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Three different types of data sets, for which the uniquely most parsimonious tree can be known exactly
but is hard to find with heuristic tree search methods, are studied. Tree searches are complicated more by
the shape of the tree landscape (i.e. the distribution of homoplasy on different trees) than by the sheer
abundance of homoplasy or character conflict. Data sets of Type 1 are those constructed by Radel et al.
(2013). Data sets of Type 2 present a very rugged landscape, with narrow peaks and valleys, but relatively
low amounts of homoplasy. For such a tree landscape, subjecting the trees to TBR and saving suboptimal
trees produces much better results when the sequence of clipping for the tree branches is randomized
instead of fixed. An unexpected finding for data sets of Types 1 and 2 is that starting a search from a ran-
dom tree instead of a random addition sequence Wagner tree may increase the probability that the
search finds the most parsimonious tree; a small artificial example where these probabilities can be cal-
culated exactly is presented. Data sets of Type 3, the most difficult data sets studied here, comprise only
congruent characters, and a single island with only one most parsimonious tree. Even if there is a single
island, missing entries create a very flat landscape which is difficult to traverse with tree search algo-
rithms because the number of equally parsimonious trees that need to be saved and swapped to effec-
tively move around the plateaus is too large. Minor modifications of the parameters of tree drifting,
ratchet, and sectorial searches allow travelling around these plateaus much more efficiently than saving
and swapping large numbers of equally parsimonious trees with TBR. For these data sets, two new related
criteria for selecting taxon addition sequences in Wagner trees (the ‘‘selected’’ and ‘‘informative’’ addition
sequences) produce much better results than the standard random or closest addition sequences. These
new methods for Wagner trees and for moving around plateaus can be useful when analyzing phyloge-
nomic data sets formed by concatenation of genes with uneven taxon representation (‘‘sparse’’ superma-
trices), which are likely to present a tree landscape with extensive plateaus.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Maximum parsimony and maximum likelihood are two criteria
widely used in phylogenetic reconstruction. It has long been
known that finding the most parsimonious or most likely tree is
an NP-hard problem (Foulds and Graham, 1982). For data sets of
some size, therefore, it is necessary to use heuristics, which rely
on trial-and-error methods, such as trees created by successive
addition of taxa and different types of rearrangement methods to
explore tree space. The success of these search algorithms in the
case of difficult data sets has been typically evaluated by consider-
ing the degree to which different methods provide similar answers,
and/or by the best scores achievable by different methods for spe-
cific data sets.
In a recent paper, Radel et al. (2013) examined for the first time
the ability of tree search algorithms to find the most parsimonious
tree (MPT) in the case of data sets for which the uniquely MPT can
be known exactly, but for which the characters have large amounts
of homoplasy. Radel et al. (2013) reported that TNT (Goloboff et al.,
2008a) succeeded in finding the MPT even in the largest cases
examined (32,768 taxa). The data sets of Radel et al. (2013) are
based on Chai and Housworth (2011); Chai and Housworth’s
method for constructing data sets is aimed at defining a unique
MPT with a minimum number of binary characters; defining a
unique tree with low numbers of binary characters requires having
large amounts of homoplasy. These data sets, therefore, are not
specifically designed for decreasing the chances of search methods
to find the optimal tree and – despite the abundant homoplasy –
they are in fact relatively tractable by standard search methods.
For these data sets, TNT can find the MPT in relatively short times
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with its more advanced search algorithms, but more standard algo-
rithms are effective as well.

Creating data sets for which search methods have a low probabil-
ity of finding the MPT requires considering the details of search
methods, i.e. how random addition sequence (RAS) Wagner trees
(Farris, 1970) and branch rearrangements operate. The present
paper describes two other types of data sets for which finding the
most parsimonious tree by standard search methods is very difficult
– orders of magnitude more difficult than for Radel et al.’s (2013)
data sets. While Radel et al. (2013) focused mostly on the mathe-
matical aspects of the resulting data sets, the present paper concen-
trates more on the properties of tree searches. The difficulty of
finding the most parsimonious tree by heuristic searches in the
different types of data set is due to different reasons, and thus the
solutions to find better trees are different for each type of data set.

The most difficult data sets studied here (see Section 5) have no
homoplasy at all, but large proportions of missing entries – with
observed entries allocated non-randomly. This non-random distri-
bution of observed entries is likely to occur in phylogenomic data
sets formed by concatenation (i.e. supermatrices). Thus, similar
problems may arise for such concatenated matrices, and the search
strategies proposed here may be helpful to find better trees in that
setting as well.
2. Materials and methods

The number of taxa is denoted as t. The term ‘‘local search’’ is
used for any search method (e.g. TBR, SPR, NNI; Swofford and
Olsen, 1990) based on evaluating the trees in the ‘‘neighborhood’’
of the best solution(s) found so far. For branch-swapping, the
TBR neighborhood of a tree T is the set of all trees that differ from
T in just one TBR rearrangement (likewise for SPR or NNI). Note
that if branch-swapping is defined in terms of the moves, then it
is possible for two or more different moves to produce the same
tree; thus, the number of possible TBR moves from T is different
from the number of trees in the TBR neighborhood of T (although
the difference between the two decreases with the number of
taxa). The scripts used to create the data sets are available as Sup-
plementary Material. The computers used to test the different
search routines consist of a machine running under Windows 8,
on an I7–3770 processor at 3.4 GHz, and a cluster of machines with
somewhat slower processors (at 3.0 GHz) running under 64-bits
Ubuntu Linux. The cluster was used to quickly replicate many
searches, but each individual search (and thus all the timings) cor-
respond to runs using a single processor. The probability of differ-
ent outcomes of Wagner trees and TBR (reported under Sections
3.6, 4, and 4.3) was done using the C programs wagbias and tbrias,
available at <http://www.lillo.org.ar/phylogeny/published/Search_
bias.zip> (Goloboff and Simmons, 2014).
3. Large amounts of homoplasy, easy landscape: Data sets of
Type 1

This is the type of data set examined by Radel et al. (2013). They
studied two cases, producing balanced (=symmetrical) and pecti-
nate (=caterpillar) trees. As shown by Radel et al. (2013), TNT can
easily find the MPT for these data sets. For comparable numbers
of taxa, the search effort required to find the MPT is minimal, rel-
ative to the other types of data sets studied here.

3.1. Islands vs. local optima

Radel et al. (2013) only tested the xmult command, but in fact
other search routines of TNT can also find the optimal tree easily. In
this regard, Radel et al. (2013: 1189) posed that
‘‘An interesting question for further theoretical work would be
to determine whether or not the Chai–Housworth data allows
non-optimal maximum parsimony trees that have locally opti-
mal parsimony scores under tree re-arrangement operations.
If local optimal trees do not exist, it would provide a basis to
better understand the results reported here.’’

The question, however, should be formulated more strictly. A
locally optimal tree can be defined as the individual (binary) tree
for which the TBR neighborhood contains no trees of better score.
The Chai–Housworth data sets have numerous local optima of this
kind. This can be easily verified by using random trees (formed by
sequentially adding each taxon at a randomly chosen branch of the
growing subtree) as the starting point for TBR branch-swapping
without saving multiple trees, and counting the cases in which
swapping gets trapped at a suboptimal tree. For the symmetric
case with t = 512 taxa, of 1000 random starting trees for TBR,
978 finished without reaching optimal score. For the pectinate
case, 736 of 1000 random starting trees finished without reaching
optimal score. Thus, trees locally optimal under TBR are common
and numerous (although somewhat less so for the pectinate case).

But, in phylogenetics, it is common to talk about ‘‘islands’’ of
trees, which were defined by Maddison (1991) in a different
way: a TBR island is the set of all trees of similar score, which
are separated by a single TBR rearrangement, or connected through
trees of similar score which are in turn separated by a single TBR
rearrangement. That a set of suboptimal trees forms an island can-
not be confirmed unless all the trees of equal score that can be
found via branch swapping starting from one of the trees in the
set have already been saved and swapped – otherwise, saving
one more additional tree could have led, by rearranging that addi-
tional tree, to a better tree. Saving multiple trees often leads to
finding better results, and then the concept of ‘‘island’’ is more
restrictive than the simple local optimum defined above. The
Chai–Housworth data sets apparently do not have multiple islands
of trees; when multiple trees are saved, branch-swapping from any
starting tree invariably leads to the MPT, if enough trees are saved.
The ‘‘enough’’ needs qualification here: saving only a few hundred
trees suffices for essentially all starting points to lead to the MPT.
For t = 512 and a balanced tree, saving as little as 250 trees, the
MPT was found in every case, using 1000 different random trees
as starting point. For t = 256 and a balanced tree, 10,000 such rep-
lications (with up to 500 trees saved) found the optimal tree in
every single case. In the case of pectinate trees, the number of trees
that need to be saved to find the MPT in every case is even lower;
for t = 256, saving as little as 50 trees sufficed to find the MPT in
every single case (out of 5000 replications). It is well-known that
SPR is a much more superficial algorithm than TBR, and searches
saving multiple trees under SPR are apparently also capable of
finding the MPT for these data sets (both for the balanced and pec-
tinate cases), but only when saving (and swapping) very large
numbers of trees (even 20,000 trees are often insufficient for the
balanced case with t = 256).

3.2. Tree landscape

A diagram representing the tree landscape for these data sets is
shown in Fig. 1 (top curve). There is a single peak; flat regions
where TBR may get swamped if not saving multiple trees exist,
but are not too extensive. Given that they are not extensive, these
flat regions can be easily travelled around by saving multiple trees
with TBR, quickly leading up the slope to better trees. Under SPR,
the tree landscape (based on exploration of the smaller cases),
seems to have a similar shape but the flat regions are much more
extensive, so that finding the uphill slope that leads to the MPT
requires travelling around large numbers of trees.

http://www.lillo.org.ar/phylogeny/published/Search_bias.zip
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Fig. 1. General depiction of the tree landscape for the three types of data set
examined here.
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3.3. Behavior of tree search algorithms

The xmult command of TNT, the only one tested by Radel et al.
(2013), is a multi-start method, generally a much more thorough
exploration of tree-space than can be done with PAUP�

(Swofford, 2001); for each start, constrained and random sectorial
searches (Goloboff, 1999) are used, as well as a number of cycles of
tree-drifting (for search levels above two). The number of starting
points, the cycles of tree-drifting, and the number and size of the
sectors to be selected increase with the search level; at the end,
the results for each of these starting points are combined with
tree-fusing, a genetic algorithm. Thus, the xmult command used
as in Radel et al. (2013) is actually too strong a search effort for
these data sets. More properly, the xmult command misplaces a
significant amount of effort, especially for the balanced case, in
using multiple starting points, which are subsequently input to
tree-fusing. Using a single or very few starting points and subject-
ing them to drifting or ratchet is enough to quickly find the MPT;
sectorial searches are also effective, albeit to a lesser degree. For
the balanced case, however, tree fusing works much more poorly
than in other data sets. Apparently, the reason for this poor perfor-
mance of tree fusing is that the large groups in the MPT have a
much smaller probability of being found by a given search; the first
split of the MPT (that is, a partition with half the taxa on each side)
has a probability to be found, in the final tree of a given starting
point, of less than 1 in 1000. The probability that two indepen-
dently found trees to be fused will share that partition is very
small, and thus large groups will never be exchanged during fusing.
Therefore, the success of the xmult command depends more on the
success of the individual builds (RAS, TBR, sectorial search, drifting
or ratchet), which provide input trees for fusing, than on the tree
fusing at the end. In the pectinate case, each of the groups in the
MPT has a very high probability (between 0.96 and close to 1.00,
for t = 256) of being found in a given TBR search, regardless of its
size (apparently the groups with the lowest probability are those
defined by change in one character reversed a few nodes down
or up the tree). Thus, tree fusing can work very effectively for the
pectinate case.

Given this situation, the fact that the xmult command does not
save multiple trees with TBR and that it increases the number of
starting points with the search level, is in fact counterproductive
for data sets of Type 1, especially in the balanced case: saving
enough multiple trees under TBR branch-swapping is a simpler
strategy that invariably leads to finding the MPT. Tree-drifting
(Goloboff, 1999) and/or ratchet (Nixon, 1999) with TNT can be used
to mimic the saving of multiple equally parsimonious trees but
much more efficiently. As implemented in TNT, both ratchet and
drifting alternate cycles where suboptimal trees are accepted with
cycles where only trees of equal scores are accepted (in the case of
ratchet, this is done with unaltered character weights; this differs
from Nixon’s, 1999 original method, but is usually more efficient).
Accepting rearrangements of equal score means that the tree
resulting from such a cycle of swapping will differ from the original
tree in several TBR rearrangements. This is in contrast to what hap-
pens when saving multiple trees with RAS plus TBR as the only
search techniques; each of the trees saved when swapping the first
tree will differ from the first by a single TBR move; each of the trees
saved from each of those in turn will differ by only two TBR moves;
therefore, only after a very large number of trees have been
swapped will TBR be able to swap on trees differing from the origi-
nal by several TBR moves. In the case of drifting and ratchet as
implemented in TNT, after a given number of rearrangements have
been accepted, the cycle is interrupted, and normal TBR is resumed
– now on a tree differing by several TBR moves, but obtained much
more quickly than if saving and swapping multiple equally parsi-
monious trees. Therefore, tree-drifting and ratchet produce almost
immediately the MPT for data sets of Type 1.

Table 1 shows the numbers of TBR rearrangements on the MPT
for both the balanced and pectinate cases, as well as the number of
rearrangements that lead to trees within one step of the MPT. A
search that eventually lands on any one of these trees within one
step, will quickly find the MPT – it is separated by a single TBR
rearrangement. This may explain why TBR is much more likely to
find the MPT by swapping from a given starting point in the case
of pectinate trees, than in the case of balanced trees: the number
of 1-step suboptimal trees that can easily lead to the MPT is much
larger in that case.

3.4. Time differences between balanced and pectinate trees

One of the findings of Radel et al. (2013) was that calculating
the MPT took significantly longer for pectinate trees. This seems
to be in contrast to the fact that, when a single tree is saved, the
probability of finding the MPT in a given replication is higher when
the trees are pectinate (as discussed under Sections 3.1 and 3.3).
But Radel et al. (2013) found that completing the execution of
xmult (at search level 3) for pectinate trees of 8192 taxa took ca.
7.5 times longer than for balanced trees. They considered this as
‘‘unexpected’’, and conjectured that it ‘‘may be a property of TNT’s
search heuristic’’. However, it is well known (e.g. Allen and Steel,
2001; Felsenstein, 2004) that the number of TBR rearrangements
for a tree of t taxa, while in the general order of t3, changes with
tree topology, and pectinate trees require more rearrangements
than balanced trees. For 8192 taxa, the number of rearrangements
needed to complete TBR on a pectinate tree (see Table 1) is
3.662 � 1011, while for balanced trees the number of rearrange-
ments is only 2.617 � 109. Thus, the ratio of the number of rear-
rangements is about 140 to one. This alone suffices to explain
that in the case of pectinate trees running the xmult command
with the same parameters takes much more time than for balanced
trees, even if an individual starting point has a higher probability of
eventually leading to the MPT via branch-swapping.

3.5. Distribution of homoplasy

Another peculiarity of these data sets, not stressed by Radel
et al. (2013), is that the homoplasy for the characters, while abun-
dant on average, is not uniformly distributed. If the data are gener-
ated following Radel et al.’s Fig. 2, for a balanced tree, then the first
five characters in the matrix have no homoplasy in the MPT; then
every successive set of four characters has twice the amount of
homoplasy as the previous set plus one step. These categories fol-
low the depth of the groups in the MPT (when rooted symmetri-
cally), as shown in Fig. 2A for t = 32. Each tree branch has a
single synapomorphy, and all the synapomorphies in the tree are



Table 1
Type 1 data sets, number of TBR moves to the MPT (Neig.size), number of TBR moves within one step of the MPT (1-step), and proportion of TBR moves to the MPT that produce a
tree within one step, for the balanced and pectinate cases, and different numbers of taxa t.

t Balanced Pectinate

Neig.size 1-Step Proportion Neig.size 1-Step Proportion

8 149 40 0.26845638 173 62 0.35838150
16 1221 104 0.08517609 1901 366 0.19253025
32 8101 232 0.02863844 18,157 1948 0.10728645
64 46,949 488 0.01039426 159,213 9316 0.05851281
128 249,573 1000 0.00400684 1.334 � 106 41,490 0.03109605
256 1.252 � 106 2024 0.00161553 1.093 � 107 176,762 0.01617802
512 6.044 � 106 4072 0.00067365 8.844 � 107 733,352 0.00829239
1024 2.834 � 107 8168 0.00028819 7.116 � 108 2,995,344 0.00420903
2048 1.301 � 108 16,360 0.00012576 5.710 � 109 12,123,838 0.00212331
4096 5.873 � 108 32,744 0.00005575 4.574 � 1010 48,817,318 0.00106714
8192 2.617 � 109 65,512 0.00002503 3.662 � 1011 159,987,156 0.00043684
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changes 0 ? 1 (i.e. there are no reversals in the MPT). Interestingly,
the groups supported by characters with the least homoplasy are
the ones that a given individual TBR search will most likely miss
(see Section 3.3), and vice versa. In the case of balanced trees, there
are also distinct classes of characters, in terms of their homoplasy;
on the optimal tree, each of the branches has a single synapomor-
phy, but many of the synapomorphies are changes 1 ? 0 (rever-
sals), and some of the characters change back and forth several
times (e.g. in Fig. 2B, for t = 25, character 2 has eight changes, half
of which are reversals).

3.6. Wagner or random trees as starting point for TBR

Perhaps the most unexpected property of these data sets is in
the difference in results between using a random tree or a RAS tree
as the starting point of branch-swapping (without saving multiple
trees): the probability of finding the MPT is much higher when a
random tree is used. Wagner trees (or equivalent forms of ‘‘greedy
trees’’) are almost universally used as the starting points for tree
Fig. 2. Synapomorphies for each clade, for data sets of Type 1, in the balanced (A)
and pectinate cases (B). The characters are numbered as the data set is generated
following the rules of Chai and Housworth (2011) and Radel et al. (2013). Note that
for the balanced case, there are no reversals, and the number of parallelisms
increases with the depth of the clades (e.g. character 13 changes independently in 8
terminal taxa, so that the homoplasy is 7 steps, and character 5 changes
independently in 2 clades, so that there is 1 step of homoplasy). For the pectinate
case, the multiple changes in the characters are changes back and forth between the
states 0 and 1 (indicated with black and white arrows), nested within each other.
search methods, because they have much better scores than ran-
dom trees, and then the subsequent rearrangement phase can be
completed much faster. However, in some rare cases, Wagner trees
may work as a sort of ‘‘flytrap’’, increasing the chances of the TBR
search to start from a tree that either is, or leads to, a local opti-
mum. This can happen even in small data sets and when the Wag-
ner and TBR algorithms are fully randomized. An example is the
matrix of Fig. 3: a Wagner tree where every addition and insertion
sequence are equiprobable, followed by TBR swapping (on a single
tree, equiprobably choosing among all TBR neighbors that improve
score), produces the MPT (of 17 steps) with probability 0.6250, and
a suboptimal tree (of 18 steps) with probability 0.3750. But if a
random tree is used as the starting point (so that each of the 15
possible trees is equiprobably the starting point for TBR), the prob-
ability of finding the MPT is now 0.7500, and the same suboptimal
tree as before can be found, but now with probability 0.2500. This
difference is due to the fact that the Wagner algorithm itself has a
probability of 0.3750 of producing the locally optimal tree of 18
steps; each of the three other possible outcomes of the Wagner
algorithm are either the MPT (with P = 0.2500), or suboptimal trees
that unambiguosly lead to the MPT via TBR [(a (b (d (c e)))) with
P = 0.06250 or (a (e (d (b c)))) with P = 0.3125]. The possibility that
using a Wagner tree instead of a random tree as starting point for
TBR may make the search less likely to find the optimal tree has
not, to my knowledge, ever been raised before. The calculations
for the matrix of Fig. 3 can be done by exhaustive enumeration
of all possible outcomes of the Wagner and TBR algorithms, but
Fig. 3. A case where starting TBR branch-swapping from Wagner trees makes it less
probable to find the MPT than starting from a random tree (when the addition,
clipping, and insertion sequences are fully randomized). For a Wagner tree as
starting point, the probability that the search will find the MPT is P(MPT) = 0.625, and
the probability that it will find the suboptimal tree is P(sub) = 0.375. For the random
tree as starting point, P(MPT) = 0.75, and P(sub) = 0.25. See text for discussion.
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such exhaustive enumeration is not tractable for data sets with
more than 10 taxa. Actual implementations, like TNT or PAUP�,
usually make a number of compromises for the sake of efficiency,
so that they may have some determinism (e.g. in using addition
or insertion sequences that are not fully randomized). Therefore,
in the case of these Chai–Housworth data sets, it is unclear
whether the difference in using Wagner and random trees as start-
ing points is due to a deterministic behavior in the search algo-
rithms of the specific programs used here, or would also occur
for ideally randomized algorithms. The similarity in results
between PAUP� and TNT suggest it is not a problem of implemen-
tation, since it seems unlikely that the two programs would share
an identical bias. Fig. 4 shows the distribution of tree-lengths, for
10,000 replications of each of these two types of starting points
for the search, for t = 256, when using TNT. The balanced tree is
shown in Fig. 4A; in this case, the MPT is found 35 times more fre-
quently when starting from a random tree than when using a RAS
(885 hits instead of only 25). In the case of pectinate trees (Fig. 4B),
the difference is less drammatic, about two times higher for ran-
dom trees as starting point (in the case of PAUP�, the frequency
of the MPT for the pectinate case with Wagner trees as the starting
points is significantly higher than for TNT, similar to that for ran-
dom trees; data not shown). The taxon sequence in the matrices
used for Fig. 4 is randomized, but if the taxon sequence that results
from Chai and Housworth’s rules for generating the data is
retained, the same results are obtained. The taxon sequence might
have an effect because TNT does not (by default) randomize the
sequence of TBR swapping – it clips and moves the terminal taxa
in the same sequence as they are in the matrix. Apparently the
same is true of PAUP�, because using a given random tree as the
starting point for branch-swapping without eliminating zero-
length branches invariably produces the same result, regardless
of the current value of the random seed (retaining zero-length
Fig. 4. Frequency of tree lengths found by TNT searches with TBR (single
tree = nomulpars) starting from either a RAS Wagner tree or a random tree for
data sets of Type 1 (t = 256), in the balanced (A) and pectinate (B) cases. Timings in
sec. (A) run 10,000 times in Linux; average time: RAS + TBR, 0.0177; random
tree + TBR, 0.0254. (B) run 5000 times in Windows; average time: RAS + TBR,
0.0122; random tree + TBR 0.0202.
branches is necessary for this test, because PAUP� randomly
resolves polytomies before swapping a tree, thus the resolution
chosen would depend on the random seed). For the balanced case,
using random or RAS trees in PAUP� produces the same difference
observed for TNT – including the difference, near the minimum
length of balanced trees, between odd and even numbers of steps
beyond the minimum (see Fig. 4A). In TNT, when using random
trees as starting point, the probability of finding trees of minimum
length for t = 256 is 0.1770, while the probability of finding trees
with an odd number of steps beyond the MPT (between 3 and 9)
is 0.4423, and the probability of finding trees with an even number
of steps beyond the MPT (between 2 and 8) is 0.02478 (or 17:1).
This difference between the probability of finding trees with an
even or an odd number of steps beyond the MPT is also observed
when using Wagner trees as starting points.
3.7. Trees within one step of the MPT

In the case of balanced trees, not a single one of the 10,000
searches starting from a random tree, or the 10,000 searches start-
ing from a Wagner tree (Fig. 4A), found trees 1 step beyond the
minimum; the final result in all cases was either optimal, or 2 or
more steps beyond minimum. This suggests that all the possible
trees 1 step longer than the MPT are within one TBR move of the
MPT. This idea is very strongly reinforced by swapping from the
MPT and accepting rearrangements one step longer: the only trees
found are those produced by swapping on the first tree (the MPT
itself); swapping on those other trees produces no new trees
within one step of the MPT (this was verified with TNT for the
cases from t = 8 to t = 4096). Note that Table 1 shows the number
of TBR moves within one step, but many of those moves are dupli-
cates: they are different ways of producing the same tree. The
number of actually distinct binary trees within one step of the
MPT for the balanced case is always 2t � 6. This is the number of
distinct trees produced by NNI moves – that is, all the trees pro-
duced by a NNI move to the MPT, and only those trees, are one step
longer than the MPT. This could also be predicted from the distri-
bution of synapomorphies shown in Fig. 2: since every branch has
a single synapomorphy, collapsing it and resolving it differently
(which amounts to an NNI operation) will increase tree length by
one step, but moving any branch to a location more than a single
node away will cross boundaries of other synapomorphies (thus
adding more steps).

In the case of pectinate trees, every NNI move to the MPT will
also increase tree length by one step, but other moves will do so
as well, because of the existence of reversals. An example is in
Fig. 2B: when the subtree characterized by a change in one direc-
tion (e.g. 1 ? 0 for char. 0) is rerooted at the first branch below
with a change in the opposite direction for the same character (a
single TBR move, equivalent to several NNI or SPR moves), tree
length is increased by only one step.
4. Low amounts of homoplasy, rugged landscape: data sets of
Type 2

Data sets for which local search methods have a low probability
of finding the MPT can be designed by modularly combining local
optima in different regions of the tree. For four taxa, both SPR and
TBR local searches amount to exhaustive solutions (there are only
three possible trees in that case, and SPR and TBR will produce the
other two trees as possible rearrangements from any of the three).
Therefore, the minimum number of taxa for which tree islands
could occur is five (four taxa plus root). Consider the two trees
shown in Fig. 5A. Moving from one tree to the other requires two
TBR moves. A data set for which these two trees are equally
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parsimonious can be created by assigning two apomorphies to
each of the two groups. Then, each of the two trees has the same
length (L = 12). Branch-swapping starting from one of the trees
cannot find the other; if the RAS Wagner tree is fully randomized,
then a build has probability 0.5 of finding each of the two trees. For
the matrix in Fig. 5A, swapping from every possible starting tree
will lead to one of the two optimal trees.

The matrix that produces the two equally parsimonious trees in
Fig. 5A can be modified so that one of the trees has a better score
than the other, as in Fig. 5B, by adding a single apomorphy for
group (ab). Now tree 1 is 13 steps long, one step shorter than tree
2. Branch-swapping on tree 2 cannot find tree 1 – intermediate
trees have at least 15 steps. A Wagner tree in which the taxa are
added with the ‘‘as is’’ sequence will find the most parsimonious
tree, but other addition sequences will not. A Wagner tree in which
every addition sequence is equiprobable, and where ties are broken
equiprobably, has a probability of 0.75 of producing tree 1, and a
probability of 0.25 of producing tree 2; no other tree is a possible
outcome of a RAS Wagner tree. Note that even when multiple trees
are saved, tree 2 will not produce tree 1 by branch-swapping (local
optima and ‘‘islands’’ are identical in this case). Using random trees
as starting points for TBR, the probability of finding tree 1 or tree 2
is exactly the same, 0.5.

The pattern in Fig. 5B can be expanded, so that each of the pre-
vious matrices is represented by four copies, and additional apo-
morphies keeping together the four parts (related to each other as
in the original matrix) are included. The rest of the matrix is filled
with zeros. This is shown in Fig. 6. The pattern can continue being
expanded in the same way to any level N (with the matrix of
Fig. 5B at level N = 1), every time including four copies of the matrix
corresponding to the previous level, and nine additional characters
at the end determining relationships for the four parts as in the
matrix for level N = 1. Since this is a very modular way to generate
the matrices, the results of applying RAS plus TBR are easily tracta-
ble. This could be verified by considering a matrix with the first nine
taxa of Fig. 6 – that is, a matrix with two modules, small enough
that the exact probabilities of every possible outcome can be calcu-
lated by enumeration of all possible addition, clipping, and inser-
tion sequences. The probability of finding the MPT or the three
possible local optima for that matrix using Wagner + TBR is exactly
the product of the probabilities of the two modules. That is,
0.75 � 0.75 = 0.5625 for the MPT, 0.75 � 0.25 = 0.1875 for each of
the two trees 1-step longer where one of the modules is in the sub-
optimal configuration, and 0.25 � 0.25 = 0.0625 for the 2-steps
longer tree where both modules are in the suboptimal
Fig. 5. Construction of data sets with multiple islands. (A) The two trees, 1 and 2,
are separated by two TBR moves, and therefore the matrix that has the same
number of characters supporting each of the groups has those two trees in separate
islands; a TBR search starting from a single point can only find one or the other tree,
never both. (B) One of the two trees is now made shorter than the other, because
one of the groups is supported by three characters instead of two; the trees
intermediate between 1 and 2 have 15 steps or more, and TBR searches can either
find the MPT (13 steps, with P = 0.75) or the suboptimal tree (14 steps, with
P = 0.25). See text for additional discussion.
configuration (the same is not true for random trees as starting
point of branch-swapping, as explained below in Section 4.3, so that
the probability of obtaining a specific result in that case cannot be
easily predicted). Another experiment doubling all but the first
taxon in the matrix of Fig. 5B and adding an apomorphy to hold
together each pair of doubled taxa also indicates that the probabil-
ities of resolving relationships between the pairs are identical to
those for the original matrix; the trees ((aa0)(bb0))((cc0)(dd0)) and
((aa0)(dd0))((bb0)(cc0)) are then found by a RAS + TBR search with
exactly the same probabilities as before, 0.75 and 0.25 respectively
(and for this case as well, using random trees as starting point for
branch-swapping produces different probabilities; see under
Section 4.3).

The properties for RAS + TBR searches that can be predicted by
the modularity in these matrices are shown in Table 2. The proba-
bility of finding the MPT for the matrix of level 1 shown in Fig. 5B is
P(1) = 0.75. In contrast, finding the MPT for Fig. 6 requires that the
proper configuration is achieved for each of the groups shown with
gray dots in the tree of Fig. 6 (0.754); it also requires that those four
groups are in turn related as ((AB)(CD)), since the tree that displays
those 4-taxon groups as ((AD)(BC)) is a local (sub)optimum as well;
this adds a factor of 0.75. Then (when fully randomizing addition
sequences and tie-breaking in Wagner trees), the probability P of
finding the MPT for a matrix of level 2 (as in Fig. 6) is
P2 = 0.755 = 0.2373, and for level N, PN = PN�1

4 � 0.75.
The length L of the MPT for these matrices will always be a mul-

tiple of 13 steps; for level N, LN = 4 � LN�1 + 13. The number of taxa
is tN = 1 + 4N. On the MPT, 5 out of every 9 characters are homo-
plasy free, and 4 have 2 steps; thus, the ensemble consistency
index (Kluge and Farris, 1969) is CI = 9/13 = 0.6923. Although the
homoplasy is relatively low, as the level increases, the probability
of finding the MPT by a single Wagner tree followed by TBR
branch-swapping (even if saving multiple trees) decreases quickly;
for t = 65 the theoretical probability is P = 0.002378 (approxi-
mately the frequency observed empirically in TNT with the rsee-
d[option, which breaks ties in Wagner trees more or less
randomly; see below, under Section 4.2). For t = 256 or above,
the theoretical probabilities of finding the MPT with a RAS plus
TBR are too small to be verified empirically.

The modularity also makes it possible to calculate the number
of islands of trees. For Fig. 5B there are two islands of trees. For
Fig. 6, each of the groups A, B, C, or D can be resolved in two con-
figurations (24), and there are in turn two ways to relate those four
groups, so that the number I of islands (each containing a single
tree) for level 2 is I = 25 = 32; one of those trees corresponds to
the MPT. This means that a TBR search starting from a single point
will necessarily lead to one of these 32 trees; each of the 31 subop-
timal trees is formally an ‘‘island’’, because the TBR algorithm can-
not escape from that tree to shorter trees, or to trees in the other
islands. Note that this is the number of islands sensu Maddison
(1991); if multiple equally parsimonious trees are not saved (thus
finding locally optimal trees, not necessarily ‘‘islands’’), the number
of configurations that can be found doubles, because of small
occassional plateaus in the tree landscape. As the level N increases,
the number of islands increases rapidly, as IN = 2 � IN�1

4 (see result-
ing values in Table 2). Note that even when each island contains a
single tree, the probability of finding the MPT is not simply the
inverse of the number of islands, because some islands can be
found with higher probability than others when starting from a
Wagner tree (e.g. for N = 1, the island of L = 13 can be found with
P = 0.75, and the island of L = 14, with P = 0.25).

The worst possible lengths at which a TBR-based search will
arrive can also be calculated. Each of the individual sectors of the
tree (e.g. A, B, C, and D in Fig. 6), and the way in which the sectors
themselves are related, can independently be in an optimal or sub-
optimal configuration. Recall that for N = 1 (t = 5), optimal length is



Fig. 6. Expansion of the pattern shown in Fig. 5B. Each module is repeated 4 times, and characters supporting similar relationships for the 4 modules are added. See text for
discussion and details.

Table 2
Type 2 data sets. NC, number of characters; L(MPT), length of the MPT; P(MPT), theoretical probability that a given search with RAS + TBR will find the MPT; W(TBR), length of the
worst tree that can be found by TBR; P(W), theoretical probability that a given search with RAS + TBR will find a tree of length W(TBR); G, largest possible number of steps for the
matrix (=length of the bush). In all cases, values are for TBR searches saving multiple equally parsimonious trees. See text for details.

t NC L(MPT) P(MPT) #Islands W(TBR) P(w) G

5 9 13 0.7500 2 14 0.2500 18
17 45 65 0.2373 32 70 9.766 � 10�4 144
65 189 273 2.378 � 10�3 2,097,152 294 2.274 � 10�13 864
257 765 1105 2.400 � 10�11 3.869 � 1025 1190 6.638 � 10�52 4608
1025 3069 4433 2.488 � 10�43 4.479 � 10102 4774 4.854 � 10�210 23,040
4097 12,285 17,745 2.875 � 10�173 8.053 � 10410 19,110 1.388 � 10�842 110,592
16,385 49,149 70,993 5.124 � 10�693 8.411 � 101643 76,454 9.279 � 10�3367 516,096
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13, and TBR could get trapped at trees of 14 steps. Thus, the worst
case will be when all sectors are in a suboptimal configuration
(with 14 steps for the relevant characters), so that the length W
of the (single) worst tree that can be produced by TBR is WN = 4
�WN�1 + 14 (see Table 2 for actual values), and the ratio LN/WN

is a constant 13/14 = 0.9286. In other words, for these data sets a
TBR search saving multiple trees is guaranteed to find a tree of
WN steps or less (as already mentioned, a few additional configura-
tions may be locally optimal under TBR if multiple trees are not
saved, but this adds only a few steps to WN). The probability of a
given RAS + TBR search to actually reach this worst length as final
point is much less than the probability of finding the MPT; for
N = 1, PW = 0.25, and for N > 1, Pw,N = Pw,N�1

4 � 0.25 (values in
Table 2). Evidently, for large t values, both the MPT and the worst
TBR tree are highly improbable; most of the searches will end at
trees with intermediate lengths. Note that the length WN is the
worst length that can be found by searching with TBR saving multi-
ple trees, which is still far from the maximum possible number of
steps on any tree (the G value; Farris 1989). For N = 1, G = 18, and
for N > 1, GN = (4 � GN�1) + (9 � (tN � 1)/2); for t = 4097, the worst
possible tree is 5.7871 times longer than the worst tree that can
be found by TBR.

4.1. Tree landscape

A representation of the tree landscape for these data sets is
shown in Fig. 1 (middle curve). Unlike the case of the Chai–Hous-
worth data sets, where flat regions always delimit with up-hill
regions, there are (almost) no flat zones for these data sets. Thus,
the landscape is very rugged, composed almost exclusively of iso-
lated peaks and valleys – each of these contains a single or very few
trees. This is the sort of landscape that is most difficult to travel
with the standard multi-start method of RAS plus TBR, or saving
multiple equally parsimonious trees.

4.2. Behavior of tree search algorithms

The empirical observations that can be done with TNT (shown
in Table 3) or PAUP� are in line with the theoretical expectations
for these data sets. Doing multiple RAS followed by TBR produces
the MPT with a frequency that quickly decreases with the number
of taxa; for 5, 17, and 65 taxa the empirical results agree rather
well with theoretical expectations (with empirical frequencies
within 20% of the expected probabilities). For 257 or more taxa,
RAS plus TBR never found the optimal trees. These data sets are
much more difficult to analyze by standard search methods than
the Chai–Housworth data sets. Therefore, for 257 or more taxa,
finding the MPT by the standard technique of multiple RAS plus
TBR is in practice impossible.

Although RAS plus TBR cannot find the optimal trees except for
the smallest cases, saving suboptimal trees can. The option of sav-
ing suboptimal trees is rarely used in phylogenetic analyses,
because it typically requires saving (and swapping) too many trees
to be feasible within short times. Saving and swapping with TNT
trees within two steps of the best trees found so far produces the
optimal tree for these data sets; if enough suboptimal trees are
saved (for t = 257, saving up to 150 trees) the MPT is found in
the vast majority of cases (97.5% of 1000, using a single RAS Wag-
ner tree as starting point for TBR). This, however, requires swap-
ping on a number of extra trees, a number which increases
quickly with the taxa – this strategy takes an average time of
6.15 s for t = 257, but is no longer practical for the case t = 1025



Table 3
Type 2 data sets, empirical results with TNT. F(R), frequency of the MPT with a random tree as starting point for TBR, taxon sequence unmodified; *F(R), frequency of the MPT with a
random tree as starting point for TBR, taxon sequence randomized in matrix; F(W), frequency of the MPT with a RAS Wagner trees as starting point for TBR; Neig.size, number of
TBR moves to the MPT; 1-step and 2-step, number of TBR moves that produce trees within 1 or 2 steps of the MPT. The proportion of moves within 2 steps (2-steps/Neig.size) is
shown in the last column. For 5 to 257 taxa, frequency values calculated with 10,000 replications; for 1025 taxa or more, frequency values calculated with 1000 replications; in all
cases, TBR saved a single tree.

t F(R)
*F(R) F(W) Neig.size 1-Step 2-Steps Proportion

5 0.3315 0.6055 0.7393 31 0 8 0.25806452
17 0.3875 0.2912 0.2444 1559 0 88 0.05644644
65 0.1113 0.0102 0.0029 51,831 0 408 0.00787174
257 0.0013 0 0 1.323 � 106 0 1688 0.00127540
1025 0 0 0 2.942 � 107 0 6808 0.00023141
4097 0 0 0 6.043 � 108 0 27,288 0.00004516

P.A. Goloboff / Molecular Phylogenetics and Evolution 79 (2014) 118–131 125
or more. One would think that saving trees within one step instead
of two would suffice for the optimal tree to be found. Consider the
case of t = 5 (Fig. 5B): the intermediate trees between the subopti-
mal tree and the MPT are two steps longer than the MPT but only
one step longer than the suboptimal tree. Yet starting to swap from
the suboptimal tree and saving trees within one step fails to find
the MPT. This is because an intermediate tree [e.g. (d (c (b a))), of
15 steps] can be found from the 14-steps tree, but then when
swapping begins on that tree, the tree of 14 steps is quickly found
again and the 15-steps tree is transformed back into that one,
instead of being transformed into the 13-steps MPT. Transforming
the 15-steps tree into the 13-steps MPT would require using
‘‘steepest descent’’, which adds another layer of extra computa-
tional work to the one required by saving suboptimal trees. The
chances of this problem happening are increased by the fact that
TNT clips (and reinserts) taxa using the same sequence: if the first
tree found when swapping from the 14-steps tree corresponds to
an alternative position for the first taxon (a), then the first tree that
will be found when swapping on the 15-steps tree will also corre-
spond to an alternative position of the same taxon. These chances
are significantly decreased if the taxa are not always clipped in the
same sequence, but instead with a randomized one; this option
was added to TNT (the randclip option of the bbreak command).
In such case, the first taxon to move when starting to swap on
the 15-steps tree may be a, but it may as well be d (which produces
the MPT if reinserted as sister of c), or c (which produces the MPT if
reinserted as sister of d), or the group ab (which produces the MPT
if reinserted as sister of cd). Saving trees one step longer and ran-
domizing the clipping sequence has the big advantage over saving
trees two steps longer and swapping with a fixed sequence that
fewer trees need to be saved and swapped. For the matrix with
t = 257, saving up to 50 trees one step longer than the best found
so far, and repeating TBR four times changing the random seed
(as before, using a single RAS Wagner tree as starting point for
TBR), produces the MPT in 991 of 1000 different starting points,
but needs only 0.847 s per replication (i.e. over 7 times faster).
Note that as the current tree gets closer to the MPT, there are fewer
suboptimal trees within one step (zero for the MPT; see Table 3),
and thus fewer trees need to be swapped with the successive
cycles of TBR. Being significantly faster, the strategy is also applica-
ble for the case of t = 1025, where it often produces the MPT within
2–4 min, but it is not fast enough to be applicable for t = 4096. The
strategy of saving suboptimal trees and repeating TBR with a dif-
ferent clipping sequence is unlikely to produce better results in
most real data sets, but it may prove useful in rare specific cases.
Searches under implied weights (Goloboff 1993, 2013; Goloboff
et al., 2008a,b) are probably one such case, since the tree landscape
under that optimality criterion tends to approach the landscape for
these data sets – numerous peaks with one or a few trees, sepa-
rated by narrow valleys, which cannot be easily travelled by just
saving suboptimal trees and swapping with the same taxon
sequence.
More general search strategies that work well for data sets of
Type 2 are the ratchet, tree-drifting, random sectorial searches
(selecting enough sectors of a sufficiently large size), and tree fus-
ing. The ratchet and drifting work better if some of the default
options are changed; for both ratchet and drifting, the perturbation
phase does r changes to the tree, and by default r = t/8 (but
r 6 200). Increasing r by a factor of 5 (with numsub, and changing
the giveup option, which stops the perturbation phase when a cer-
tain percentage of the branches have been clipped and swapped, to
nogiveup), both ratchet and drifting can find the MPT with fewer
iterations. In the case of drifting, the relative fit difference must
also be set to 0.25 (with drift: rfitd 0.25 nogiveup numsub
1000); in the case of the ratchet, increasing the probability of
up- or down-weighting characters (e.g. with rat: up 10 down 10
nogiveup numsub 1000) is required. With these changes in param-
eters, drifting or ratchet can find the MPT by themselves for
t = 1025 in about 20 s. However, ratchet and drifting are not
strictly necessary for these data sets; since (despite the numerous
islands) they are highly structured, a combination of sectorial
searches and tree fusing works very well. Therefore, the default
option of the xmult command (which uses the results of several
replications of RAS + TBR + sectorial search as input for tree fusing;
drifting or ratchet to further improve the trees before fusing are
only added optionally), finds the MPT very easily.

Additional fine-tuning can be obtained by taking into account
that the conflictive solutions correspond to only four tree branches
in these data sets, which is unusual. The xmult command uses the
consensus of the final result of the previous replication and the ini-
tial stages of the present one, as reference for a constrained secto-
rial search (Goloboff, 1999) of the sectors that lead (by default) to
polytomies of 10 or more nodes (sec: minfork 10); lowering min-
fork to 3 produces better results for these data sets. Additional tun-
ing that produces faster results for the larger cases is obtained by
setting mult: wclus 500 (to speed up the Wagner trees) and
bbreak: clus 25 (to speed up branch-swapping); both of these
are generally beneficial for any large data set. With this, it is possi-
ble to quickly build a sufficient number of starting points and sub-
mit them to tree-fusing – producing the MPT in almost every case.

4.3. Wagner or random trees as starting point for TBR

For this kind of data set the results (Fig. 7) of doing TBR (with-
out saving multiple trees, and clipping the taxa in a randomized
sequence) when starting from random trees slightly outperform
the results of starting from a Wagner tree, in the case of TNT.

As mentioned above, when starting to swap from random trees,
the modularity of these data sets is not preserved in the same way
as with Wagner trees. This can be verified by considering (as done
above for RAS Wagner trees) a matrix with the first 9 taxa of Fig. 6
and calculating the exact probabilities of every possible outcome.
The probabilities of the MPT and the three possible suboptimal
trees for this 2-module matrix are not the product of the



Fig. 7. Frequency of tree lengths found, for data sets of Type 2 (t = 257), by TNT (A)
and PAUP� (B) searches with TBR (single tree = nomulpars) starting from a RAS
Wagner tree, or a random tree. (A) The TNT runs repeated 10,000 times, under
Linux; average times (in sec): RAS + TBR, 0.0196; random tree + TBR (sequence ‘‘as
is’’), 0.0392; random tree + TBR (clipping sequence randomized), 0.0456. (B) The
PAUP� runs repeated 2500 times, under Windows; average time (in sec): RAS + TBR,
0.1413; random tree + TBR (taxon sequence randomized in matrix), 0.2067.
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probabilities of obtaining an optimal (0.5) or suboptimal tree (0.5)
for the single module shown in Fig. 5B; the probability of the MPT
when starting a fully randomized TBR from a random tree is
0.3242, well above the 0.25 that would be obtained if the modular-
ity were preserved in this context (likewise, the probability of
obtaining the suboptimal trees is well below the expected 0.25
for each of the trees; the 2-steps longer tree where both modules
are in the suboptimal configuration is found with P = 0.1877). A
comparable result is obtained when doubling all the taxa but the
first in Fig. 5B and adding synapomorphies for each pair of doubled
taxa: the tree (((aa0)(bb0))((cc0)(dd0))) has now a higher probability
(0.5889) than before (0.5) [evidently, the suboptimal tree
(((aa0)(dd0))((bb0)(cc0))) is now found with probability 1–
0.5889 = 0.4111].

It may well be that combining more modules to form larger
data sets, the same phenomenon continues taking place, and start-
ing TBR from random trees gradually outperforms (in ideally ran-
domized implementations) the use of Wagner trees as starting
points. If this is indeed so, the better results obtained with random
trees under TNT need not indicate a bias in the branch-swapper
(recall that even when the clipping sequence is randomized in
TNT, the sequence of reinsertions in the tree is not). While the
results for starting from random trees are only slightly superior
to the results for starting from Wagner trees when the clipping
sequence for TBR (or the sequence of taxa in the matrix) is random-
ized, the results are dramatically better when the clipping
sequence follows that in the MPT – this is clearly a case of bias,
and also means that there must be some specific clipping sequences
which produce a poorer result. In the case of PAUP�, the results of
starting from random trees are inferior to the results of starting
from Wagner trees, and show no significant differences whether
the taxon sequence in the matrix is randomized or not. The
difference between PAUP� and TNT is only in the results starting
from random trees; Wagner trees for PAUP� and TNT have similar
length distributions (see Fig. 7; note that the distribution curves for
TNT may be less even for the Windows versions, since they use a
different random number generator, the one provided by the Open
Watcom library). The reasons why swapping from random trees on
matrices with a randomized taxon sequence may produce better
results in TNT than in PAUP� are not clear; in principle, since both
programs do the same series of well-defined rearrangements, the
end results might be expected to agree.
5. No homoplasy, extremely flat landscape: data sets of Type 3

The third type of data set studied here is formed by creating a
character for each internal branch of the model tree, a character
with some missing entries but providing an unambiguous, homo-
plasy-free synapomorphy for the group g defined by the branch.
Unlike the two previous types of data set, the model tree can have
any (binary) topology or any number t of taxa. Each of the charac-
ters will have a state 1 in n members of the group defined by the
left descendant l of the corresponding branch, and a state 1 in n
members of the group r defined by the right descendant. It will also
have a state 0 in n members of s, the sister group of g, and state 0
for n of the remaining taxa that do not belong to either groups s or
g. All the rest of taxa will have a missing entry. As n increases, the
resulting matrix will converge onto the full matrix representation
of the model tree (known as ‘‘MRP’’ after Ragan, 1992), but for
low values of n the matrix will consist mostly of missing entries.
The type of construct resulting when n = 1 has been well studied
by mathematicians (e.g. Steel, 1992; Böcker et al., 2000; Steel,
2014). Under such conditions, the model tree is guaranteed to have
a length L = t � 3, but this length may occur in other trees as well
[Steel, 1992 gives as example the quartets ab|cf, bc|de, and ad|ef,
for which there are two MPT’s, (a (b (c (d (e f))))) and (a (d (e (b
(c f)))))]. When n = 1, it is possible to determine in polynomial time
(Böcker et al., 2000) whether the characters fit a unique tree, and
finding the tree (although I am not aware of any actual implemen-
tation of this algorithm). For any n, the supertree algorithm of
Goloboff and Pol (2002, implemented in TNT) can also be applied,
finding the model tree (when uniquely defined) very quickly (e.g.
<1 s for t = 500).

The data sets of Type 3 are those formed when the members to
be assigned the 0 and 1 states are selected in the same sequence for
all t � 3 characters, in which case the model tree is also guaranteed
to be the only tree of length L. To do this, a random ordering Rt of
the taxa, 1, 2 . . .t, is defined; then for each of the four sets of non-
missing states, the list is scanned separately from the beginning to
the end, and the first n taxa that belong to the group (or to neither
group g nor s, in the last set of 0’s) are selected (when l, r, or s are
themselves terminals or small groups, or g and s are groups with
most of the taxa, fewer than n taxa may be selected for some of
the four sets). In this case, there will be a few terminal taxa that
concentrate observed entries, and many taxa with only a few
observed 0’s or 1’s. In the discussion that follows, unless otherwise
indicated, n = 1.
5.1. Tree landscape

In contrast to the case of data sets of Type 2, the tree landscape
for these data sets cannot be predicted from modularity, only
observed empirically in the smaller cases (and assumed to be sim-
ilar in the larger). Thorough searches for smaller cases reveal that
these data sets have a single peak but an extremely flat landscape;
thus, starting the tree search from any tree and branch-swapping
(with either TBR or SPR) saving multiple trees, guarantees finding
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the MPT. However, numerous individual trees are locally optimal
under TBR (i.e. their TBR neighborhood contains many trees of
the same score, but no better tree). Therefore, the approach of
using one or a few starting points and then saving and swapping
multiple trees is possible only for modestly sized data sets, because
the number of trees that need to be saved makes the approach pro-
hibitive. For data sets with only 20 taxa, saving and swapping up to
10,000 trees is not enough to consistently find the MPT; even sav-
ing 20,000 trees occasionally fails to find the MPT. For 30 taxa, sav-
ing up to 50,000 trees finds the MPT only in about a third of the
cases. As the number of taxa increases, swapping the trees requires
looking at many more rearrangements; for t = 50, saving and swap-
ping 50,000 trees takes much longer than for 30 taxa, but 50,000
trees is totally insufficient for this many taxa – searches from a sin-
gle starting point saving up to 50,000 equally parsimonious trees
commonly find trees 4 or 5 steps longer than the MPT. This shows
that consistently finding the MPT by saving equally parsimonious
trees quickly becomes unfeasible as t grows because it requires
saving and swapping millions of trees. The resulting tree landscape
is shown in Fig. 1 (lower curve). A standard search which tries to
find the MPT by swapping multiple trees is like a swimmer
stranded in the middle of the sea: it can easily move in any direc-
tion, but getting to the shore is next to impossible.

Another indication of the difficulties that can arise with these
data sets is in how the number of equally parsimonious trees mul-
tiplies enormously as a single character is deactivated, the more so
when the character can be mapped as a synapomorphy of an even
sized partition (deactivating characters that distinguish groups
with two taxa produces the fewest additional trees). When n = 1,
the maximum number of steps a character can have is 2. Therefore,
the trees that previously were suboptimal and become most parsi-
monious when deactivating a single character must necessarily
have (for the full data set) a single step beyond the MPT. For
t = 100, deactivating the character for one of the groups in the mid-
dle of the tree produces hundreds of thousands of equally parsimo-
nious trees, and a completely unresolved consensus. Deactivating
taxa has a similar effect; since every taxon in the matrix has at
least one non-missing entry (either 0 or 1), deactivating a taxon
makes the corresponding character(s) uninformative (now consist-
ing of two 0’s and one 1, or one 0 and two 1’s), producing the same
result as deactivating character(s). Therefore, only the entire
matrix can determine a unique MPT; any alteration to the full
matrix will create an enormous ambiguity and very large numbers
of equally parsimonious trees.

5.2. Behavior of tree search algorithms

The tree landscape of these data sets makes it very difficult for
all search methods to find the MPT. Although the MPT for these
data sets can be found with specific algorithms that do not use
searches (such as Böcker et al.’s, 2000, or Goloboff and Pol’s,
2002), in the case of real data sets resembling matrices of Type 3,
those algorithms will probably be inapplicable, because some
homoplasy and character conflict will exist. Thus, search methods
are needed for such real cases, and they need to be improved to be
able to find (or at least approximate) the MPT for these data sets.

The reasons why Wagner trees and TBR fail to find the MPT are
different. In the case of Wagner trees, the initial stages in the for-
mation of the tree will usually correspond to taxon subsets for
which the characters are uninformative. Given that most of the
taxa have a very large proportion of missing entries (with observed
entries corresponding to different characters in different taxa),
most of the subsets of a few taxa will have a single or no 0 states,
and/or a single or no 1 states, for the majority of characters. For
t = 100, the probability of a (random) subset of 10 taxa being com-
pletely uninformative is about 0.99. Even if some of the characters
are informative at a given stage in the formation of a Wagner tree,
they are extremely unlikely to fully determine the subtree that cor-
responds to the MPT (see Section 5.1, for the effect of deactivating
individual taxa on the number of MPT’s). Thus, for any medium or
large t, it is virtually impossible for a Wagner tree to find the MPT,
despite all the characters being completely congruent. For t = 100,
the average length (10,000 replications) of a RAS Wagner tree is
138.94 steps (over 40% longer than the MPT, 97 steps); about 1
every 1000 replications finds a tree which is 25% longer than the
MPT, all others do worse. Compared to most real data sets, this is
an extraordinarily poor result for Wagner trees (e.g. Wagner trees
for the 500-taxon ‘‘Zilla’’ rbcL data set of Chase et al. (1993) typi-
cally have 2% more steps than the MPT’s), specially considering
that the longest possible trees are only twice the length of the
MPT. Random trees are thus only slightly worse than RAS Wagner
trees (about 15% longer, on average; for Zilla, random trees are
�130% longer than Wagner trees).

In the case of branch-swapping, the very flat tree landscape
makes it very difficult for TBR to efficiently move along the surface.
When a single tree is saved during swapping, the average final
lengths are 20–25% longer than the MPT (e.g. for t = 500, the best
tree out of 2500 replications was 593 steps instead of 497, or
19.3% longer; in the case of Zilla, only 100 replications of RAS + TBR
are enough to find trees within 0.055% of the MPT’s). Even if multi-
ple trees are saved, things do not improve much, because the num-
ber of trees that need to be saved for medium or large sized data
sets is too large.

The results obtained with the xmult command of TNT are bet-
ter, but still much longer than the MPT. At level = 5, for t = 100,
an xmult search uses 9 starting points and incorporates CSS and
RSS (consensus and random sectorial searches; see Goloboff,
1999), as well as 4 iterations of tree-drifting (with otherwise
default parameters), fusing the 9 trees resulting from each of the
starting points with 5 rounds of tree-fusing. The average final
length for this routine (repeated 2500 times) is 112.99 steps
(16% longer than the MPT), and the best length 108 steps (11.3%
longer than the MPT). The final points of different individual
searches for these data sets are very different; thus tree-fusing
can attempt very few exchanges (producing no significant
improvement), and the method of Goloboff and Farris (2001) for
estimating the consensus produces a complete bush.

In sum, none of the existing search methods can produce trees
even remotely close (within 5% or less) to the MPT for this type of
data set. The next two sections describe modifications of the exist-
ing building and rearrangement operations that can produce trees
that are much closer to optimal.

5.3. Better building methods

The standard method for building Wagner trees is randomizing
the sequence with which taxa are added to the growing tree, RAS.
Farris (1970) proposed some alternatives, one of which has long
been implemented in PAUP� as the ‘‘closest’’ addition sequence
(recently implemented in the mult command of TNT as the ‘‘cas’’
option). In PAUP�, the closest addition sequence is unique for each
matrix and it is not possible to do multiple replications with this
option (unless multiple matrices with the taxa in a different
sequence are created); TNT randomly breaks ties in the length
increment for several taxa, so this allows doing multiple replica-
tions. With the closest addition sequence, each of the taxa not
yet placed in the tree are tried for insertion at each branch, and
the taxon leading to the smallest length increment is chosen. This
requires trying each of the taxa not yet added to the tree, and thus
is significantly slower than a RAS Wagner tree. While in rare spe-
cific cases the closest addition sequence may outperform the stan-
dard RAS (e.g. in randomly generated data sets), it is unusual that it
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does so. Even more, in the particular case of Type 3 data sets, it is
not only slower than the RAS, but also produces significantly infe-
rior results. The tree length distribution obtained for t = 100 is
shown in Fig. 8A (CAS, gray); compare this to the distribution
obtained for RAS (black). The criterion used to select the next taxon
to add is actually counterproductive in this case: those taxa for
which the characters continue being uninformative tend to pro-
duce smaller length increments, and thus will be added first.

Since the reason Wagner trees produce such strongly subopti-
mal results is that most taxon subsets are uninformative, solving
that problem requires that the taxa be added to the tree in such
a way that the subsets are maximally informative in the initial
stages. Two ways to do this have been recently (November 2013)
implemented in TNT, and they produce similar results for these
data sets. The first is the ‘‘selected’’ addition sequences or SAS
Fig. 8. Frequency of tree lengths found, for data sets of Type 3 (t = 100). (A)
Comparison of TBR (saving a single tree), when using as starting point 10 different
RAS, IAS, or CAS Wagner trees, on a data set with n = 1. Each routine repeated 5000
times in Linux. Average run times (sec): RAS + TBR, 0.1814, IAS + TBR, 0.1408;
CAS + TBR, 0.3502. (B) Same as A, but for a data set with n = 3. Average run times:
RAS + TBR, 0.1664; IAS + TBR, 0.0674; CAS + TBR, 0.2782. (C) Comparison between
default and modified tree drifting, for data with n = 3. The default drifting for
t = 100 interrupts the perturbation phase when 12 changes have been made to the
tree; the modified routine interrupts the perturbation phase only after 100 changes,
thus using a larger proportion of time in moving through equally parsimonious tree
than in the standard TBR (which only accepts rearrangements that improve score).
Each of the two routines (default and 100 changes) was run 1000 times, under
Linux, for 40 s (run times for both routines are identical).
(the ‘‘sas’’ option of the mult command). In this case, the 4-taxon
subset for which the three possible trees maximally differ in length
is chosen initially (but the outgroup is always part of these 4 taxa;
with the ‘‘rseed > ’’ option, applicable only when all character state
transformation costs are symmetrical, the outgroup is chosen ran-
domly for each replication). Subsequent to this, each position for
each of the remaining taxa is tried, and the taxon with the maxi-
mum difference D between the length for best and worst positions
is selected (again, ties in D are broken randomly, so that multiple
‘‘selected’’ addition sequences can be used). This is significantly
slower than the RAS, but produces much better results for data sets
of Type 3 (data not shown, similar to the IAS described below but
slower). Much of the extra work needed for a ‘‘selected’’ addition
sequence can be avoided with an ‘‘informative’’ addition sequence
or IAS (with the ‘‘ias’’ option of the mult command; note that ties
in the taxon selection are also broken randomly, so that different
IAS can be tried). This consists of simply counting the number of
characters that are informative for different taxon subsets (in the
case of nonadditive characters, a character is informative when
there are at least two states which occur in at least two taxa);
unlike the previous case, the informative addition sequence can
be established prior to building the Wagner tree. The results pro-
duced by the informative addition sequences for Type 3 data sets
when n = 1 are spectacular; they are shown in Fig. 8A (white cir-
cles). Note that Fig. 8A shows the best length out of 10 addition
sequences followed by TBR, which produces better results than a
single addition sequence (and decreases the dispersion in the val-
ues). In the case of t = 100, over 40% of the builds using ten differ-
ent IAS find the optimal tree. Although in Fig. 8A the builds are
followed by TBR (with no mulpars), the difference in results for
IAS, RAS, and CAS for building the initial tree is so profound that
the differences remain after branch-swapping.

The difference between IAS and RAS, however, is greatly
decreased when n > 1. There are two reasons for this. First, the
RAS produces better results, because there is a smaller probability
of a taxon subset being uninformative as n grows; the most fre-
quent result for n = 1 is about 20 steps longer than the MPT (see
Fig. 8A), while the most frequent result for n = 3 is about 15 steps
longer than the MPT (see Fig. 8B), so that the RAS curves are similar
but shifted about 5 steps towards the MPT for n = 3. Second, the IAS
produces worse results, probably because the difference in infor-
mativeness between different taxon subsets is not as marked as
when n = 1, thus making it more difficult to choose different addi-
tion sequences. The results for t = 100 and n = 3 are shown in
Fig. 8B (white circles). Although the difference is much smaller
than for n = 1, the results for IAS continue being better than the
results for RAS, and no cases where IAS actually produces (on aver-
age) worse results than RAS have been found. Unfortunately, real
data sets are more likely to mimic the situation observed for the
case when n > 1, so additional methods to continue improving
the trees are needed. Note, however, that standard search methods
perform extremely well when n� 1; the problematic cases are
those where n is above 1 but still small relative to t.

For real data sets, the IAS may produce better results for phylog-
enomic data sets with uneven taxon representation for the differ-
ent genes and many missing entries, such as McMahon and
Sanderson’s (2006) ‘‘sparse’’ 2228-taxon matrix. On this matrix,
IAS + TBR produces trees 185 steps shorter than RAS + TBR, on
average (200 runs of each of the two routines were made). Even
when the Wagner tree is followed by TBR (much more exhaustive),
the influence of the initial point still makes a difference in the final
result. The IAS requires more computational work than the RAS, to
select the initial quartet, and to select successive taxa. That work
can be lessened if, instead of making this choice from all possible
terminals, the first i taxa in a randomized list are examined – that
is, by defining a value of maximum allowed ‘‘lookahead’’. For the



Fig. 9. Frequency of tree lengths found for data sets of Type 3 (n = 3), using
exclusive sectorial searches (XSS) which either accept only solutions that improve
the score for the sectors (the noequals option, default in TNT), or accept solutions
that match the score (the equals option). All cases run in Linux; average times in
sec. (A) Case of t = 100, a RAS + TBR as starting point, followed by sectorial search
dividing tree in 5–3 parts, 500 times, and using 8 RAS + TBR to analyze each sector
(sectsch = xss5–3 + 500–1 start 8 godri 100), with equals (average time 9.7) and
noequals (average time 9.0). Each routine run 2500 times; the default routine
(noequals) found the MPT a single time, the equals routine found it 1881 times. (B)
Case of t = 256, run with the same commands, and also using IAS + TBR to analyze
each sector. Average times: noequals, 79; equals and RAS + TBR 92; equals and
IAS + TBR, 141 s. The best case (out of the 2500 runs) for noequals was 15 steps
longer than the MPT; the best case for equals and RAS + TBR was 5 steps longer than
the MPT (a single case); equals and IAS + TBR found the MPT in 27 cases (907 cases
found trees within 5 steps of the MPT; 730 cases found trees within 4 steps of the
MPT – better than the best case for equals and RAS + TBR).
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comparisons just mentioned in the 2228-taxon matrix, a look-
ahead of 150 was used. This decreases the work needed for IAS,
and even if it still takes longer than the RAS, it subsequently
requires a shorter time for TBR to complete swapping (because
the Wagner method delivers a tree which is closer to optimal),
and then the total average time with IAS and a lookahead of 150
was only 10% longer than with RAS (�155 vs. �140 s).

5.4. Better methods for improving existing trees

As mentioned above, the problem these data sets pose to stan-
dard search algorithms is that the tree landscape is too flat – saving
multiple trees under TBR guarantees finding the optimal tree, but
the number of trees that need to be saved is too large for this to
be practical. Two minor modifications of the existing algorithms
in TNT produce results that strongly outperform the default
settings.

The first is letting the perturbation phase in tree-drifting effect
to the tree many more changes than the default before switching to
normal TBR. In TNT, this is controlled with the numsub and giveup
options of the drift command (already discussed for data sets of
Type 1, see Section 4.2). This amounts to saving multiple trees,
but allows swapping on trees differing by several rearrangements
without having to swap completely through thousands of trees dif-
fering in one or a few. Fig 8C shows the comparison between tree-
drifting with the default parameters (black) and making as many
changes to the tree (in every perturbated cycle) as the number of
taxa, for the case t = 100 and n = 3. Each of the two options was
automatically interrupted after 40 s (using the timeout option of
TNT), so that they used exactly the same amount of search time.
It is clear from Fig. 8C that the additional number of changes makes
a significant difference, and produces much better results (i.e.
strongly shifted to the left), relative to the default tree-drifting or
to the application of IAS + TBR alone.

The second improvement is using sectorial searches to explore a
diversity of trees of the same score, instead of (as typically done)
using them only to find better trees. This is done by searching trees
for the reduced data sets, and accepting all solutions that match
the best score (instead of accepting only those that improve it,
which is the default option). This can be done by using the equal
option of the sectsch command (or, in Windows versions, by
checking on the ‘‘accept rearrangements of equal score’’ in the Sec-
torial Search ‘‘settings’’ option of the dialog for the menu option
Analyze/NewTechnologySearch). The comparison between these
two options is shown in Fig. 9A. Given that for these data sets find-
ing the MPT is difficult even for relatively small cases, the settings
for the sectorial search were chosen so that the reduced data sets
are smaller than usual (e.g. about 20–30 nodes for t = 100, about
50–80 for t = 256). That is, an ‘‘exclusive’’ sectorial search (XSS,
with non-overlapping sectors that cover all the tree) was used,
dividing the tree in 5–3 parts. For t = 100 and n = 3, this routine
alone was sufficient to consistently find the MPT (in about 3/4 of
the cases). For t = 256 and n = 3 (Fig. 9B), this also produced much
better results than the default (gray vs. black), but it was insuffi-
cient to approach minimum length. In that case, using a IAS Wag-
ner tree for the analysis of reduced data sets produces results
approaching minimum length (white circles). Note that when
n > 1 the IAS option for Wagner trees is not very useful if combined
only with TBR for the full tree (as shown in Fig. 8B), but it does
improve the results significantly if used to analyze the reduced
data sets in combination with XSS.

5.5. Trees within one step of the MPT

The number of trees within one step of the MPT in these data
sets (when n = 1) is very large, as already discussed above (under
Section 5.1). There is however an unexpected detail in the number
of TBR moves for data sets of Type 3: when n = 1 and the first split
in the tree used to generate the data leads to a terminal (i.e. when a
terminal is the outgroup), then for a given t the number of TBR
moves to the MPT that produce trees within one step is a constant
number, regardless of the shape of the tree and regardless of the
random ordering Rt. This is shown in Fig. 10, for 20 6 t 6 100
(gray); for each t value, the plot shows the number of TBR moves
within one step, for 50 different tree topologies and random order-
ings Rt. The 50 values are identical for each of the 50 matrices, so
they overlap completely. The number of TBR moves to the MPT (in
black, with considerable spread), is plotted for the same 50 differ-
ent tree topologies and orderings Rt used to calculate the number
of TBR moves within one step for each value of t.

Experiments confirm that each of those moves producing a tree
within one step is also equivalent to an SPR move: the same num-
ber of distinct trees within one step are found by swapping from
the MPT with SPR or TBR (unlike data sets of Type 1, swapping
on those other trees quickly leads to finding additional trees that
differ between SPR and TBR; the identity is in the tree sets pro-
duced by swapping the MPT alone). However, the number of dis-
tinct trees within one step found by SPR or TBR moves to the
MPT is not in itself constant: it changes with tree shape and Rt.
The constancy in the number of TBR moves is a consequence of
the duplication of moves in TBR; e.g. given the trees (a(b(c(de))))



Fig. 10. Number of TBR moves on the MPT (black), and number of TBR moves
producing a tree within one step of the MPT (gray), for data sets of Type 3 (n = 1),
with different numbers of taxa, t. For each number of taxa, 50 different model trees
and random orderings Rt were used. The y-axis for number of moves, and for
number of moves within one step of the MPT have a different scale. There is
significant variation in the number of TBR moves, but the number of moves within
one step is constant for a given value of t. See text for discussion.
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and (a(b(e(cd)))), three SPR moves can convert the first into the
second, but in addition to those there is a fourth move under
TBR (clip cde, reroot such that e is sister group to cd, and reinsert
at the original position). Thus, the number of SPR moves to the MPT
that produce a tree within one step is not a constant number. This
was unexpected, especially because theory predicts that the num-
ber of TBR moves to a tree of t taxa changes with the tree topology
while the number of SPR moves does not (see Semple and Steel,
2003: 33).

When n > 1, or when the tree used to generate the data does not
have a terminal taxon in the first split, then the number of TBR
moves within one step of the MPT for a given value of t is no longer
constant. Likewise, the number of TBR moves leading to trees
within two steps of the model tree is not constant under any cir-
cumstances; this is true only for trees within a single step (no
doubt, this is connected to the fact that no character can have more
than a single extra step when n = 1; a tree two steps longer than
the MPT necessarily has homoplasy for two characters).
6. Discussion and conclusions

The three types of data sets discussed in this paper have differ-
ent characteristics, and pose different problems to tree search algo-
rithms. The fact that the MPT can be known exactly for these data
sets allows determining the efficacy of different search algorithms,
which in turn better illuminates the reasons why tree searches
may fail to find the MPT, suggesting ways to correct those
problems.

The data sets of Type 1 and 3 have a similar landscape, with
only one island containing the MPT, and successively lower pla-
teaus (as shown in Fig. 1, top and bottom curves). Just using TBR
saving multiple trees is enough to guarantee finding the MPT,
regardless of the starting point used to initiate branch-swapping.
This allows finding the optimal trees rather easily for data sets of
Type 1, but in data sets of type 3 the plateaus are too extensive
for the trees found by TBR to effectively connect to the trees in
adjacent, higher plateaus. For these data sets, only saving and
swapping hundreds of thousands of trees allows approximating
the MPT, but this quickly becomes computationally impossible as
the number of taxa increases. Thus, special search strategies are
required. The strategies proposed (IAS or ‘‘informative addition
sequences’’, accepting trees of equal score for reduced sectors in
sectorial searches, and letting the perturbation phase of tree-drift-
ing or ratchet perform many changes to the tree before switching
back to normal TBR) allow searches to produce trees of better
score, hundreds or thousands of times faster than would be
required for more standard strategies. The IAS tries to identify
more informative taxon subsets when building the Wagner tree.
The strategy based on tree-drifting uses the perturbation phase
to quickly produce a tree differing from the initial one in numerous
TBR rearrangements (which, under normal TBR saving multiple
trees, requires the complete swapping of huge numbers of trees).
The strategy based on sectorial searches uses the analysis of the
sectors to effectively move around within the present plateau,
eventually coming near the edge of higher plateaus. Although the
alternative options for tree-drifting and sectorial searches were
available in TNT, they are not included as default options, and
hence were very rarely used or explored. The present analysis
shows that changing those parameters of tree-drifting and secto-
rial searches improves the results by a huge factor, for data sets
where the tree landscape has extensive plateaus (i.e. plateaus with
very numerous trees of equal score around a given tree, only one or
a few of which can lead to better trees). The comparison between
data sets of Type 1 and Type 3 also shows clearly that what makes
tree searches difficult is, primarily, the shape of the tree landscape,
more than just the existence of homoplasy; data sets of Type 3 lack
homoplasy, yet they are the most difficult data sets examined here.

Data sets of Type 2, in contrast, present an extremely rugged
landscape, not because of high homoplasy, but instead because of
the peculiar distribution of the little homoplasy that is present.
For these data sets, the standard search methods using branch-
swapping and different starting points are doomed to fail. How-
ever, the more elaborate techniques implemented in TNT (sectorial
searches, perturbation algorithms, and tree-fusing) produce very
good results for these data sets. These data sets also allowed to
identify problems that may arise with branch-swapping saving
suboptimal trees. Saving suboptimal trees is of no help when
searches can easily find numerous equally optimal trees, but it
may be useful when the searches frequently land on local optima
containing only one or a few trees. These narrow peaks and valleys
are likely to occur in analyses under different weighting methods
(e.g. implied weighting) or maximum likelihood. Specifying a max-
imum acceptable excess in the optimality score, and swapping on
the resulting trees, requires much larger thresholds if the sequence
of clippings in TBR is always the same. Randomizing the clipping
sequence allows finding the MPT much more efficiently, specifying
acceptance of a smaller excess of steps (thus, fewer trees need to
be saved and swapped). The implementation of suboptimal trees
in TNT uses this specification of difference in steps beyond the best
tree found so far, and the acceptable absolute score is automati-
cally changed as the search finds better trees. This is different from
the implementation of suboptimal trees in PAUP�, which requires
specification (with the keep value) of an absolute score for a tree
found by swapping to be acceptable. Even if the length of the
MPT was known when analyzing a data set like those of Type 2,
an implementation like PAUP�’s is not very practical. A search using
a RAS is likely to find trees a dozen or more steps beyond the MPT.
PAUP� would then require specifying a keep of trees beyond one
step of that value, until a better one is found, then repeating the
procedure with a new keep value; this could require dozens of
manually driven searches, with different keep values, before the
MPT is found.

All the findings and new methods presented in this paper were
made possible by studying data sets where the MPT is known but
hard to find. Although a lot of research has already been invested in
tree search techniques, it is clear that further improvements are
possible for special cases. The properties of the tree landscape that
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make finding the MPT difficult for the data sets studied here can
also occur in real circumstances, and thus, in addition to their the-
oretical interest, some of the new methods described here may find
practical application in the future.
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