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The classical theory of intermittency developed for return maps assumes uniform density of
points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection
probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting
a linear function to experimental or numerical data. Here we present an analytical approach to
estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent
traditionally used to characterize the intermittency type. The proposed theoretical method is
general and very simple to use. It is compared with numerical computation, showing a good
agreement between both. Our analytical results are compared with some celebrated classical
numerical results on intermittency theory.
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1. Introduction

Intermittency is a particular route to the determin-
istic chaos characterized by spontaneous transitions
between laminar and chaotic dynamics. For the first
time this concept was introduced by Pomeau and
Maneville in the context of the Lorenz system [Man-
neville & Pomeau, 1979; Pomeau & Manneville,
1980]. Later intermittency has been found in a
variety of different systems including, for example,
periodically forced nonlinear oscillators, Rayleigh–
Bénard convection, derivative nonlinear Schrödinger
(DNLS) equation, and the development of turbu-
lence in hydrodynamics (see e.g. [Dubois et al., 1983;
del Rio et al., 1994; Stavrinides et al., 2008; Krause
et al., 2014; Sanchez-Arriaga et al., 2007]).

Besides this, there are other types of intermit-
tencies such as type V, X, on–off, eyelet and ring
[Kaplan, 1992; Price & Mullin, 1991; Platt et al.,
1993; Pikovsky et al., 1997; Hramov et al., 2006].
A more general case of on–off intermittency is the
so-called in–out intermittency. A complete review
of on–off and in–out intermittencies can be found
in [Stavrinides & Anagnostopoulos, 2013].

Proper qualitative and quantitative characteri-
zations of intermittency based on experimental data
are especially useful for studying problems with
partial or complete lack of knowledge on exact
governing equations, as it frequently happens for
example, in Economics, Biology, and Medicine (see
e.g. [Zebrowski & Baranowski, 2004; Chian, 2007]).
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It is interesting to note that most of the above
cited references are devoted to systems having more
than one dimension. In spite of this, they can
be described by one-dimensional map. This phe-
nomenon is typical of systems that contract volume
in phase space [Ott, 2008].

All cases of Pomeau and Maneville intermit-
tency have been classified into three types called I,
II, and III [Schuster & Just, 2005]. The local lam-
inar dynamics of type-I intermittency evolves in a
narrow channel, whereas the laminar behaviors of
type-II and type-III intermittencies develop around
a fixed point of its generalized Poincaré map.

Another characteristic attribute of intermit-
tency is the global reinjection mechanism that maps
trajectories of the system from the chaotic region
back into the local laminar phase. This mechanism
can be described by the corresponding reinjection
probability density (RPD). The RPD is determined
by the chaotic dynamics of the system and drives
the statistical properties of the system. Note that in
the linear region, the invariant density of the map
is formed by the RPD and by the trajectories on
reinjected point going out of the linear region. The
RPD contributes to the invariant density of the map
in the linear region only with the reinjected points.

Analytical expressions for the RPD are avail-
able for a few maps only, hence to describe main
statistical properties of intermittency, different
approximations of the RPD have been employed.
The most common classical approach uses the uni-
form RPD, which, however, works fine in a few
model cases only [Manneville, 1980; Kim et al.,
1994; Cho et al., 2002]. Another approach for RPD
deals with a δ-function limit as it considers rein-
jection into a given point in the presence of noise
[Kim et al., 1998; Kye & Kim, 2000; Koronovskii &
Hramov, 2008]. In this paper we propose a simple
method to get an analytical approximation of the
RPD, in good agreement with the numerical result
given in the literature.

The contents of the present paper is outlined
as follows: After this introduction, in Sec. 2, we
briefly describe the state of the art and how the
RPD is generated by the map. Section 3 is devoted
to present the main result of this work, and we pro-
pose an analytical method to estimated the RPD
and the characteristic exponent β. A comparison
between numerical and analytical results are pre-
sented in Sec. 4. Finally, in Sec. 5, we summarize
the main results.

2. Theoretical Framework

First, let us briefly describe the theoretical frame-
work that accounts for a wide class of dynami-
cal systems exhibiting intermittency. We consider
a general 1D map

xn+1 = F (xn), F : R → R (1)

which exhibits intermittency, hence it presents two
different behaviors according to where the trajec-
tory takes place: laminar and chaotic.

The local laminar dynamics of type-I intermit-
tency is determined by the 1D map in the form:

xn+1 = ε+ xn + axp
n Type-I (2)

where a > 0 accounts for the weight of the nonlinear
component and ε is a controlling parameter (ε �
1). The laminar behaviors of type-II and type-III
intermittencies develop around the fixed point of
maps:

xn+1 = (1 + ε)xn + axp
n Type-II (3)

xn+1 = −(1 + ε)xn − axp
n Type-III. (4)

The laminar interval L is delimited by a small con-
stant c as following: L = (0, c) for type-I and type-II
and by the symmetric interval L = (−c, c) in the
case of type-III.

In some pioneer papers devoted to type-I and
type-II intermittencies, the nonlinear component is
quadratic, (i.e. p = 2). In the same way, in the clas-
sical theory on type-III it was fixed as p = 3.

In all of the cases ε � 0, the point x0 = 0
becomes unstable, and hence trajectories slowly
escape from the origin preserving orientation for
type-I and type-II and reversing orientation for
type-III intermittency.

Regarding nonlinear dynamics, the so-called
Reinjection Probability Density (RPD), describes
the reinjection mechanism that maps back the tra-
jectories from chaotic region of the map into the
laminar region where the dynamics is determined
by the local maps above referred. Notice that this
mechanics is necessary to sustain the alternation
between laminar and chaotic bursts. The RPD func-
tion is the most important one to determine the
intermittent behavior of the system, but before
embarking on a discussion concerning RPD, note
the relationship between the RPD and the proba-
bility measure of an interval S ⊂ [0, 1] given by

P (S) = lim
N→∞

1
N

N∑
n=0

IS(xn) (5)
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where IS(x) denotes characteristic function of the
interval defined as

IS(x) =

{
1, if x ∈ S
0, if x �∈ S. (6)

Thus the probability measure indicates the fre-
quency of the signal in the corresponding interval
of the attractor, and it is related with the invariant
density ρ(x) by

P (S) =
∫

S
ρ(x)dx. (7)

It is clear that in our context P ([0, 1]) = 1. Let L be
the laminar region and z an interval in the laminar
region z ⊂ L. Before considering the probability
P (z) given by definition (5), let us split the whole
data series into three subsets

{xn} = {xn′} ∪ {xn′′} ∪ {xn′′′} (8)

having empty intersection between them

{xn′} ∩ {xn′′} = {xn′′} ∩ {xn′′′}
= {xn′′′} ∩ {xn′} = ∅ (9)

with the following definitions. Firstly, we choose
xn′ ∈ z and in the preceding period it already exists,
that is, Iz(xn′) = 1 and Iz(xn′−1) = 1. For the next
step, we have xn′′ ∈ z but in the preceding period it
does not exist, that is Iz(xn′) = 1 and Iz(xn′−1) = 0.
Finally, xn′′′ �∈ z.

Now it is clear that P (z) is given by

P (z) = lim
N→∞

1
N

N∑
n=0

Iz(xn′) + lim
N→∞

1
N

N∑
n=0

Iz(xn′′)

+ lim
N→∞

1
N

N∑
n=0

Iz(xn′′′) (10)

where, in fact, the last term is not necessary because
it is zero. The first term in Eq. (10) denotes the
probability for the signal to be in z when in the pre-
ceding period it has already been there. The second
term in Eq. (10) denotes the probability for the sig-
nal to be in z when in the preceding period it has
not been there. The second term on the right-hand
side of Eq. (10) defines the RPD, denoted here by
φ(x), by the following relation

lim
N→∞

1
N

N∑
n=0

Iz(xn′′) = w

∫
z
φ(x)dx (11)

where the weight w is introduced because it is usual
to normalize the function φ(x) over the whole lam-
inar interval L as∫

L
φ(x)dx = 1. (12)

From Eq. (11) it is clear that the probability of
finding a reinjected point between x and x + dx
is φ(x)dx.

We note that φ(x) determines the fundamen-
tal characteristics of intermittency, as for instance,
the probability density of the length of the laminar
phase, denoted here by ψ(l), and the characteristic
exponent β, used to identify the intermittency type
as it will be defined below.

From the mathematical RPD shape for each
case it is possible to analytically estimate the funda-
mental characteristic of the intermittency, the prob-
ability density of the length of laminar phase ψ(l),
depending on l, that approximates the number of
iterations in the laminar region, i.e. the length of
the laminar phase. Note that the function ψ(l) can
be estimated from time series, as it is usual to char-
acterize the intermittency type. The characteristic
exponent β, depending on ψ(l) through the relation
l ∝ ε−β , is also a good indicator of the intermittency
type.

To illustrate how the RPD determines ψ(l) and
β, let us consider the type-II intermittency. For the
other case, the methodology is similar. To estimate
ψ(l), we take, as usual, the approximation of the
particular map for the local dynamics by the differ-
ential equation [Schuster & Just, 2005]. In the case
of the map (3) we have

dx

dl
= εx+ axp (13)

where l approximates the number of iterations in
the laminar region, i.e. the length of the laminar
phase. Note that Eq. (13) provides a good approx-
imation when xn+1 − xn is small enough. This fact
determines the limit of the laminar interval defined
by the constant c.

Solving (13) for l we get

l =
1
ε

ln

[
ln
(x
a

)
− 1
p− 1

ln

(
ac(p−1) + ε

ax(p−1) + ε

)]
. (14)

Since x in (14) is a random variable described by
φ(x), the statistics of l is also governed by the global
properties of the RPD.
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Let ψ(l) be the probability density function of
l, then it can be obtained by

ψ(l) = φ(X(l))
∣∣∣∣dX(l)

dl

∣∣∣∣ (15)

where X(l) is the inverse function of (14), that is,

X(l) =


 ε(

a+
ε

cp−1

)
e(p−1)εl − a




1
p−1

. (16)

Thus the probability density function of the length
of the laminar phase is given by

ψ(l) = φ(X(l))[εX(l) + aXp(l)]. (17)

Using (17) we can determine the mean value of l
which is an important property to characterize the
intermittency

l =
∫ ∞

0
τψ(τ)dτ. (18)

Notice that l is directly related to the characteris-
tic exponent β, commonly used to characterize any
type of intermittency, by means of the characteristic
relation l ∝ ε−β , which describes, for small values
of ε, how the length of the laminar phase increases
as ε decreases.

At this point, we mention that ψ(l) and β
depend on the RPD, hence the main task here is
to determine the RPD. To describe the reinjection
mechanisms present in a wide class of dynamical
systems exhibiting intermittency, the RPD given by
the following power law

φ(x) = b(x− x̂)α (19)

has been recently introduced.
The RPD (19) has been observed in a num-

ber of maps having intermittencies of types I–III
[del Rio & Elaskar, 2010; Elaskar et al., 2011; del
Rio et al., 2014]. Note that the RPD (19) includes
the classical approach as the particular case α = 0.
The free parameters x̂ and α are determined by
the dynamics in the chaotic region. The parameter
x̂ corresponds with the lower bound of reinjection
(LBR), the exponent α is generated by the trajec-
tories within the chaotic regime in the vicinity of
a point in the map with infinite or zero tangent,
and b is a normalization constant. Later it has been
shown that the value of α is robust against the
external noise making possible to calculate α in the
noisy RPD [del Rio et al., 2012; Krause et al., 2013;
Elaskar et al., 2011].

The free parameters x̂ and α can be numerically
computed even for a relatively small data set or data
with high level of noise [del Rio & Elaskar, 2010;
Elaskar et al., 2011; del Rio et al., 2013].

On the other hand, x̂ can be obtained from the
definition of the map, however, there is not a general
method to get the parameter α from the expression
of the map.

Regarding the characteristic exponent, for x̂ ≈
0 in Eq. (19), β has been established as a function
of α, as follows:

In type-I case we have [del Rio et al., 2014]

β =
p− α− 2

p
. (20)

For type-II, the expression for β is given by [del
Rio & Elaskar, 2010]

β =
p− α− 2
p− 1

. (21)

Finally, for type-III, the characteristic exponent is
given by Eq. (21) [Elaskar et al., 2011].

2.1. Assessment of RPD function

Let us introduce some analytical features on the
RPD, that can help us in the following section. The
RPD function depends on the particular shape of
F (x). To fix ideas, let us introduce an illustrating
model

xn+1 = F (xn) ≡
{
f1(xn), xn < xm

f2(xn), xn ≥ xm

(22)

where f1(x) = (1 + ε)xn + (1 − ε)xp
n, and xm is the

root of the equation f1(xm) = 1 (see Fig. 1). Note
that f1 drives the laminar dynamics whereas f2

drives the reinjection mechanism from the chaotic
region into the laminar region as represented in
Fig. 1 by a green arrow.

In his seminal paper, Manneville [1980]
reported uniform reinjection for the map (22) with
f2(xn) = f1(xn) − 1 and p = 2, whereas del Rio
and Elaskar [2010] proposed the generalization to
the map f2(xn) = (f1(xn) − 1)γ giving the RPD of
Eq. (19).

For γ = 1 the original map was recovered,
however, for γ �= 1 it is interesting to estimate
some characteristic of φ(x) in a neighborhood of
x̂ (LBR). Without loss of generality, we set x̂ = 0
in the map (22). The value of x̂ is determined by
xm = F−1(x̂) where xm is an extreme point, hence

1650228-4

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 @
 S

A
N

 D
IE

G
O

 o
n 

01
/1

8/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 5, 2017 14:59 WSPC/S0218-1274 1650228

On the Theory of Intermittency in 1D Maps

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Xn+1

XnXm

φ(x)

ρ(
x′ )

Fig. 1. Map of Eq. (22) for p = 2 with the bisecting line.
The vertical dashed line indicates xm. Cases of f2(xn) =

f1(xn) − 1 and f2(x) = 1 − cos(π
f1(x)−1

2 ) correspond to
dashed and solid lines respectively. The green arrow indi-
cates the corresponding reinjection mechanism into the lami-
nar zone. The reinjection around xm is indicated by the black
arrow.

F ′(xm) is zero. Note that all points reinjected in the
laminar region which is defined by the interval (0, c),
come from the points close to xm as the green arrow
shows in Fig. 1. That is, for x′ � xm, all points
in the interval (x′, x′ + dx′) are directly mapped
into the interval (f2(x′), f2(x′ + dx′)) ≈ (x, x +
f ′2(x′)dx′), where x = f2(x′), hence the probability
to find a point in (x′, x′ + dx′) is the same as that
to be reinjected into the interval (x, x+ f ′2(x

′)dx′),
where f ′2 indicates the derivative of the function f2,
hence we have Kρ(x′)dx′ = φ(x)f ′2(x

′)dx′. The con-
stant K account of ρ(x) is normalized on the whole
interval [0, 1] whereas φ(x) is normalized only on the
laminar interval, that is,

∫ c
0 φ(τ)dτ = 1. Finally, we

can approximate φ(x) as follows

φ(x) = ρ(x′)
K

df2(τ)
dτ

∣∣∣∣
τ=x′

. (23)

In [del Rio & Elaskar, 2010] the case f2(x) =
(f1(x) − 1)γ was investigated. The expression (23)
in this case gives

φ(x) =
Kρ(x′)
γf ′1(x′)

x
1
γ
−1, (24)

where f ′1 indicates the derivative of the function
f1. In the linear approximation of f1 in the interval
(xm, f

−1
2 (c)), we can consider f ′1 as a constant. Now,

if the density ρ(x′) is uniform, we get that for the
reinjection probability density, the aforementioned
power law φ(x) = bxα where

α =
1
γ
− 1 (25)

was verified in [del Rio & Elaskar, 2010]. It is inter-
esting to note that the power law φ(x) = bxα has
already been verified in a wide class of 1D maps even
in some classical “pathological” cases that deviate
significantly from the classical predictions [del Rio
et al., 2013]. Regarding the classical hypothesis of
uniform RPD, it holds for the map (22), only in the
case of γ = 1, where xm is not an extreme point,
however it is false for γ �= 1 where the RPD is given
by Eq. (19). This means that whereas the hypothe-
sis of uniform reinjection does not work in general,
it usually works for ρ(x′) when it is generated in no
extreme points as indicated by the black arrow in
Fig. 1.

In this scenario, where φ(x) is generated around
the point xm as Eq. (24) describes, the parame-
ter γ determines φ(x) following Eq. (25). Note that
whereas in this case the parameter γ appears explic-
itly in the definition of the map, this is not the gen-
eral case. In this way, a further generalization of the
reinjection mechanism can be proposed as follows:
f2(xn) = f(f1(xn)−1) with f(0) = 0 and f(1) = 1.
In the next section, we develop a method to asso-
ciate a value of γ to a general reinjection mecha-
nism, hence we extend the application of Eq. (25)
to practically any map.

Concerning type-III intermittency, the scenario
can be more complicated. To illustrate this point,
let us consider a map having type-III intermittency

xn+1 = FIII(xn)

= −(1 + ε)xn − ax3
n + dx6

n sin(xn)

with a > 0. (26)

Figure 2 shows the map of Eq. (26) with the reinjec-
tion mechanism depending on the value of FIII(xm)
at the extreme points xm satisfying dFIII(x)/dx =
0. In spite of our odd map having two extreme
points, for simplicity, only the maximum is indi-
cated in Fig. 2. As the number of iterations
increases, any point xn close to the origin goes away
in a process driven by the parameters ε and a in the
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xn+1

0

0−1

−1

1

1

xm

xn
Fig. 2. Map (26) exhibiting type-III intermittency. Thick
arrow illustrates mapping of points from the chaotic region
(around the maximum of FIII(x)) into the laminar region.
The parameters used are a = 1, ε = 0.01 and d = 1.1.

cubic term of the map. For large enough values of
xn, the influence of the third term on the right-
hand side of Eq. (26) increases and xn approaches
the maximum xm rendering the reinjection into the
laminar zone indicated in Fig. 2 by a dashed circle.
Note that in this case, points in the neighborhood of
xm need two map iterations to be reinjected into the
laminar region, however, this class of maps still has
a RPD given by Eq. (19), hence it should be possible
to obtain from Eq. (26) a value of γ providing the
exponent α by means of Eq. (25). In the next section
we propose an analytical method to approximate
the parameter γ in all of these cases. We also apply
the result to maps having type-I intermittency. The
reference [Elaskar & del Rio, 2016] provides more
detailed information on this topic.

3. Estimation of the RPD

In this section, we propose a method to estimate
analytically the RPD by means of parameter γ of
Eq. (25).

Let us start with a direct reinjection from the
extreme point that the map (22) shows. Based on
the argument of the preceding section, we approxi-
mate the map (22) around the extreme point xm by
F (x) ≈ F (xm) + d(x − xm)γ , where d is a suitable
constant. Hence the value of γ is given by the next

limit

γ = lim
x→xm

ln(F (x) − F (xm)) − ln d
ln(x− xm)

. (27)

To convert the limit (27) from indeterminate forms
to an expression that can be evaluated, we can apply
the L’Hopital rule, but usually we get an indetermi-
nate limit again. In the general case, for x→ xm we
have F (i)(x) → 0 for i ≤ q where F (i)(x) denotes
the i-derivative of the function F (x), so by using
the L’Hopital theorem q + 1 times we have

γ = q + lim
x→xm

F (q+1)(x)
x− xm

F (q)(x)
. (28)

Now, if the derivative F (q+1) exists, the limit (28)
gives γ = q + 1 and according to Eq. (25) we have

α = − q

q + 1
. (29)

It is interesting to note that the values of q in
Eq. (29) are confined to odd natural numbers, a
condition imposed because xm is an extreme point.
In this context, if F ′(x) is a polynomial having xm

as a root of multiplicity q, then the exponent α is
given by Eq. (29).

Note that the approximation (29) gives two nat-
ural limits. For q = 0 we recover the uniform rein-
jection and on the other hand, for q → ∞, α→ −1
and the RPD collapses into a δ-function.

Let us consider a map F (x) defined by a compo-
sition of single maps {Fi}. See for instance [Hirsch
et al., 1982a; Kim et al., 1994]. Even in the case
of a not-composed map as in Eq. (26), to reinject
into laminar region a point lying in the vicinity
of the maximum or minimum, there are neces-
sarily two iterations of the map, hence the point
x = FIII(FIII(xm)) lies in the laminar region. In
this case, whereas the intermittency is referred to
the map xn+1 = FIII(xn), the limit (27) must
be referred to the functional composition of maps
xn+1 = F (xn) ≡ FIII ◦ FIII(xn). For a general view,
we consider the map

xn+1 = F (xn) ≡ Fr ◦ Fr−1 ◦ · · · ◦ F1(xn), (30)

where the function F1(x) has an extreme point at
xm, that will be mapped into the laminar region
by successive application of the single functions Fi

forming the composed map (30).
Let us demonstrate that even in this case, the

RPD will be approximated by applying Eq. (28)
just to function F1(xn), instead of applying it to
the complete function F (x).
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Theorem 1. Let F (x) be the function defined by
Eq. (30). If for a positive integer q, F (i)

1 (xm) = 0
with i ≤ q and F

(q+1)
1 (xm) �= 0, where F

(i)
1 indi-

cates the i-derivative of the function F1, the follow-
ing equality holds:

lim
x→xm

F (q+1)(x)
x− xm

F (q)(x)

= lim
x→xm

F
(q+1)
1 (x)

x− xm

F
(q)
1 (x)

. (31)

Proof. Let us prove the equality (31) for q = 1,
that is

lim
x→xm

F ′′(x)
x− xm

F ′(x)
= lim

x→xm

F ′′
1(x)

x− xm

F ′
1(x)

. (32)

To prove Eq. (32) let us evaluate F ′(x) from its
definition in Eq. (30),

F ′(x) =
r∏

i=1

F ′
i ◦Gi−1 (33)

where we define G0(x) ≡ x and Gi(x) ≡ Fi ◦ · · · ◦
F1(x). Note that F ′(xm) = 0 because F ′

1(xm) = 0,
hence xm is an extreme point also for F (x). The
second derivative is given by

F ′′(x) =
r∑

j=1


F ′′

j ◦Gj−1

∏
i�=j

F ′
i ◦Gi−1


. (34)

To evaluate the limit (31) at x = xm, we point out
that all brackets in (34) with i �= 1 are zero because
F ′

1(xm) = 0, so we have

lim
x→xm

F ′′(x)
x− xm

F ′(x)

= lim
x→xm

F ′′
1

∏
i�=1

(F ′
i ◦Gi−1)

x− xm
r∏

i=1

F ′
i ◦Gi−1

(35)

so after eliminating the common factor in the frac-
tion we have Eq. (32). In the case of q > 1, Eq. (31)
is provided by means of L’Hopital rule applied to
Eq. (32). �

A direct consequence of Theorem 1 is that the
estimation of γ in the case of a map defined like
Eq. (30) is given by

γ = q + lim
x→xm

F
(q+1)
1 (x)

x− xm

F
(q)
1 (x)

. (36)

Note that the function F1 in Eq. (36) is just
FIII in the map (26), but in the general case the
function F1 can be quite different from the function
used to define the map. Examples of this point will
be shown in the next section.

Once γ is estimated, by means of Eq. (25) we
have the exponent α for the power law (19) which
describes the RPD. In the next section we apply
this result to 1D map having intermittency.

Regarding l, by using Eq. (29), we get an ana-
lytical expression for β depending on q as follow:

In type-I case, Eq. (20) becomes

β = 1 − q + 2
p(q + 1)

(37)

and for type-II, the expression (21) transforms into

β = 1 − 1
(p− 1)(q + 1)

. (38)

Finally, for type-III, the characteristic exponent is
given by Eq. (38) with p = 3 [Elaskar et al., 2011].

4. Numerical Results

We apply the proposed method to 1D maps having
types I–III intermittency to approach their RPDs
and the characteristic exponents β.

Firstly we study the map (22) having type-II
intermittency. In the case of f2(xn) = (f1(xn)− 1)γ

it is clear that the value of the limit (28) is equal to
the parameter γ and the expression (25) was already
checked in [del Rio & Elaskar, 2010]. Here, we focus
on a more general function as, for instance,

f2(x) = 1 − cos
(
π
f1(x) − 1

2

)
. (39)

The reinjection mechanism proposed by Eq. (39) is
represented by a solid line in Fig. 1. Following the
last section, from Eq. (39) we have f ′2(xm) = 0 and
the second derivative exists with f ′′2(xm) �= 0, hence
we can use Eq. (29) with q = 1 giving α = −1

2 and
according to Eq. (38) the predicted value of β is
1/2.

It is interesting to note that the argument is
quite general and the fundamental values of α and
β do not depend on the particular parameter values
of the map. To evaluate this analytical prediction,
we set p = 2 and ε = 0.01 in the map (22). Note
that for this map x̂ = 0, hence α is the only free
parameter to determine φ(x) and ψ(l) of Eqs. (19)
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0 0.02 0.04 0.06 0.08

20

40

60

80

φ(x)

x
0 100 200 300 400 500

0

0.005

0.01

0.015

0.02

0.025

0.03
ψ(l)

l
(a) (b)

Fig. 3. Dots refer to the numerical estimation obtained from 106 iterations of the map (22)–(39) having 9074 reinjections
into the laminar region (0, 0.1). Curves superimpose the analytical prediction using α = −1/2 for: (a) φ(x) and (b) ψ(l). The
other parameters are p = 2 and ε = 0.01.

and (15) respectively. In Figs. 3(a) and 3(b) we
compare these functions using α = −1

2 with the
numerical estimation.

Note that, on the contrary to the previously
published results on this kind of intermittencies,
dots and curves are plotted in Fig. 3 without any
fitting analysis. We just superimpose the numerical
estimations with our analytical predictions.

Concerning the characteristic relation, in Fig. 4
are represented the numerical estimations for l
depending on ε. The slope of the line of the log–
log plot should approach −β, hence Fig. 4 displays a
good agreement with our analytical prediction for β.

Regarding type-III intermittency, we consider
the map (26). Note that in this case the power
law (19) is generated in the neighborhood of the
maximum xm (also around the minimum) but this

-5 -4 -3 -2

2

2.5

3

3.5

log(ε)

log(l)

Fig. 4. Characteristic relations. Dots show numerical data
for the map (22)–(39) with p = 2, while the solid line repre-
sents the least squares straight fitting with slope −β = −0.48,
in good agreement with the analytical prediction giving β =
0.5 indicated by a dashed line.

region is not mapped into the laminar region by
the map xn+1 = FIII(xn), however, it is done by
the composed map F (x) ≡ FIII ◦ FIII(x). Accord-
ing to Theorem 1, we can still apply Eq. (28) to
the function FIII. With these considerations, we get
a similar case as the previous one, hence q = 1 so
we have α = −1/2 and according to (38) evaluated
for p = 3 we get β = 3/4, close to the reported
value β ≈ 0.8 in [Elaskar et al., 2011]. The error
around 6% between both data is due to the large
value c = 0.6 used to delimit the laminar interval.
It affects our approximation around the extreme
point. Note that to deal with Eq. (38), following
[Schuster & Just, 2005], we approximate in the lam-
inar region a finite difference equation by a contin-
uous differential equation, and this approximation
also introduces error in the case of a large length of
the laminar region.

Concerning type-I intermittency, we consider
the classical cases reported in [Kwon et al., 1996],
where the authors study the three maps shown in
Fig. 5. The mentioned paper is one of the pioneer
works reporting nonstandard characteristic expo-
nents β, where a uniform RPD fails to explain these
values.

The authors evaluated the RPD by solv-
ing numerically the Shaw relation [Lichtenberg &
Lieberman, 1983]. In all of the cases the reinjection
from the extreme point into the laminar region is
done by the composed maps xn+1 = F ◦ F (xn) as
sketched in Fig. 5. For the three cases, by Taylor
expansion the map in the laminar region can be
approximated by f1 of Eq. (22) with p = 2 (see
[Kwon et al., 1996]).
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

xn

xn+1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

xn

xn+1

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

xn

xn+1

(c)

Fig. 5. Maps of [Kwon et al., 1996] exhibiting type-I intermittency. Arrow illustrates mapping of points from the chaotic region
into the laminar region. The parameter values are the same as that used in [Kwon et al., 1996] as follows: (a) A = 0.9416195,
(b) A = 0.98115325 and (c) A = 0.9416, B = 0.83023023, a = 0.743, b = 0.874 and x∗ = 0.9414793.

Let us apply the method proposed in the pre-
vious section to the maps investigated in [Kwon
et al., 1996]. The first map is the next composition
of logistic maps F (x) = f (A)[f (B)(x)] (we follow
the same notation as in the cited reference) where
f (A)(x) = 4Ax(1 − x) and f (B)(x) = 4Bx(1 − x).
By Theorem 1, we can study only the map f (B)(x)

at its extreme point xm = 0.5. As f (B)(x) is a
second-order polynomial, the second derivative of
f (B) must be different from zero hence q = 1, the
first odd natural number, and according to Eq. (28)
we have α = −1/2 that from Eq. (37) we get
β = 1/4. In this simple way we get the same result
as reported in [Kwon et al., 1996].
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The second map is defined again by a composed
function in a similar form as the first one except
that f (A)(x) = A(1 − 16(x − 1/2)4) and f (B)(x) =
B(1 − 16(x − 1/2)4). By applying the same argu-
ment as in the first case to the fourth-order poly-
nomial of f (B) we conclude that now q = 3, the
second odd natural number, hence α = −3/4 and
β = 3/8, getting the same values as reported by the
mentioned reference.

Finally, the third map has a similar shape as
the first one except in the range a < x < b where
the map is a flat constant at value x∗ (see Fig. 5).
In this case, the derivative F (q) is zero for all values
of q, hence in the limit q → ∞, we get α → −1
and β = 1/2, that coincides again with the value
reported in [Kwon et al., 1996].

In other cases reported in the literature (see
for instance [Hirsch et al., 1982b]) the map is con-
structed by a number of composed identical logistic
maps, but the reinjection into the laminar region
comes from several regions of the map without local
extreme points hence the RPD is like a constant
reinjection.

5. Conclusions

Based on the well confirmed result for many 1D
maps, the reinjection probability density RPD can
be approached by the power law given by Eq. (19).
In this work we investigate how that RPD is gen-
erated in return maps. We show that the RPD is
generated around the extreme points of the map.
Based on this fact, we propose an analytical method
providing the RPD, hence by simple calculus it is
possible to estimate the RPD given by Eq. (19). In
particular, we propose a formula that provides the
parameter α as a function of the number of null
derivatives of the map at the extreme point. The
extreme condition of the point imposes that this
number must be odd, hence there is a restriction on
the possible values of α.

Once the value of α is determined, the value
of the characteristic exponent is also determined,
depending on the intermittency type. This analyt-
ical prediction has been compared with numerical
estimation showing good agreement between both.
For the maps investigated in the celebrated paper
[Kwon et al., 1996], our method provides the exact
value of the characteristic exponent β in agreement
with the numerically reported values in the men-
tioned reference.

We emphasize that the values of α and β found
by our method usually do not depend on the param-
eter values of the map, in particular on ε.

Notice that the intermittency type (I, II, III) is
determined by laminar map and, on the other hand,
the RPD is determined by the chaotic region of the
map. As a consequence, the proposed method to
determine the RPD can be used in systems having
other intermittencies such as type V, X, on–off or
ring ones.
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[1994] “Long time data series and difficulties with
the characterization of chaotic attractors: A case
with intermittency III,” Chaos Solit. Fract. 4, 2169–
2179.

del Rio, E. & Elaskar, S. [2010] “New characteristic rela-
tions in type-II intermittency,” Int. J. Bifurcation and
Chaos 20, 1185–1191.

del Rio, E., Sanjuán, M. A. F. & Elaskar, S. [2012]
“Effect of noise on the reinjection probability den-
sity in intermittency,” Commun. Nonlin. Sci. Numer.
Simulat. 17, 3587–3596.

del Rio, E., Elaskar, S. & Makarov, A. [2013] “Theory of
intermittency applied to classical pathological cases,”
Chaos 23, 033112.

del Rio, E., Elaskar, S. & Donoso, J. M. [2014] “Laminar
length and characteristic relation in type-I intermit-
tency,” Commun. Nonlin. Sci. Numer. Simulat. 19,
967–976.

Dubois, M., Rubio, M. & Berge, P. [1983] “Experimental
evidence of intermittencies associated with a subhar-
monic bifurcation,” Phys. Rev. Lett. 51, 1446–1449.

Elaskar, S., del Rio, E. & Donoso, J. M. [2011] “Rein-
jection probability density in type-III intermittency,”
Physica A 390, 2759–2768.

1650228-10

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 @
 S

A
N

 D
IE

G
O

 o
n 

01
/1

8/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 5, 2017 14:59 WSPC/S0218-1274 1650228

On the Theory of Intermittency in 1D Maps

Elaskar, S. & del Rio, E. [2016] New Advances on Chaotic
Intermittency and Its Applications (Springer Interna-
tional Publishing AG, Cham).

Hirsch, J. E., Huberman, B. A. & Scalapino, D. J. [1982a]
“Theory of intermittency,” Phys. Rev. A 25, 519–532.

Hirsch, J. E., Nauenberg, M. & Scalapino, D. J. [1982b]
“Intermittency in the presence of noise: A renormal-
ization group formulation,” Phys. Lett. A 87, 391–
393.

Hramov, A., Koronovskii, A., Kurovskaya, M. & Boc-
caletti, S. [2006] “Ring intermittency in coupled
chaotic oscillators at the boundary of phase synchro-
nization,” Phys. Rev. Lett. 97, 114101.

Kaplan, H. [1992] “Return to type-I intermittency,”
Phys. Rev. Lett. 68, 553–557.

Kim, C. M., Kwon, O. J., Lee, E.-K. & Lee, H. [1994]
“New characteristic relations in type-I intermittency,”
Phys. Rev. Lett. 73, 525–528.

Kim, C. M., Yim, G. S., Ryu, J. W. & Park, Y. J. [1998]
“Characteristic relations of type-III intermittency in
an electronic circuit,” Phys. Rev. Lett. 80, 5317–5320.

Koronovskii, A. A. & Hramov, A. E. [2008] “Type-II
intermittency characteristics in the presence of noise,”
Eur. Phys. J. B 62, 447–452.

Krause, G., Elaskar, S. & del Rio, E. [2013] “Noise
effect on statistical properties of type-I intermit-
tency,” Physica A 402, 318.

Krause, G., Elaskar, S. & del Rio, E. [2014] “Type-I
intermittency with discontinuous reinjection proba-
bility density in a truncation model of the deriva-
tive nonlinear Schrödinger equation,” Nonlin. Dyn.
77, 455–466.

Kwon, O. J., Kim, C. M., Lee, E.-K. & Lee, H. [1996]
“Effects of reinjection on the scaling property of inter-
mittency,” Phys. Rev. E 53, 1253–1256.

Kye, W. H. & Kim, C. M. [2000] “Characteristic relations
of type-I intermittency in the presence of noise,” Phys.
Rev. E 62, 6304–6307.

Lichtenberg, A. J. & Lieberman, M. A. [1983] Regular
and Stochastic Motion (Springer-Verlag, NY).

Manneville, P. & Pomeau, Y. [1979] “Intermittency and
the Lorenz model,” Phys. Lett. A 75, 1.

Manneville, P. [1980] “Intermittency, self-similarity and
1/f spectrum in dissipative dynamical systems,” Le
J. de Phys. 41, 1235–1243.

Ott, E. [2008] Chaos in Dynamical Systems (Cambridge
University Press, Cambridge).

Pikovsky, A., Osipov, G., Rosenblum, M., Zaks, M. &
Kurths, J. [1997] “Attractor-repeller collision and eye-
let intermittency at the transition to phase synchro-
nization,” Phys. Rev. Lett. 79, 47–50.

Platt, N., Spiegel, E. & Tresser, C. [1993] “On–off inter-
mittency: A mechanism for bursting,” Phys. Rev.
Lett. 70, 279–282.

Pomeau, Y. & Manneville, P. [1980] “Intermittent transi-
tion to turbulence in dissipative dynamical systems,”
Commun. Math. Phys. 74, 189–197.

Price, T. & Mullin, P. [1991] “An experimental observa-
tion of a new type of intermittency,” Physica D 48,
29–52.

Sanchez-Arriaga, G., Sanmartin, J. & Elaskar, S. [2007]
“Damping models in the truncated derivative nonlin-
ear Schrödinger equation,” Phys. Plasmas 14, 082108.

Schuster, H. & Just, W. [2005] Deterministic Chaos. An
Introduction (Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany).

Stavrinides, S. G., Miliou, A. N., Laopoulos, Th. &
Anagnostopoulos, A. N. [2008] “The intermittency
route to chaos of an electronic digital oscillator,” Int.
J. Bifurcation and Chaos 18, 1561–1566.

Stavrinides, S. & Anagnostopoulos, A. [2013] “The
route from synchronization to desynchronization of
chaotic operating circuits and systems,” Applica-
tions of Chaos and Nonlinear Dynamics in Science
and Engineering, eds. Banerjee, S. & Rondoni, L.
(Springer-Verlag, Berlin), Chapter 9.

Zebrowski, J. & Baranowski, R. [2004] “Type-I intermit-
tency in nonstationary systems models and human
heart rate variability,” Physica A 336, 74–83.

1650228-11

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 @
 S

A
N

 D
IE

G
O

 o
n 

01
/1

8/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.


	1 Introduction
	2 Theoretical Framework
	2.1 Assessment of RPD function

	3 Estimation of the RPD
	4 Numerical Results
	5 Conclusions



