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1. Introduction

The modal interpretations of quantum mechanics found their
roots in the works of Van Fraassen (1972, 1974), who claimed that
the quantum state always evolves unitarily (with no collapse) and
determines what may be the case: which physical properties the
system may possess, and which properties the system may have at
later times. On this basis, since the 1980s several authors presented
realist interpretations that can be viewed as belonging to a “modal
family” (Bacciagaluppi & Dickson, 1999; Bene & Dieks, 2002; Dieks,
1988, 1989; Kochen, 1985; Vermaas & Dieks, 1995): realist, non-
collapse interpretations of the standard formalism of the theory,
according to which any quantum system possesses definite prop-
erties at all times, and the quantum state assigns probabilities to
the possible properties of the system. Given the contextuality of
quantummechanics (Kochen & Specker, 1967), the members of the
family differ to each other with respect to their rule of definite-
value ascription, which picks out, from the set of all observables
of a quantum system, the subset of definite-valued properties, that
is, the preferred context (see Lombardi & Dieks, 2014 and references
therein). In particular, the modal-Hamiltonian interpretation (MHI)
(Castagnino & Lombardi, 2008; Lombardi & Castagnino, 2008)
endows the Hamiltonian of the systemwith the role of selecting the
subset of the definite-valued observables that constitute the
preferred context.
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The MHI solves several problems that affected the traditional
modal interpretations (Lombardi & Castagnino, 2008; Ardenghi,
Lombardi, & Narvaja, 2013; Lombardi, Fortin, & L�opez, 2015).
Moreover, it has been reformulated in an explicitly Galilean
invariant form (Ardenghi, Castagnino,& Lombardi, 2009; Lombardi,
Castagnino, & Ardenghi, 2010), and its compatibility with the the-
ory of decoherence has been proved (Lombardi, 2010; Lombardi,
Fortin, Castagnino, & Ardenghi, 2012). In turn, from the ontolog-
ical viewpoint, theMHI offers a clear picture of an ontologywithout
individuals, where quantum systems are bundles of properties (da
Costa, Lombardi, & Lastiri, 2013; da Costa & Lombardi, 2014;
Lombardi & Dieks, 2016). Nevertheless, perhaps the main advan-
tage of the MHI in the eyes of scientists is given by its several ap-
plications to well-known physical situations, leading to results
compatible with experimental evidence: free particle with spin,
harmonic oscillator, hydrogen atom, Zeeman effect, fine structure,
Born-Oppenheimer approximation (see Lombardi & Castagnino,
2008, Section 5). The purpose of this paper is to add a new appli-
cation to the list: the case of optical isomerism, which is a central
issue for the philosophy of physics and of chemistry. The phe-
nomenon of isomerism points to the core of the problem of the
relationship between physics and chemistry, in particular, to the
question of whether molecular chemistry can be reduced to
quantum mechanics. Here it will be shown that the MHI supplies a
direct and physically natural solution to the problem, which does
not require putting classical assumptions in “by hand.”

With this purpose, the paper is organized as follows. In Section
2, the discussion about the problem of the reduction of chemistry to
physics will be introduced in terms of the concept of molecular
structure. On this basis, Section 3 will focus on the particular
problem of optical isomerism and the so-called Hund's paradox,
which points to the difficulty in giving a quantum account to
chirality. Section 4 will be devoted to explain the different attempts
to solve the paradox and their difficulties. In Section 5, the main
features of the MHI will be recalled, emphasizing the aspects that
will lead, in Section 6, to offer a solution of Hund's paradox in
exclusively quantum terms. Finally, in the Conclusions the general
argument will be reviewed, stressing why the MHI supplies a
perspective that sounds natural to chemists' ears and provides
them with the tools to face some general problems related to the
links between chemistry and physics.
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2. Linking physics and chemistry: the problem of molecular
structure

Since the advent of quantum mechanics and its application to
chemical systems, reduction became a regulative idea in the ac-
counts of the relationship between physics and chemistry. The
famous introductory paragraph of Paul Dirac's article of 1929 is
usually considered the paradigmatic manifestation of the reduc-
tionist attitude in this field: “The underlying physical laws necessary
for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only that the
exact application of these equations leads to equations much too
complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics
should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation”
(Dirac, 1929, p. 714). In this quote, the idea is that chemical phe-
nomena can be explained by the laws of physics, in the sense that
the descriptions of those phenomena are derivable from the
equations of quantum mechanics plus the necessary specific con-
ditions. Of course, Dirac explicitly acknowledges that the explana-
tion does not require effective derivation: in practice, due to the
complexity of the target, the application of quantum mechanics to
molecular systems requires the introduction of different approxi-
mation strategies. Nevertheless, since at that time it was commonly
assumed that chemical systems are nothing else than complex
quantum systems (see discussion in Lombardi & Labarca, 2005,
2006), approximations were seen as conceptually innocuous
techniques that could be in principle removed to obtain a more
precise description. The approximate methods referred to by Dirac
are the core of what later would be known as quantum chemistry
(see Hendry, 1998).

The problem of the relationship between physics and chemistry,
in particular between molecular chemistry and quantum me-
chanics, finds one of its main manifestations in the debate about
the nature of molecular structure, which, according to molecular
chemistry, is given by the spatial arrangement of the atoms in a
molecule. The debate focuses not on an auxiliary or secondary
notion, but on a central concept of molecular chemistry: molecular
structure is the main factor in the explanation of reactivity, it is “the
central dogma of molecular science” (Woolley, 1978, p. 1074). As
Robin Hendry claims, “molecular structure is so central to chemical
explanation that to explain molecular structure is pretty much to
explain the whole of chemistry” (Hendry, 2010, p. 183). Or, in Hans
Primas terms: “[t]he alpha and omega of molecular chemistry is the
doctrine that molecules exist as individual objects and that every
molecule has a shape, characterized by its molecular frame” (Primas,
1994, p. 216).

At present, the discussion about the boundaries between
physics and chemistry distinguishes between epistemic reduction
and ontological reduction (Lombardi & Labarca, 2005, 2006) or, in
Hendry's terms (2010; see also 2004, 2008), between the inter-
theoretic and the metaphysical aspects of the reduction debate. In
the epistemic field, Hinne Hettema (2012) is extremely optimistic:
he adopts an explicitly reductionist stance by considering that the
intertheoretic relationship between molecular chemistry and
quantum mechanics fulfills the conditions required by the tradi-
tional Nagelian model of reduction (see debate between Lombardi,
2014; Hettema, 2014). Another epistemic reductionist strategy is
that based on the concept of quantum decoherence: conceived as
the process that accounts for the classical limit of quantum me-
chanics (Zurek, 1991, 2003), environment induced decoherence
would supply the necessary link between the classical concepts of
molecular chemistry and the concepts of the quantum domain
(Trost & Hornberger, 2009; Scerri, 2011, 2013).
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Nevertheless, at present epistemic reductionism is not the usual
stance in the philosophy of chemistry community: nowadays
almost everybody agrees that classical intertheoretic reductions of
chemistry to physics are not currently available (see several ex-
amples in Lombardi & Labarca, 2005). In spite of the role played by
approximations, the obstacles are particularly serious in the case of
the explanation of molecular structure. Already in his works of the
70's and the 80's, Guy Woolley points out that, by means of the
description of a molecule from “first principles”, “one cannot even
calculate the most important parameters in chemistry, namely, those
that describe the molecular structure” (Woolley, 1978, p. 1074); he
considers that the impossibility of determining the geometry of a
molecule bymeans of quantummechanics is a proof of the fact that
molecular structure is only a “powerful and illuminating metaphor”
(Woolley, 1982, p. 4). Other authors stress that conceiving the
molecule as an individual object with its own spatial structure re-
quires to ignore quantum correlations: “The shape of a molecular
state should of course not show holistic correlations to other molecular
quantities and hence be unambiguously defined.” (Amann, 1992, p.
32).

Notwithstanding the agreement about epistemic matters,
ontological reductionists and non-reductionists differ in their
interpretation of the practical impossibility of explaining molecular
structure in quantum terms: “the issue is essentially future
directed �both sides must wait and see, even if they would bet
different ways. But why do the two sides make different bets? Perhaps
the answer concerns their different underlying metaphysical views.”
(Hendry, 2010, p. 184).

On the one hand, authors with ontologically reductionist
disposition consider that the impossibility of deriving molecular
structure from quantum mechanics is the consequence of our
partial knowledge of the molecular systems. For instance, Guy
Woolley and Brian Sutcliffe claim that: “We have never claimed that
molecular structure cannot be reconciled with or reduced to quantum
mechanics, or that there is something ‘alien’ about it; our claim is
much more modest. We do not know how to make the connection.”
(Sutcliffe & Woolley, 2011, p. 94; see also 2012). On the contrary,
other authors stress that the problem is not merely practical and
contingent, but derives from the fact that the very concept of mo-
lecular structure finds no place in the theoretical framework of
quantum mechanics. For instance, according to Hans Primas, the
classical idea of definite spatial position for the atomic nuclei,
conceived as individual objects, is, at least, strongly controversial in
the quantum context. The author highlights non-locality as a spe-
cific feature of quantum mechanics that excludes the spatial
concept of molecular structure: “the holistic correlations between the
nuclei and electrons are suppressed, so the description of a molecule
reduces to the description of the motion in the electrical field of a
classical nuclear framework” (Primas 1983, p. 91; see also 1998).
Following Primas' ideas, Robert Bishop (2005) also recognizes the
conceptual limitations of quantum mechanics to account for mo-
lecular structure, and points out that proper attention to the
context relevant to a particular situation can resolve otherwise
intractable problems (see also Bishop & Atmanspacher, 2006). In
turn, Hendry (2004, 2008, 2010), who has largely addressed the
issue of molecular structure in the context of the debate about
reduction, claims that the debate must turn to consider the onto-
logical relationships between the entities, processes, and laws
studied by different sciences. From this perspective, he argues that
the relationship between quantum mechanics and molecular
chemistry, embodied in concept of molecular structure, must be
conceived in terms of emergence.

A central element in the discussion about molecular structure is
the role played by the Born-Oppenheimer approximation, whose
fundamental premise is the possibility of decomposing the
the modal-Hamiltonian interpretation of quantum mechanics: The
ern Physics (2017), http://dx.doi.org/10.1016/j.shpsb.2017.06.008
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Hamiltonian of the molecule into its electronic and its nuclear
components. This move relies on assuming the nuclei as classical-
like particles at rest in a definite position: on this basis, the terms
of kinetic energy associated to the nuclear motion are removed
(clamped-nuclei assumption). In the Hamiltonian resulting from that
assumption, themolecular structure is described by the positions of
the nuclei. In turn, the so-called ‘potential energy surface’ that af-
fects the electrons of the molecule can be calculated by means of
this Hamiltonian. Nevertheless, from the viewpoint of reduction,
the Born-Oppenheimer approximation faces at least two diffi-
culties. First, it introduces the molecular structure into the quan-
tum description from the very beginning, since the positions of the
nuclei are established with the appeal to classical geometric con-
siderations. Second, the assumption of the nuclei at rest in fixed
spatial positions contradicts the Heisenberg principle, which pre-
vents quantum systems from having definite values of position and
velocity simultaneously (see Chang, 2015; Lombardi & Castagnino,
2010). As Hendry (1998, 2010) points out, the “proxy” defense of
Born-Oppenheimer models is based on the assumption that using
them instead of the exact solution makes only a small difference to
the energy; but, from a theoretical viewpoint, those models “simply
assume the facts about molecular structure that ought to be explained”
(Hendry, 2010, p. 186). Hasok Chang clearly makes the point: “The
difficulty here is not only about the practicalities of the calculation,
and the clamping-down of nuclei is not merely an approximation.
Aside from assuming that the nuclei are fixed, it is necessary to know
exactly where exactly the nuclei in question should be placed.
Otherwise it is not possible to specify the potential function, which
needs to be inserted into the Schr€odinger equation, whose solution
determines the wavefuncion of the electrons in the molecule. In other
words, without knowing the locations of the nuclei in the molecule it is
impossible even to set up (not to mention solve) the Schr€odinger
equation.” (Chang, 2015, p. 198).

The discussion around the nature of molecular structure is often
related to the interpretation of the Born-Oppenheimer approxi-
mation. However, there is a specific problem regarding molecular
structure that plays a central role in the debate about the rela-
tionship between molecular chemistry and quantum mechanics.
This is the problem of isomerism. The particular relevance of this
case is that, as it will be explained in the next section, the diffi-
culties derived from it are independent from the assumptions
involved in the Born-Oppenheimer approximation.
Fig. 2. Enantiomers of alanine.
3. Isomerism and optical activity: Hund's paradox

The composition of a molecule is given by its chemical formula,
which specifies in what stoichiometric proportion the component
elements are present in the chemical compound. But the formula
supplies no information about the geometrical arrangement of the
component atoms. For instance, C2H4O2 corresponds to different
chemical compounds: methyl formate, acetic acid and glyco-
laldehyde. Compounds that contain the same number of atoms of
each element (and, therefore, have the same chemical formula) but
have different spatial arrangements of their atoms are called
Fig. 1. Isomers corresponding to t
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isomers (see Fig. 1). Isomerism is a phenomenon highly relevant in
chemistry, since it explains the difference in the physical and
chemical behaviors of substances with the same composition.

There are two main forms of isomerism: structural isomerism
and stereoisomerism. In structural isomers, sometimes referred to
as constitutional isomers, the component atoms and the functional
groups are connected together in different ways. On the other hand,
in stereoisomers, the component atoms are linked together in the
same way, but the geometrical positioning of atoms and functional
groups in space differs. The class of stereoisomers includes the
subclass of enantiomers: the structures of the members of a pair of
enantiomers are non-superimposable mirror-images of each other,
that is, the molecules are chiral (see Fig. 2 below).

When present in a symmetric environment, enantiomers have
identical chemical and physical properties. Nevertheless, they differ
in the kind of interaction with polarized light. In particular, the
members of a pair of enantiomers can be distinguished by their
ability to rotate plane-polarized light by equal amounts but in
opposite directions. It is for this reason that they are called optical
isomers and it is usually said that they are optically active. When the
plane of polarization is rotated clockwise (as seen by a viewer to-
wards whom the light is traveling), the optical isomer is called
dextro-rotatory (D); in the case of counterclockwise rotation, the
optical isomer is called levo-rotatory (L).

Chiral molecules have an important function in the enzymatic
reactions of biological systems: many pharmacological drugs are
chiral, and generally only one of the members of the pair exhibits
biological activity. The action of drugs is usually explained by
means of the idea of “receptor”. Receptors are protein molecules in
human body, which are exclusively built from L-aminoacids. This
means that proteinmolecules are chiral and, as a consequence, they
have different reactions with the two enantiomers of a chiral drug.
For instance, aspartame is a sweetening agent that has two enan-
tiomers: one of them is more than a hundred times sweeter than
sucrose; the other, is tasteless or slightly bitter. A dramatic example
of the different biological activity of enantiomers is that of thalid-
omide, a drug of molecular formula C13H10N2O4 introduced to the
market in 1957 by a pharmaceutical company in West Germany. It
was prescribed to pregnant women as a sedative and to prevent
nausea; its use spread rapidly to 46 countries. But the drug was
made and marketed as a mixture of D-thalidomide and L-thalido-
mide: the D-thalidomide is an effective sedative, whereas the L-
thalidomide is a teratogen, that is, an agent affecting the
he chemical formula C2H4O2.

the modal-Hamiltonian interpretation of quantum mechanics: The
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development of the fetus and causing structural or functional ab-
normality. It is not known exactly how many worldwide victims of
the drug there have been, although estimates range from 10.000 to
100.000. These are only some examples of the fact that, at present,
the control and production of enantiomers is a key activity in the
pharmaceutical industry.

Chemists not only successfully explain the behavior of enan-
tiomers in terms of the geometrical shape of the molecules, but
they have also developed many techniques for the preparation of
compounds where the proportions of the enantiomers can be
controlled. The problem with chirality arises not at the chemical
level, but with the attempts to explain the phenomenon in quan-
tum terms.

When a molecule is described by quantum mechanics, the
Coulombic Hamiltonian only depends on the distances between the
particles composing the molecule; in particular, if only the atomic
nuclei are considered, the Hamiltonian depends exclusively on the
inter-nuclear distances. In the case of structural isomers, the dif-
ference between them is manifest in the Hamiltonian. But in the
case of optical isomerism, all the inter-atomic distances are the
same for the two members of the pair and, as a consequence, the
Hamiltonian is exactly the same for both. This means that quantum
mechanics supplies the same description for two structures that
can effectively be distinguished in practice through their optical
and biological activity.

It is very important to stress that the problem of optical isom-
erism is completely independent of the Born-Oppenheimer
approximation. Let us suppose, for instance, that we write down
the exact Hamiltonian H (with no approximation) of a molecule of
alanine C3H7NO2, which includes three nuclei of carbon, one of
nitrogen, and two of oxygen, plus all its electrons (Fig. 2).

Even if we cannot solve this Hamiltonian due to its complexity,
we know that it only depends on the distance of the component
particles and, therefore, not even the exact Hamiltonian can ac-
count for the difference between D-alanine and L-alanine. As Sut-
cliffe and Woolley claim: “Clearly then, an eigenstate of H does not
correspond to a classical molecule with structure! That observation
begs the question: what are the equations that determine the quan-
tum state of molecules? Beyond the BO [Born-Oppenheimer]
approximation we have no idea.” (Sutcliffe & Woolley, 2012, p.
416; emphasis in the original). In short, the problem of the quantum
mechanical distinction of optical isomers of the same substance is
beyond the Born-Oppenheimer approximation and its underlying
assumptions.

The problem embodied in optical isomerism points to a deep
difficulty in the attempts to account for molecular structure in
quantum terms. This was already noticed by Friedrich Hund,
pioneer in the development of quantum chemistry, in the 1920s.
Hund's paradox can be formulated in two versions. The first one,
due to Hund himself (1927), reads as follows: since chiral states
(states jL〉 and jD〉 corresponding to levo-rotation and dextro-
rotation, respectively) are not eigenstates of the Hamiltonian
(since it is invariant under spatial reflection, further discussion
below), and none of them corresponds to the basal state, why do
certain chiral molecules display an optical activity that is stable in
time, associated to a well-defined chiral state?, why are they not in
a superposition of the two possible chiral states? More recently,
Hund's paradox was formulated in a slightly stronger version
(Berlin, Burin, & Goldanskii, 1996): why do certain molecules have
the property of chirality?

Let us consider the total Hamiltonian H of any molecule, which
takes into account all the interactions among nuclei, among elec-
trons and among electrons and nuclei. Since the Coulombic inter-
action only depends on the distance between the interacting
Please cite this article in press as: Fortin, S., et al., A new application of
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particles, the Hamiltonian is symmetric under spatial reflection;
therefore, it commutes with the parity operator P:

½P;H� ¼ 0 (1)

This means that the eigenstates of the Hamiltonian have definite
parity. Moreover, this feature is preserved during the time evolu-
tion of the system, because the parity operator commutes with the
Hamiltonian and, as a consequence, is a constant of motion.

With these elements, Hund's paradox can be expressed in
formal terms. Let us consider a chiral molecule from the perspective
of quantum mechanics. The eigenstates juni of the Hamiltonian of
the molecule have parity symmetry:

Pjuni ¼ ±juni (2)

In particular, the even levels have even parity, and the odd levels
have odd parity. For instance, the ground state ju0i is symmetric
and the first excited state ju1i is anti-symmetric:

Pju0i ¼ þju0i$Pju1i ¼ �ju1i (3)

However, on the basis of experimental data it is possible to know
that the states of optical isomers do not have this symmetry. In fact,
if the isomers correspond to the chiral states jL〉 and jD〉, each iso-
mer is the mirror image of the other, since:

PjL〉 ¼ jD〉
PjD〉 ¼ jL〉 (4)

Therefore, the states jL〉 and jD〉 cannot be eigenstates of the
Hamiltonian, which, as explained above, are symmetric or anti-
symmetric (see eq. (3)). On the contrary, jL〉 and jD〉 can be
expressed as superpositions of ju0i and ju1i:

jL〉 ¼ 1
ffiffiffi

2
p ðju0i þ ju1iÞ

jD〉 ¼ 1
ffiffiffi

2
p ðju0i � ju1iÞ

(5)

On the other hand, the ground state is a superposition of the
chiral states:

ju0i ¼
1
ffiffiffi

2
p ðjL〉þ jD〉Þ (6)

Why, then, do we always observe chiral states and never super-
positions of them? The paradox might be expressed in the
following terms: since the ground state of optical isomers is a su-
perposition of chiral states, in that state isomers should not man-
ifest the optical activity corresponding to states jD〉 states jL〉; but
we have empirical access to the optical activity associated to those
states; how to avoid this seeming contradiction? In other words:
“What is the shape of the hypothetical superposition of these two
species? Is there a proper reason to exclude such superpositions?What
reason can be given �from a quantum-mechanical point of view� for
chemical systematics?” (Amann, 1992, p. 32).
4. Some attempts to solve the paradox

Once it is concluded that chiral states are not eigenstates of the
Hamiltonian, it is necessary to explain why those states are
observed in the laboratory. One strategy consists in maintaining the
Coulombic Hamiltonian, identifying the states jL〉 and jD〉 as su-
perpositions of the eigenstates of the Hamiltonian, and then sup-
plying a reason why the molecule does not decay to the ground
the modal-Hamiltonian interpretation of quantum mechanics: The
ern Physics (2017), http://dx.doi.org/10.1016/j.shpsb.2017.06.008
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state, eigenstate of the Hamiltonian: this is Hund's strategy, based
on graphical visualization.

Let us consider a quantum system with a potential VðxÞ with
mirror reflection symmetry, such as that of Fig. 3. The states “at rest
on the left” and “at rest on the right” break the symmetry of the
situation and, for this reason, they cannot be eigenstates of the
Hamiltonian. In fact, if the wavefunctions of the ground state ju0i
and of the first excited state ju1i are graphed, the results of Fig. 4
are obtained. Fig. 4 clearly shows that the eigenfunctions of the
Hamiltonian preserve parity: they do not correspond to states
localized on the left or on the right, since both occupy both “wells.”
However, experimentally it is possible to place a quantum particle
in one of the twominima of the potential, for instance, on the left. It
is clear that this particle is not in an eigenstate of the Hamiltonian,
but is in a superposition. The chiral states jL〉 and jD〉 correspond to
wavefunctions as those shown in Fig. 5.

In their article “On the time dependence of optical activity”,
Robert Harris and Leo Stodolsky (1981) face the problem of optical
isomers and emphasize the limitations of Hund's proposal. In
particular, since chiral states are not eigenstates of the Hamiltonian,
it is necessary to admit the existence of an exceptional kind of
molecules that do not remain in their ground states. For these
Fig. 4. Shape of the eigenfunctions of a particle subject to the potential VðxÞ. On the left, th
anti-symmetric under space reflections.
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authors, the key to solve this difficulty is the interaction between
molecules; they modify the Hamiltonian of the system with the
purpose of describing such interaction. The central idea is that the
paradox arises when the molecule is considered in isolation,
whereas a real system actually consists of many molecules in
interaction. For this reason, they propose to study the molecules in
collision with each other: intermolecular collisions would modify
the dynamics of the whole composite system.

The solution to Hund's paradox offered by Harris and Stodolsky
is based on considering the interaction of the molecule with its
environment, in this case composed of other similar molecules. But
in this case it is not clear how the interaction breaks the symmetry
of the problem. As Hendry claims: “The particular form of the
symmetry-breaking addition must be justified however, and it is quite
mysterious how that could work if all one has in the environment are
more molecules described by Coulombic Hamiltonians. The Coulomb
Schr€odinger equation for an n-molecule ensemble of hydrogen chlo-
ride molecules has precisely the same symmetry properties as a
Coulomb Schr€odinger equation for a 1-molecule system. If the
particular form of the symmetry-breaking addition is not justified,
then it is just ad hoc: a deus ex machina.” (Hendry, 2010, p. 186).

Once the possibility of solving the problem of optical isomerism
in terms of the interaction with an environment was considered, it
did not take long for the idea of decoherence to enter the stage (see,
e.g., Joos, 1996). In fact, although the ground state of the molecule is
a superposition of the chiral states jL〉 and jD〉, through the rotation
of polarized light we always measure a definite rotational property.
Analogously to the traditional quantum measurement problem,
here the problem is to account for the transition from the super-
position to one of the chiral states, say, jL〉:

ju0i ¼
1
ffiffiffi

2
p ðjL〉þ jD〉Þ/jL〉 (7)

During the last decades, the quantum measurement problem is
being faced in the light of the theory of environment induced
decoherence (Zurek, 1981, 1991, 2003), which relies on the study of
the effects of the interaction between a quantum system, consid-
ered as an open system, and its environment. On the basis of the
analysis of the evolution of the reduced state of the open system, it
is proved that, under certain conditions, that state becomes diag-
onal, that is, loses the interference terms that preclude classicality.
The reduced state is conceived as a mixed state containing only the
representation of classical correlations and, as a consequence, it can
e ground state, symmetric under space reflections. On the right, the first excited state,

the modal-Hamiltonian interpretation of quantum mechanics: The
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Fig. 5. Shape of the eigenfuncions of a particle in the states jL〉 and jD〉. On the left, the state jL〉 corresponds to a particle located on the left side. On the right, the state jD〉
corresponds to a particle located in the right side.
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be interpreted in terms of ignorance. When this idea is applied to
the problem of isomerism, the conclusion is that the molecule is in
one of the states jL〉 or jD〉, and the probabilities measure our
ignorance about its definite state. In this way, the theory of deco-
herence would have solved the problem underlying Hund's
paradox.

This idea was widely accepted in the philosophy of chemistry
community. For instance, in the Editorial 37 of the journal Foun-
dations of Chemistry, its editor Eric Scerri (2011) explicitly considers
optical isomerism in the context of the debate about the possibility
of accounting for molecular structure in quantum-mechanical
terms. He relates the problem of isomerism to the measurement
problem in quantummechanics, and states that the question about
molecular structure “is part of a bigger problem that has long plagued
the foundations of quantum mechanics, namely the problem of the
collapse of the wavefunction. […] this problem has gradually begun to
dissolve with the growing realization of the role of quantum deco-
herence in physics and other disciplines.” (Scerri, 2011, p. 4). On the
basis of the extensive literature on decoherence (e.g. Zurek, 1981,
1991, 1994, 1998, 2003; Joos, 1996; Joos & Zeh, 1985;
Schlosshauer, 2007), Scerri claims that the problem of optical
isomerism is dissolved by taking into account the interaction of the
molecule with its environment: “The study of decoherence has
shown that it is not just observations that serve to collapse the su-
perpositions in the quantum mechanics. The collapse can also be
brought about by molecules interacting with their environment.”
(Scerri, 2011, p. 4; for a similar claim, see Scerri, 2013).

This position, however, does not take into account that, in spite
of the wide application of the decoherence program, its ability to
solve the traditional measurement problem has been largely dis-
cussed, and doubts about such ability have been raised on the basis
of different arguments. In fact, no matter how the open molecule
evolves, the state of the whole systemmoleculeþ environment is a
superposition at any time: the superposition never disappears
through its unitary evolution. For this reason, although the reduced
state operator of the molecule lacks interference terms, this does
not allow us to suppose that what is observed at the end of the
process is one of two definite events: either the event associated
with jL〉, or the event associated with jD〉. In this sense, Stephen
Adler concludes: “I do not believe that either detailed theoretical
calculations or recent experimental results show that decoherence has
resolved the difficulties associated with quantum measurement the-
ory” (Adler, 2003, p. 136). The criticism of Jeffrey Bub (1997) is even
stronger: stating that what is observed at the end of the mea-
surement process is a definite event not only is unjustified, but also
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contradicts the eigenstate-eigenvalue link, a standard assumption
in quantum mechanics.

Another way to criticize the solution to the measurement
problemvia decoherence relies on stressing the difference between
a proper mixture �the mixed state of a closed system� and an
improper mixture �the state of an open system, obtained by
tracing off the degrees of freedom of its environment� (d’Espagnat,
1966, 1976): improper mixtures cannot be interpreted in terms of
ignorance. As Maximilian Schlosshauer emphasizes in his well-
known book about decoherence: “Since the two systems A and B
are entangled and the total composite system is still described by the
superposition, it follows from the standard rules of quantum me-
chanics that no individual definite state can be attributed to either one
of the subsystems. Reduced density matrices of entangled subsystems
therefore represent improper mixtures” (Schlosshauer, 2007, p. 48).
The difference between proper and improper mixtures turns out to
be even clearer when it is proved that the reduced state of the open
system, obtained by partial trace, is a kind of coarse-grained state of
the composite system to which the open system belongs (Fortin &
Lombardi, 2014). Perhaps confusions are due to the fact that proper
and improper mixtures cannot be distinguished from a mathe-
matical viewpoint. However, that mathematical indistinguish-
ability essentially depends on the formalism used to express the
theory, in particular, the Hilbert space formalism. But the situation
might be different in other cases. For instance, it has been proved
(Masillo, Scolarici, & Sozzo, 2009) that proper and improper mix-
tures are represented by different density operators in the so-called
quaternionic formulation of quantum mechanics (Adler, 1995);
hence, in this formalism they can be distinguished also from a
mathematical viewpoint. In a recent article, Scerri (2012) recog-
nizes that the question of whether decoherence explains quantum
measurement is a subtle matter, and refers to the review paper of
Guido Bacciagaluppi (2012). In this paper Bacciagaluppi points out
that, although naive claims of the kind that decoherence gives a
complete solution to the measurement problem are still somewhat
part of the “folklore” of the matter, decoherence as such does not
provide that solution, at least not unless it is combined with an
appropriate interpretation of quantum mechanics (for a detailed
argument, see Fortin, Lombardi, & Martínez Gonz�alez, 2016).

In summary, the different answers to the problem of optical
isomerism offered in the literature are far from conclusive. Perhaps
it is time to follow an interpretive strategy: tackling the problem by
means of an interpretation of quantum mechanics that can be
applied not only to the abstract model of quantum measurement,
the modal-Hamiltonian interpretation of quantum mechanics: The
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but also to situations commonly treated in the practice of physics
and chemistry.

5. The modal-Hamiltonian interpretation

5.1. Modal interpretations

As advanced in the Introduction, modal interpretations are
realist views, according to which the quantum state evolves uni-
tarily and encodes possibility (Dieks & Vermaas, 1998). In spite of
the differences among them, all the modal interpretations agree on
the following points (Lombardi & Dieks, 2014):

� The interpretation is based on the standard formalism of
quantum mechanics, without the projection postulate.

� The interpretation is realist: quantum systems possess definite
properties at all instants of time and they do not depend on the
observer.

� Quantum mechanics is conceived as a fundamental theory: it
applies both to microscopic and macroscopic systems.

� The state of the system (pure or mixed) tells us what the
possible properties of the system and their corresponding
probabilities are.

� A quantum measurement is an ordinary physical interaction.
There is no collapse: the state always evolves unitarily according
to the Schr€odinger equation.

Due to the constraints imposed by the Kochen-Specker theorem
(Kochen & Specker, 1967), all the modal interpretations are
committed to selecting the subset of definite-valued properties,
that is, the preferred context. Therefore, despite the agreements,
each modal interpretation supplies its own “rule of definite-value
ascription” or “actualization rule.” In the so-called Kochen-Dieks
modal interpretation (Dieks, 1988; Kochen, 1985), the biorthogonal
(Schmidt) decomposition of the pure quantum state of the system
picks out the definite-valued observables. The Vermaas-Dieks
version (Vermaas & Dieks, 1995), a generalization of the Kochen-
Dieks interpretation to mixed states, is based on the spectral res-
olution of the reduced density operator: the range of the possible
properties of a system and their corresponding probabilities are
given by the non-zero diagonal elements of the spectral resolution
of the system's reduced state, obtained by partial tracing.

These traditional modal interpretations, however, faced some
difficulties. On the one hand, given the multiple factorizability of a
given Hilbert space, their rules of definite-value ascriptionmay lead
to contradictions of the Kochen-Specker variety (Bacciagaluppi,
1995; Vermaas, 1997). This difficulty motivated the development
of an atomic modal version (Bacciagaluppi & Dickson, 1999), based
on the assumption that there exists a special set of disjoint systems,
which are the building blocks of all other systems. That set fixes a
preferred factorization of the Hilbert space; the properties of a
system supervene on the properties ascribed to its “atomic” sub-
systems. In turn, Gyula Bene and Dennis Dieks (2002) developed a
perspectival modal interpretation, according to which properties
are not monadic but always have a relational character.

On the other hand, those traditional modal interpretations do
not pick out the right properties for the apparatus in non-ideal
measurements, that is, in measurements that do not introduce a
perfect correlation between the possible states of the measured
system and the possible states of the measuring apparatus (Albert
& Loewer, 1990, 1991, 1993; Elby, 1993; Ruetsche, 1995). Since
ideal measurement is a situation that can never be achieved in
practice, this shortcoming was considered a “silver bullet” for
killing modal interpretations (Harvey Brown, cited in Bacciagaluppi
&Hemmo,1996). Perhaps these problems explain the decline of the
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interest in modal interpretations since the end of the 90's. Jeffrey
Bub's preference for Bohmian mechanics in those days can be un-
derstood in this context: given the difficulties of the modal in-
terpretations whose preferred context depends on the state of the
system, the natural alternative for a realist is Bohmian mechanics,
which can be conceived as a member of the modal family whose
preferred context is a priori defined by the position observable
(Bub, 1997).

But position is not the only observable that can be appealed to in
order to define the state-independent preferred context of a modal
interpretation. The modal-Hamiltonian interpretation (MHI)
(Castagnino & Lombardi, 2008; Lombardi & Castagnino, 2008)
endows the Hamiltonian of a system with the role of selecting the
subset of the definite-valued observables of the system. This makes
the MHI immune to the non-ideal measurement's “silver bullet”,
since it accounts for ideal and non-ideal measurements (Lombardi
& Castagnino, 2008): no matter whether the correlations between
measured system and measuring apparatus are perfect or not, the
apparatus' pointer observable always acquires a definite value.
Furthermore, the MHI also supplies a criterion to distinguish be-
tween reliable and non-reliable measurements in the non-ideal
case: despite the fact that correlations are not perfect, repeated
measurements allow the experimenter to reliably reconstruct the
state of the system under definite conditions (Lombardi &
Castagnino, 2008; Ardenghi et al., 2013; Lombardi et al., 2015).
This explains a common experimental fact: perfect correlation is
not a necessary condition for “good” measurements. If the reli-
ability condition is satisfied, then the coefficients of the system's
state can be approximately obtained even when the correlation is
not perfect. Nevertheless, both in the reliable and in the non reli-
able case, a definite reading of the apparatus' pointer is obtained in
each single measurement.

As pointed out by Harvey Brown, Mauricio Su�arez, and Guido
Bacciagaluppi (1998), any interpretation that selects the set of the
definite-valued observables of a quantum system in a given state is
committed to considering how that set is transformed under the
Galilean group. The study of this question is particularly urging in
the case of realist interpretations, which conceive a definite-valued
observable as a physical magnitude that objectively acquires an
actual value among all its possible values: the actualization of one
of the possible valuesmust be an objective fact. Therefore, the set of
the definite-valued observables of a quantum system should be left
invariant by the Galilean transformations: from a realist viewpoint,
it would be unacceptable that such a set changed as the mere result
of a change in the perspective from which the system is described.
This Galilean invariant feature cannot be guaranteed in the modal
interpretations whose preferred context does not depend on
invariant observables. On the contrary, in spite of the fact that the
Hamiltonian is not Galilean invariant, the MHI can be reformulated
under an explicitly Galilean-invariant form in terms of the Casimir
operators of the Galilean group (Ardenghi et al., 2009; Lombardi
et al., 2010). Such a reformulation not only leads to results that
agree with usual assumptions in the practice of physics, but also
suggests the extrapolation of the interpretation to quantum field
theory by changing accordingly the symmetry group: the definite-
valued observables of a system in to quantum field theory would be
those represented by the Casimir operators of the Poincar�e group,
and the observables commuting with them and having, at least, the
same symmetries. Since M and S2 are the only Casimir operators of
the Poincar�e group, they would always be definite-valued observ-
ables (Ardenghi, Castagnino, & Lombardi, 2011). This conclusion
stands in agreement with a usual physical assumption in quantum
field theory: elemental particles always have definite values of
mass and spin, and those values are precisely what define the
different kinds of elemental particles of the theory.
the modal-Hamiltonian interpretation of quantum mechanics: The
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In the MHI, decoherence is not explicitly appealed to in order to
account for the definite value of the observables of the preferred
context. The MHI perspective seems to be at odds with the deco-
herence program, according to which the decoherence of a system
in interaction with its environment is what causes the apparent
“collapse” that suppresses superpositions. However, this apparent
conflict vanishes when the measurement situation is considered in
detail. In fact, the measuring apparatus is always a macroscopic
systemwith a huge number of degrees of freedom, and the pointer
must be a “collective” and empirically accessible observable; as a
consequence, the many degrees of freedom corresponding to the
degeneracies of the pointer play the role of a decohering “internal
environment”. It can be proved that the states einselected by
decoherence (but whose definite-valuedness the phenomenon of
decoherence cannot explain) are precisely eigenstates of the ob-
servables selected by theMHI's rule of definite-value ascription (for
a detailed explanation, see Lombardi, 2010; Lombardi, Ardenghi,
Fortin, & Castagnino, 2011a, 2011b; Lombardi et al., 2012). The
compatibility between the MHI and decoherence becomes clearer
when the phenomenon of decoherence is understood from a
closed-system perspective (Castagnino & Lombardi, 2004, 2005a,
2005b; Castagnino, Laura, & Lombardi, 2007; Castagnino, Fortin,
& Lombardi, 2010, 2014; Lombardi & Fortin, 2016).

5.2. The postulates of the modal-Hamiltonian interpretation

By adopting an algebraic perspective, the MHI defines a quan-
tum system S as a pair ðO ; HÞ such that (i) O is a space of self-
adjoint operators acting on a Hilbert space H , representing the
observables of the system, (ii) H2O is the time-independent
Hamiltonian of the system S, and (iii) if r02O 0 (where O 0 is the
dual space of O ) is the initial state of S, it evolves according to the
Schr€odinger equation.

A quantum system so defined can be decomposed in parts in
many ways; however, not any decomposition will lead to parts
which are, in turn, quantum systems. The expression ‘tensor
product structure’ (TPS) is used to call any partition of a closed
system S, represented in the Hilbert space H ¼ H A5H B, into parts
SA and SB represented in H A and H B respectively. Nathan
Harshman and Sujeev Wickramasekara (2007a, 2007b) point out
that quantum systems admit a variety of TPSs, each one leading to a
different entanglement between their parts. However, there is a
particular TPS that is invariant under time evolution: the TPS is
dynamically invariant when there is no interaction between the
parts. In other words, in the dynamically invariant case the com-
ponents' behaviors are dynamically independent from each other;
each one evolves unitarily according to the Schr€odinger equation.
On this basis, according to the MHI, a quantum system can be split
into subsystems when there is no interaction among the
subsystems.

Composite systems postulate: A quantum system S: ðO ; HÞ,
with initial state r02O 0, is compositewhen it can be partitioned
into two quantum systems S1: ðO 1; H1Þ and S2: ðO 2 ; H2Þ such
that (i) O ¼ O 15O 2, and (ii) H ¼ H15I2 þ I15H2, (where I1

and I2 are the identity operators in the corresponding tensor
product spaces). In this case, we say that S1 and S2 are sub-
systems of the composite system S ¼ S1 þ S2. If the system is not
composite, it is elemental.

With respect to the preferred context, the basic idea of the
modal-Hamiltonian interpretation is that the Hamiltonian of the
system, with its own symmetries, defines the subset of observables
that acquire definite actual values. The group of transformations
that leave the Hamiltonian invariant is usually called “Schr€odinger
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group” (Tinkham, 1964). Since each symmetry of the Hamiltonian
leads to an energy degeneracy, much valuable information on the
energy spectrum of the system can be obtained by applying the
machinery of the group theory to the study of the symmetries of
the Hamiltonian. The degeneracies with origin in symmetries are
called “normal” or “systematic” (Cohen-Tannoudji, Diu, & Lal€oe,
1977). On the contrary, degeneracies that have no obvious origin
in symmetries are called “accidental”. However, deeper study
usually shows either that the accidental degeneracy is not exact, or
else that a hidden symmetry in the Hamiltonian can be found
which explains the degeneracy. A classical example is the de-
generacy, in the hydrogen atom, of states of different angular mo-
mentum l but the same principal quantum number n (for instance,
2s and 2p functions). In this case, Vladimir Fock (1935) showed that
the degeneracy arises from a four-dimensional rotational symme-
try of the Hamiltonian in momentum space. For this reason it is
assumed that, once all the symmetries of the Hamiltonian have
been considered, a basis for the Hilbert space of the system is ob-
tained and the “good quantum numbers” are well defined. This
strategy is what underlies the group approach to quantum me-
chanics, where the physical features of the quantum system are
studied by analyzing the symmetry properties of its Hamiltonian
(Tung, 1985; Weyl, 1950).

Now we have all the conceptual elements necessary to present
the MHI rule of definite-value ascription, here called ‘actualization
rule’. The basic idea can be expressed by the classical Latin maxim
“Ubi lex non distinguit, nec nos distinguere debemus”: where the law
does not distinguish, neither ought we to distinguish. The Hamil-
tonian of the system, with its symmetries, is what rules actualiza-
tion; then, no observable whose eigenvalues would distinguish
among eigenvectors corresponding to a single degenerate eigen-
value of the Hamiltonian has to acquire definite value, since its
actualization would introduce in the system an asymmetry not
contained in the Hamiltonian. Once this idea is understood, the
actualization rule can be formulated in a very simple way.

Actualization rule: Given an elemental quantum system
S: ðO ; HÞ, the actual-valued observables of S are H and all the
observables commuting with H and having, at least, the same
symmetries as H.

Given an elemental quantum system S: ðO ; HÞ, the actual-
valued observables of S are H and all the observables commuting
with H and having, at least, the same symmetries as H.

The justification for selecting the Hamiltonian as the preferred
observable ultimately lies in the physical relevance of the MHI and
in its ability to solve interpretive difficulties. Here we will focus on
the first point, in order to show that the case of Hund's paradox can
be counted as a further successful application of the interpretation.

5.3. Measuring as breaking symmetries

As already mentioned, the MHI scheme has been applied to
several well-known physical situations, leading to results consis-
tent with empirical evidence (see Lombardi & Castagnino, 2008,
Section 5). Let us recall some of them, in order to stress the role
played by symmetries in those situations.

The Hamiltonian of the free particle reads

Hfree ¼
P2

2m
¼ P2x þ P2y þ P2z

2m
(8)

where P is the momentum observable, with components Px; Py; Pz,
and m is the mass of the particle. Hfree is invariant under space-
displacements in any direction, and the components Px; Py; Pz are
the modal-Hamiltonian interpretation of quantum mechanics: The
ern Physics (2017), http://dx.doi.org/10.1016/j.shpsb.2017.06.008



S. Fortin et al. / Studies in History and Philosophy of Modern Physics xxx (2017) 1e13 9
the generators of the symmetry. Since the Hamiltonian is degen-
erate, the components of P need to be used for the theoretical
description of the system: usually any two of them are added to
Hfree to constitute a complete set of commuting observables (CSCO),
fHfree; Px; Pyg, fHfree; Py; Pzg or fHfree; Px; Pzg, that defines a basis of
the Hilbert space. But this fact does not mean that those observ-
ables have to be considered definite-valued; in fact, this would be
not possible since Px; Py; Pz do not commute with each other. The
MHI is completely consistent with this fact: according to its actu-
alization rule, Hfree acquires a definite value, and also P2 since it is
proportional to Hfree; nevertheless, Px; Py; Pz are not definite-valued
because the actualization of any of them would introduce an
asymmetry not contained in the Hamiltonian: it would arbitrarily
break the symmetry of the free particle. This result of the appli-
cation of the MHI agrees with the empirical non-accessibility to the
values of Px; Py; Pz in the free particle. If we want to know those
values, we must perform a measurement on the particle, in
particular, a measurement that involves an interaction that breaks
the symmetry of the original system by modifying its Hamiltonian.
For instance, we can introduce a screen acting as a potential barrier
that breaks the homogeneity of space. This means that, under
measurement, the particle is no longer free: the symmetry breaking
introduced by the interaction with the measuring system is what
allows us to have empirical access to an observable that was a
symmetry generator of the original free system.

In the case of the free particle with spin, the Hamiltonian is

H ¼ Hfree þ Hspin ¼ P2

2m
þ k S2 (9)

According to the MHI, in this case the system is composite
because it can be decomposed into two non-interacting sub-
systems: a free particle without spin, represented in H free and with
Hamiltonian Hfree ¼ P2=2m, on which the rule applies as explained
above, and a spin system, represented in H spin and with Hamilto-
nian Hspin ¼ k S2, with k ¼ const: The spin subsystem is invariant
under space-rotation: the generators of this symmetry are the three
components Jx; Jy; Jz of the total angular momentum J. But since in
this case the orbital angular momentum L is zero, the total angular
momentum J ¼ Lþ S turns out to be simply J ¼ S, and the three
components Sx; Sy; Sz of the spin S are the generators of the space-
rotation symmetry. As in the previous case, the three observables
Sx; Sy; Sz cannot simultaneously be definite-valued since they do not
commute with each other. The MHI agrees with this fact: according
to the actualization rule, in this case Hspin acquires a definite value,
and also S2 since it is proportional to Hspin (S2 is the Casimir oper-
ator of the group generated by Sx; Sy; Sz); nevertheless, Sx; Sy; Sz are
not definite-valued since they are the generators of the space-
rotation symmetry, and the actualization of any of them would
break the symmetry of Hspin in an arbitrary way. Again, this
conclusion agrees with the fact that we have no empirical access to
the spin components of the free particle with spin. If we want to
know the value of those components, we have to perform a mea-
surement on the system: we have to introduce a magnetic field B of
modulus jBj in some direction, say z, which breaks the isotropy of
space and, as a consequence, the original space-rotation symmetry.
Under the action of B, the Hamiltonian Hspin is not invariant under
space-rotation anymore, because now it includes an interaction
proportional to jBjSz that privileges a particular direction of space.
In other words, we can have experimental access to the spin
component Sz only by means of a measurement that breaks the
space-rotation symmetry of the original Hamiltonian and, there-
fore, makes the system no longer free. This is the usual way in
which a spin component is measured in a Stern-Gerlach
experiment.
Please cite this article in press as: Fortin, S., et al., A new application of
problem of optical isomerism, Studies in History and Philosophy of Mod
The Hamiltonian of the hydrogen atom reads

Hfree ¼
P2e
2me

þ P2p
2mp

þ e2
�
�Qe � Qp

�
�

(10)

where the subindexes e and p refer to the electron and to the proton
respectively, and e is the electric charge of the electron. When the
spin of the electron is not considered, the atom is invariant under
space-rotation, and the total angular momentum J ¼ Lþ S is simply
J ¼ L. Then, the three components Lx; Ly; Lz of L are the generators of
the symmetry group. The possible states of the atom are labeled by
the quantum numbers: the principal quantum number n, the
orbital angular momentum quantum number l and the magnetic
quantum number ml, which correspond to the eigenvalues of the
observables H, L2 and Lz respectively. Since the Hamiltonian is
degenerate due to its space-rotation invariance, the hydrogen atom
is described in terms of the basis fjn; l;mlig defined by the CSCO
fH; L2; Lzg. Nevertheless, its space-rotation invariance makes the
selection of Lz a completely arbitrary decision: given that space is
isotropic, we can choose Lx or Ly to obtain an equally legitimate
description of the free atom. The arbitrariness in the selection of the
z-direction is manifested in spectroscopy by the fact that the
spectral lines of the free hydrogen atom give no experimental ev-
idence about the values of Lz: we have no empirical access to the
number ml of the free atom. The MHI agrees with those experi-
mental results since it does not assign a definite value to Lz: the
actualization of the value of Lz would arbitrarily break the sym-
metry of the Hamiltonian of the free hydrogen atom.

Analogously to the measurement on a free particle with spin, in
the case of the hydrogen atom a magnetic field B along the z-axis
breaks the isotropy of space and, as a consequence, the space-
rotation symmetry of the atom's Hamiltonian. In this case, the
symmetry breaking removes the energy degeneracy inml: now Lz is
not arbitrarily chosen but selected by the direction of the magnetic
field. But, in turn, this implies that the atom is no longer free: the
Hamiltonian of the new system is approximately

H ¼ Hfree þ
e

2mee
B L (11)

where Hfree is the Hamiltonian of the free atom. As a consequence,
the original degeneracy of the ð2lþ 1Þ-foldmultiplet of fixed n and l
is now removed: the energy levels turn out to be displaced by an
amount Dunlml

, which is also function of ml: this is the manifesta-
tion of the so-called Zeeman effect. This means that the Hamilto-
nian, with eigenvalues unlml

, is now non-degenerate: it constitutes
by itself the CSCO fHg that defines the preferred basis fjn; l;mlig.
According to the MHI actualization rule, in this case H and all the
observables commuting withH are definite-valued: since this is the
case for L2 and Lz, in the physical conditions leading to the Zeeman
effect both observables acquire definite values.

When the spectral lines of the hydrogen atom corresponding to
n>1 are examined at a very high resolution, they are found to be
closely spaced doublets: the energy levels of the atom are affected
by the “coupling” between the electron spin S and the orbital
angular momentum L. Now the Hamiltonian of the system reads

H ¼ Hfree þ Hspin þ Hs�o (12)

where Hfree is again the Hamiltonian of the free atom, Hspin ¼ k S2 is
the Hamiltonian of the spin, and Hs�o is the Hamiltonian repre-
senting the spin-orbit interaction. When the spin-orbit interaction
is neglected (Hs�o ¼ 0), the system is composite and can be
described in terms of the basis fjn; l;ml; s;msi ¼ jn; l;mli5js;msig,
where the sðsþ 1ÞZ2 are the eigenvalues of S2, and the msZ are the
the modal-Hamiltonian interpretation of quantum mechanics: The
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eigenvalues of Sz. But when the spin-orbit interaction is taken into
account, the observables Lz and Sz no longer commute with H and,
therefore, they are not constants of motion of the system: it is
usually said that ml and ms are not good quantum numbers
anymore. Nevertheless, the Hamiltonian is still invariant under
space-rotation: the components Jx, Jy, Jz of the total angular mo-
mentum J are the generators of the symmetry group. In turn,
J ¼ Lþ S is the sum of the orbital angular momentum L and the spin
angular momentum S, and mj ¼ ml þms, where mj corresponds to
the eigenvalue of Jz. So, now mj is a good quantum number. Then,
the basis f��n; l; j; s;mjig of the Hilbert space of the system is defined
by the CSCO fH; L2; J2; S2; Jzg. In this case, the spin-orbit coupling
removes the original degeneracy of the eigenvalues unl of the atom
with no coupling; therefore, theMHI actualization rule selects L2, J2

and S2 as definite-valued observables, because all of them commute
with H and have the same degeneracy in mj as H. But the space-
rotation symmetry still present in the system leads to a de-
generacy of H, manifested by the fact that the energy eigenvalues
unljs do not depend on mj. Then, according to the MHI, although in
this case mj is a good quantum number, Jz does not acquire a def-
inite value, and this result agrees with the arbitrariness of the se-
lection of the z-direction for Jz.

When a magnetic field is applied to the atom, the spectral lines
split in different ways. The “normal” Zeeman effect, explained
above, is observed in spin 0 states where, obviously, the spin-orbit
coupling has no effect. In the states where the spin-orbit coupling is
effective, the action of the magnetic field produces a further split-
ting of the energy levels known as “anomalous” Zeeman effect.
Nevertheless, the explanation of the anomalous effect is the same
as that of the normal effect: the action of the magnetic field along
the z-axis breaks the space-rotation symmetry of the Hamiltonian
by privileging the z-direction, and this leads to the removal of the
original degeneracy of the Hamiltonian in the quantum number mj
(instead of in the quantum number ml as in the normal effect). In
this case, the MHI actualization rule prescribes that Jz will be also
definite-valued, in agreement with the experimental accessibility
of mj.

All the cases described above point to a feature of the quantum
measurement that is not noticed in the usual, merely formal
treatments of the process. In fact, in the von Neumann model, the
observable A to be measured on the system S of interest is
considered in formal terms and deprived of its physical content.
Then, the interaction between S and the measuring apparatus M is
endowed with the only role of introducing the correlation between
A and a pointer P. However, the physical situations just considered
show that we have no empirical access to the observables that are
generators of the symmetries of the system's Hamiltonian; and, in
the context of measurement, A may be one of those observables.
This is precisely the case in the Stern-Gerlach experiment, where Sz
is a generator of the space-rotation symmetry of Hspin ¼ k S2; it is
the interaction with the magnetic field B ¼ Bz that breaks the
isotropy of space by privileging the z-direction and, as a conse-
quence, breaks the space-rotation symmetry of Hspin.

This physical account of quantum measurement shows that,
when the observable A to be measured on the system S is a
generator of a symmetry of the Hamiltonian HS of S, the interaction
with the apparatusM not onlymust establish a correlation between
A and the pointer P, but also must break that symmetry. Therefore,
from a physical viewpoint, measurement can be conceived as a
process that breaks the symmetries of the system to be measured
and, in this way, allows us to have access to an otherwise empiri-
cally inaccessible symmetry-generator observable. This suggests
that the formal von Neumann model of quantum measurement
should be complemented by a physical model in terms of which
measurement is a symmetry breaking process that renders a
Please cite this article in press as: Fortin, S., et al., A new application of
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accessible.

6. The modal-Hamiltonian account of optical isomerism

In the light of the above account of quantummeasurement, now
Hund's paradox can be rephrased in MHI's language.

As explained in Section 3, the exact Hamiltonian H of an enan-
tiomermolecule is symmetric under spatial reflection: it commutes
with the parity observable P (see eq. (1)). Now, let us consider the
observable C, whose eigenstates are jD〉 and jL〉, and call it chiral-
rotation: the eigenvalues d and l of C represent the properties
dextro-rotation and levo-rotation, respectively. The observable C
should be definite-valued for the molecule to be dextro-rotatory
(D) or levo-rotatory (L).

It is easy to see that C does not commute with H: ½C;H�s0. As in
the examples of the previous section, in this case the actualization
of the observable C would determine the rotation property of the
molecule in a completely arbitrary way: it would introduce in the
molecule an asymmetry not contained in its Hamiltonian. As a
consequence, from the MHI viewpoint, the observable C of the
enantiomer molecule is not definite-valued, that is, it does not
belong to the preferred context. In other words, strictly speaking
the isolatedmolecule is not dextro-rotatory (D) or levo-rotatory (L):
chiral-rotation is a property that has no definite value in it.

The fact that chiral-rotation does not have a definite value in the
isolated molecule is compatible with experience: we have no
experimental evidence of the handedness of an isolated molecule.
In order to make chiral-rotation manifest as a definite-valued
property, it is necessary to interact with the molecule. But the
necessary interaction must be such that it breaks the parity sym-
metry of the original Hamiltonian H. More precisely, the molecule
must interact with another system M, which plays the role of the
apparatus, in such a way that the Hamiltonian HT of the new
composite system is no longer parity invariant. For instance, this
happens when

HT ¼ H þ HM (13)

where the Hamiltonian HM of the new system breaks the original
parity invariance of H: ½HM ; P�s0/½HT ; P�s0. Additionally, the
observable C must commutewith the total Hamiltonian HT in order
to obtain a stable reading of chiral-rotation. Under these conditions,
according to theMHI C acquires a definite actual value: wemeasure
dextro-rotation or levo-rotation. However, now the system is no
longer the isolated molecule, but the molecule in interaction with
the measuring system M.

This is precisely what happens when the molecule rotates the
plane of polarization of plane-polarized light. In this case, a good
candidate for HM is the Hamiltonian usually introduced in quantum
chemistry to describe the interaction between molecules and
polarized light (see Shao& H€anggi, 1997), which is a function of the
electric field E and the magnetic field B of the light. Therefore, the
observable C turns out to be a definite-valued observable of the
new composite system. In other words, optical activity is not an
intrinsic property of the molecule, but of the system ‘molecule plus
light’. In a certain sense, this answer to Hund's paradox agrees with
the view according to which the solution must be sought in the
interaction of the molecule with its environment. However, our
approach does not appeal to decoherence, but relies on an inter-
pretation of quantum mechanics that explicitly accounts for mea-
surement from the perspective of the symmetries of the system.

It is important to stress that, from the MHI viewpoint, symme-
tries are not conceived as generated by the spatial shapes of mol-
ecules: symmetries are internal features of the Hamiltonian of the
the modal-Hamiltonian interpretation of quantum mechanics: The
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whole closed system; they do not have to be conceived in terms of
spatial configurations. According to the MHI, it is not correct to
suppose that an enantiomer molecule has, before being observed, a
definite handedness depending on its shape, and that such a
property is discovered when the molecule interacts with a system
with the opposed handedness. From the MHI perspective, isolated
molecules have no definite handedness; this property becomes
definite when the molecule turns into a part of a composite system
that is no longer parity symmetric.

As well known by chemists, optical activity is stably correlated
with other properties, usually conceived as structure-based as the
property of optical activity itself: if, say, dextro-rotation is observed,
the corresponding values of the correlated properties must also be
observed. In theoretical terms, the definite value of chiral-rotation
must lead to the definite-valuedness of those properties, and the
actual value acquired by chiral-rotationmust be correlatedwith the
actual values acquired by the correlated properties. This can easily
be explained in the context of the MHI. In fact, if the properties are
stably correlated with chiral-rotation C, they must be represented
by observables that commute with and are functionally related to
the observable C. Therefore, according to the MHI, if the molecule
interacts with another system in such a way that C acquires a
definite value in the new composite system, then the observables
commuting with C will also acquire a definite-value. In turn, the
functional relation between C and those commuting observables
guarantees the proper correlations between their actual values.
Summing up, from the viewpoint of the MHI, the same symmetry
breaking that explains why a definite value of chiral-rotation is
observed also explains why the definite values of the properties
correlated with chiral-rotation are also observed.

The problem of isomerism is a particular case of what can be
called, following Woolley and Sutcliffe (1977), the symmetry prob-
lem in chemistry: if the interactions embodied in the Hamiltonian
of the molecule are Coulombic, the solutions of the Schr€odinger
equation have certain symmetries that cannot account for the
asymmetries of the molecular structure. For instance, Coulombic
molecules are spherically symmetrical; however, the asymmetry of
polyatomic molecules is essential in the explanation of their
chemical behavior. As Hendry stresses, according to quantum me-
chanics an isolated molecule in a general energy eigenstate may
possess no directional property (Hendry, 1998, p. 131). The author
considers the example of the hydrogen chloride molecule, which
has an asymmetrical charge distribution that explains its acidic
behavior and its boiling point; however, according to quantum
mechanics, the expectation value of the dipole moment of a
molecule in an arbitrary eigenstate of the full molecular Hamilto-
nian is always zero. On this basis, he concludes that “if the acidic
behaviour of the hydrogen chloride molecule is conferred by its
asymmetry, and the asymmetry is not conferred by the molecule's
physical basis according to physical laws, then surely there is a prima
facie argument that ontological reduction fails.” (Hendry, 2010, p.
186). The MHI casts new light on this problem, since it suggests
that, although the isolated molecule lacks the necessary asymme-
try, an adequate interactionmay break the symmetry of the original
Hamiltonian in the way needed to explain the asymmetric features
that become manifest when the system is experimentally
measured.

7. Conclusions

In the context of the debates about the nature of molecular
structure, in this paper we have focused on Hund's paradox,
derived from the difficulty in giving a quantum explanation for
optical isomerism. We have revised different attempts to solve the
paradox, in particular, the widespread appeal to decoherence in
Please cite this article in press as: Fortin, S., et al., A new application of
problem of optical isomerism, Studies in History and Philosophy of Mod
recent literature; we have argued that none of these attempts is
completely successful. On this basis, we have recalled the main
features of the MHI in order to show how this interpretation offers
a solution of Hund's paradox in exclusively quantum terms.

Since its first formulation in 2008, the MHI was developed in
several articles, and was presented many times to varied audiences.
It is interesting to notice the different reactions to the same pro-
posal. Philosophers of physics usually insist on requiring the
justification for the selection of the Hamiltonian as the key to
determine the preferred context, by claiming that no basis of the
Hilbert space has a privileged status. By contrast, philosophers of
chemistry (and chemists) are always surprised by our insistence in
justifying that selection, since in chemistry it is usual to work in the
basis of the energy. In fact, the MHI is in resonance with molecular
chemistry, in the context of which molecules are almost always
described in their stationary states, that is, in eigenstates of the
Hamiltonian, and a great deal of relevant knowledge is obtained
from studying the symmetries of the Hamiltonian. TheMHI account
to optical isomerism fits in the framework of this resonance.
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