual programs.

Consider the case of Figure 4, a data set with
40% missing entries, non-randomly distributed in three
blocks of data, which is typical of supermatrices formed
by concatenation of genes. The subtrees for each of
the blocks are compatible, but since those subtrees are
incomplete they can be combined in different ways,
and multiple equally optimal trees belong to the same
“terrace” of trees (Sanderson et al. 2011). As noted
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FIGURE 4. A data set for which the branch-swapping bias will lead to the conclusion, under maximum likelihood, that some groups are
moderately well supported (see Table 2), even if their frequency in an unbiased search would be well below 0.5. The three trees shown below
the data set correspond to the (consensus of) optimal tree(s) for each of the subsets of data.

by (Sanderson et al., 2011), tree terraces (or some
approximation of them, when non-partitioned models
are used) are to be expected often when combining data
for different genes with uneven taxon representation.

For the data set of Figure 4, exact calculation with
likbias and PAUP* (under JC69) produces 135 trees of
the same likelihood (when differences of 10−5 or less
in the log likelihood are ignored). The groups CD and
KL occur in 0.200 of those trees, but a completely
randomized TBR search starting from a random tree
finds each of those groups with probability P = 0.422
(over two times more often than expected). Of course,
an actual heuristic search with PAUP* (stepwise tree
plus TBR) is not ideally randomized; repeating such
a search many times for the original data set (with
different random seeds), those groups are found with
more strongly deviating frequencies (PCD = 0.720
and PKL = 0.731). That bias affects bootstrapping,
artificially increasing the frequency for these groups;
the correct bootstrap support when using frequency
within pseudoreplicates can be calculated with 1000
bootstraps and a branch-and-bound search (with PAUP*)
saving all optimal trees. This finds groups CD and KL
with PCD = 0.390 and PKL = 0.311 (the reason for the
difference between otherwise similar groups is unclear).
However, when the search uses a random-addition
sequence stepwise tree followed by branch swapping
without saving multiple trees, bootstrapping produces
PCD = 0.690 and PKL = 0.670, strongly deviating from the
values obtained with the exact search, and producing the

impression that unsupported groups CD and KL have
moderate support. If the search uses a random starting
tree (with the “randomize = tree” option of PAUP*), the
apparent support is somewhat lower, PCD = 0.524 and
PKL = 0.539, but still much higher than the correct value
(0.390 and 0.311, respectively), and above the usual cutoff
to ignore groups, 0.500.

The results produced by other maximum-likelihood
programs also deviate strongly from the correct values
for groups CD and KL. These values are shown in Table 1.
Of course, while extreme deviations (such as those in
RAxML and GARLI) could perhaps be corrected by
using more randomized searches, the deviation from
the correct values of support is unavoidable when
a single tree per pseudoreplicate is saved. The least
biased program for this data set is PhyML, but the
low frequency for group CD probably means that the
program is biased against the group (and that in some
other cases group frequencies will be artificially high).
Both RAxML and GARLI produce very high frequencies
(0.905–0.989) for the groups that, if using a branch-
and-bound analysis, should occur with frequency 0.390
or less.

BIAS FROM FAILURE TO FIND OPTIMAL TREES

In the examples of Figures 1–4, a Wagner tree or TBR
search never fails to find an optimal tree; the tree-search
bias resulted from the search algorithm preferring some
of the optimal trees over others. This section shows that,
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TABLE 1. Frequencies of different groups under bootstrapping in different maximum-likelihood implementations for the data set of Figure 4

Expected (PAUP*, exact search) PhyML RAxML PAUP* (stepwise and TBR) GARLI Stepwise GARLI Random

CD 0.390 0.315 0.905 0.690 0.977 0.970
KL 0.311 0.325 0.989 0.670 0.950 0.987

Notes: The options used to run each program are: PhyML, parsimony trees for starts, 1000 bootstraps, SPR swapping; RAxML, 1000 rapid
bootstraps, GTRGAMMA; PAUP*, 1000 bootstraps, starting from stepwise trees, TBR swapping, nomulpars; GARLI, stepwise ML and random
starting trees, 300 bootstraps, genthreshfortopoterm 10000. The expected probability is derived from 1000 bootstraps with a branch-and-bound
search saving all optimal trees, with PAUP*. See text for further discussion.

FIGURE 5. A data set for which parsimony search algorithms have a low probability of finding the single most parsimonious tree. Even if
each of the quartets of taxa is supported by the same number of characters, a search is more likely to find a tree with some of the quartets (e.g.,
EF | GH) than with others (e.g., CD | EF). See text for additional discussion and Table 2 for the actual values.

even when a single optimal tree is supported by the data,
some of the equally supported groups may be retrieved
more frequently than others because of the failure of
searches to find the optimal trees.

Consider the case of Figure 5, with six sets of characters
that define mutually compatible subtrees that jointly
determine a single pectinate most parsimonious tree.
When forming the Wagner tree, most of the taxon subsets
will be uninformative. Consider the subset shown below
the original data set, which would be the subset of taxa
corresponding to forming a Wagner tree by first adding
XABDEG (in any sequence) and then inserting H at the
best available location of the best subtree obtained by
the sequential addition of the previously placed taxa. For
those seven taxa (only C and F are missing from the tree),
all six sets of characters are uninformative, requiring the
same number of steps on any possible tree. Of course,
other addition sequences are more favorable (such as “as
is,” which produces the optimal tree as the only possible

outcome), but when all possible addition sequences
are considered, only a small fraction actually produces
optimal trees, and the actual probability of finding an
optimal tree with a random-addition sequence Wagner
tree for this data set is 0.005. A Wagner tree fails to detect
the structure in this data set to such a degree that there
are 36,140 suboptimal trees (of lengths 21–27) as possible
outcomes of random-addition sequence Wagner trees.

The data set of Figure 5 also poses problems to branch-
swapping searches that save a single tree, because the
parsimony landscape for this data set is very flat—many
suboptimal trees can be connected to the optimal tree
only through rearrangements producing trees of the
same length, and are thus never accepted when only
saving a single tree.

In the example of Figure 5 three characters support
each quartet (i.e., each four-taxon subtree), so that
each quartet is supported equally. The failure to find
optimal trees comes from the difficulty in assembling
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TABLE 2. Exact calculations of the probabilities that a given tree
search finds different quartets and groups of the data set in Figure 5,
under parsimony, using the programs wagbias and tbrias

Wagner SPR TBR

XA | BC 0.829 0.857 1.000
AB | CD 0.533 0.644 0.704
BC | DE 0.723 0.767 0.731
CD | EF 0.705 0.743 0.731
DE | FG 0.598 0.685 0.704
EF | GH 0.865 1.000 1.000
GH 0.294 0.346 0.342
FGH 0.111 0.167 0.174
EFGH 0.055 0.085 0.100
DEFGH 0.042 0.066 0.100
CDEFGH 0.059 0.088 0.174
BCDEFGH 0.199 0.218 0.342

Note: The expected frequency for all quartets and groups is 1.0 because
only a single tree is optimal for this data set (see Fig. 5).

the individual subtrees into a complete tree—much as in
supertrees—and this will be the case regardless of how
strongly supported each quartet is.

Even when all quartets are supported by the same
amount of evidence, different groups and quartets in the
most parsimonious tree are recovered with a different
probability by the searches (see Table 2). For example,
the partition AB | CD is found by stepwise addition with
probability 0.533, but the probability of finding EF |GH is
much larger, 0.865. The same applies to different groups
in the optimal tree. This difference is introduced solely by
the bias in heuristic tree searches, and when only a single
tree per pseudoreplicate is found, it affects bootstrap
values because some groups or quartets appear more
often than others.

DISCUSSION

The analysis presented here is based on small artificial
data sets, since the expected result can be analytically
identified only in those cases. For larger empirical data
sets, the impossibility of identifying problems like those
presented in this article does not mean that they do not
exist. The bias inherent to tree searches, which makes
finding some optimal trees more likely than others, or
finding some groups more frequently than they occur
among all optimal trees, has two important implications
for phylogenetic analyses.

The first implication is that the trees produced by
a search saving only one or a few trees cannot be
considered, in any sense, to represent an unbiased
sample of multiple equally optimal trees for a given
data set. The easiest way to obtain a truly unbiased
sample of the optimal trees for a data set seems to be
in two steps: first find all optimal trees (either with an
exact solution, or with reliable heuristic searches), and
then select n trees from those at random. Any attempt
to obtain a representative sample of trees by means
of branch swapping without saving all possible trees
will fail. This probably includes approaches such as

the –fitchtrees option of POY version 3 (Wheeler et al.
2005), which implements an original idea of Walter
Fitch (as a personal communication to W. Wheeler,
hence the name of the option; this option is a type of
reservoir sampling [Vitter 1986]). The –fitchtrees option
continuously swaps trees accepting rearrangements of
equal score, and stores them using a probability that
depends on the size of the sample to be stored. In
some cases, this option will provide an unbiased sample
of the trees—for example, swapping from any of the
five optimal trees for the data set of Figure 2 any one
of the other four trees can be found equiprobably if
redundant moves are avoided. In more complex cases,
however, this option cannot be guaranteed to represent
an unbiased sample of the possible optimal trees (even if
it still can be useful to gather a number of distinct trees
that represent different hypotheses of evolution, with no
special statistical meaning). Likewise, exact solutions are
not randomized in any way; since they generate possible
trees in an ordered sequence, finding all K trees and
then selecting n is different from performing an exact
search saving up to n trees. The latter will simply save the
first n trees it finds, producing even more biased results
than random-addition sequences or branch swapping.
An alternative (recently implemented in TNT, as the
“&” option of the “ienum” command) is to use reservoir
sampling during the exact search. In this way, to produce
a random sample of n trees, as tree number k is found
after having already stored n trees, the probability of
storing it is n/k. If the tree is stored, each of the n
previously stored trees has the same probability of being
replaced. Under such a scheme each of the K trees found
by the exact search has a probability n/K of being in the
sample, even when we do not know in advance how large
K is (Vitter 1986). This allows having a random sample
from a large population of trees, without the memory
requirements needed to store them all; the results of this
method depend quite strongly, however, on the quality
of the pseudorandom number generator used.

The most significant consequence of the bias in tree
searches, however, is for measuring group supports with
a single tree saved per pseudoreplicate. Farris et al. (1996)
showed that using the same input order for the initial
trees often leads to unsupported groups displaying a
high frequency under resampling. They proposed using
a different randomization of the taxon sequence for
each pseudoreplicate, and doing so has been assumed
to eliminate bias in stepwise algorithms. However,
this article demonstrates that randomization does not
eliminate bias in tree searches, and that this bias may
determine the frequencies obtained under bootstrapping
more than the actual properties of the data. Although
some computer programs are more biased than others,
no method based on addition sequences and branch
swapping can be free of bias. The bias may occur even in
simple data sets and, in the case of data sets where the
optimal tree is hard to find by standard search methods,
there may be differences in the frequency with which
groups or partitions (present on the optimal tree and
supported by equal amounts of evidence) are recovered
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by a search. The latter situation implies that the bias can
be detrimental not only for cases of ambiguity caused
by absence of data, but also for ties in the optimality
criterion caused by conflict between characters (exact ties
become less likely in the resampled matrices in that case,
but if the optimal tree is hard to find, group frequencies
can be systematically distorted). All of this can happen
in both parsimony and likelihood analyses—even for
matrices with fully congruent characters.

For measuring group supports, a possible solution
(which, if not eliminating the problem completely,
will at least mitigate it) is saving multiple trees
per pseudoreplicate. It has been shown (Goloboff
et al. 2003; Goloboff and Pol 2005; Simmons and
Freudenstein 2011; Simmons and Goloboff 2013) that
saving a single tree per pseudoreplicate may produce
(even in the absence of tree-search bias) illogical
values of support because of the uneven frequency
of different unsupported groups among optimal trees
(the same point was made by Goloboff and Farris
[2001] for their consensus-estimation methods). Such a
problem is avoided by using the strict consensus for
each pseudoreplicate (which also avoids Felsenstein’s
[2004] perceived problem of overemphasizing the
results of those bootstrap pseudoreplicates that produce
numerous trees). The discovery that bias is unavoidable
in tree searches provides another forceful argument
against estimating supports by saving a single fully
resolved tree per pseudoreplicate, as done by GARLI,
PhyML, and RAxML. If saving numerous trees proves
computationally unfeasible, then methods to measure
group support based on differences in likelihood
or parsimony (e.g., Templeton 1983; Bremer 1994;
Shimodaira and Hasegawa 1999; Anisimova and Gascuel
2006) may be more appropriate (Wheeler [2010] and
Anisimova et al. [2011]).

SUPPLEMENTARY MATERIAL

Supplementary material (code and binary files for
wagbias, tbrias, and likbias) can be found in the Dryad data
repository at http://dx.doi.org/10.5061/dryad.tm80k.
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