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A study of the equilibrium double layer surrounding charged spherical particles is presented, considering that ions
in the suspending medium have a finite size. It is assumed that each ionic species has a different minimum approach
distance to the particle surface, while the distance of minimum approach between ions in the bulk has the same
value for all ion species. Numerical calculations made using the network simulation method and including all the
features of the considered model are presented, together with rigorous analytical results valid for a flat interface
and point ions in the bulk electrolyte solution. It is shown that the double-layer parameters are very sensitive to the
difference between the minimum approach distances of co-ions and counterions. For negative particles and greater
approach distances for co-ions than for counterions, the potential always increases with this difference and, under
appropriate circumstances, attains positive values leading to charge reversal. This phenomenon is favored by a
high electrolyte concentration, high counterion valences, and low surface charge (in modulus). An analytical
expression relating these parameters to the threshold value of the difference between the minimum approach distances
of co-ions and counterions to the particle surface is presented.

Introduction

The existence of an electrical double layer surrounding
dispersed colloidal particles has a profound effect on a wide
variety of both equilibrium and nonequilibrium phenomena in
colloidal science. This is the reason for the great importance
and interest in models of the double layer. While the theoretical
model based on the Poisson-Boltzmann equation is an ac-
knowledged and widely used description of the diffuse part of
the equilibrium double layer,1-3 it is based on a series of
simplifying assumptions: the finite sizes of ions are neglected;
non-Coulombic interactions between counterions, co-ions, and
the particle surface are disregarded; the permittivity of the
medium is assumed to be constant; incomplete dissociation of
the electrolyte is ignored; and so forth. In particular, the
consideration of ions as mathematical points has fundamental
consequences on the behavior of the equilibrium double layer
surrounding charged suspended particles.

The early attempts made to challenge this assumption4-8

generally concluded that the finite size of ions has an almost
negligible effect except for particles with an extremely high
surface charge so that, in most cases of practical interest, ions
do indeed behave as point charges. This subject has regained
interest in later years because of the advent of computational
methods that made it possible to numerically solve the complex
equations involving finite ion size. Roughly, two types of
methods have been used to include ion interactions into the
theoretical model: microscopic descriptions of the system with
different approach levels9-15 and phenomenological theories
using macroscopic differential equations to describe the behavior

of the system.16-29 Microscopic descriptions have the advantage
of precisely representing the interactions responsible for the
macroscopic behavior of the system, but only in equilibrium.
On the contrary, phenomenological theories, less strict in the
description of the interactions, make it possible to analyze the
system behavior both in equilibrium and perturbed by an
external signal.23,25-27,29 (See the review of Bazant et al.29 for a
historical background.)

In a series of works24-27 we have shown that excluded volume
can have a marked effect on the dielectric an electrokinetic
properties of colloidal suspensions even for typical surface
charge values. There are two main reasons for this qualitative
discrepancy between our conclusions and those of earlier works.
The first is that a finite ion size not only determines a minimum
approach distance between ions in the bulk electrolyte solution
but also determines a minimum approach distance between ions
and the particle surface. The second is that classical works only
studied the finite ion size effects on the equilibrium electric
potential and ion concentration distributions, while the dielectric
and electrokinetic properties are nonequilibrium phenomena. We
have shown that the largest changes occur in the field-induced
convective flows that are strongly dependent on the minimum
approach distance between ions and the particle surface.

In our preceding works, we considered that all the ion species
have the same size, and that this size determines the minimum
approach distance both between ions in the bulk electrolyte
solution and between ions and the particle surface. While this
is the simplest assumption, it does not necessarily provide the
best representation of the real situation, as recognized since the
classic 1947 work of Grahame.30 Ion size is not a simple
geometrical parameter: it is not only determined by the steric
ion volume but also by the possible existence of a hydration
shell and by the ion-ion or ion-particle surface interaction.
These two types of interactions are generally different, which
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leads to the possibility that ions having the same effective size
have, nevertheless, different values of the minimum approach
distance to the particle surface. In the present work we explore
this possibility and its influence on the structure of the
equilibrium diffuse double layer. We show that, for reasonable
parameter values, important quantitative changes are to be
expected. Furthermore, under favorable circumstances, a quali-
tative change should occur: the charge reversal phenomenon.

Theory

Let us consider a charged spherical particle of radius a
immersed in an unbounded electrolyte solution. The starting
point of our study will be the Poisson equation relating the
electric potential, φ(r), to the volume charge density, F(r), at
any point of the system. Its expression in spherical coordinates
with spherical symmetry is

where zi and ci(r) are the signed valence and the local
concentration (in moles per unit volume) of the ionic species i
(i ) 1, ..., m), e is the elementary charge, NA is the Avogadro
number, and εe is the dielectric permittivity of the solution,
which is assumed to have a constant value for r > a.

In the bulk solution far from the particle surface, each ion
occupies an effective volume due to its finite size and to the
ion-ion interactions, so that the local concentration of each ionic
species is limited by a maximum concentration, ci

max. This
limiting local concentration behavior can be expressed by means
of a Langmuir type function:6-25

where Ki are integration constants (Appendix A), which are
generally different for each ionic species. Their values are equal
to the value of the ionic concentrations at spatial points where
the electric potential is zero. In particular, assuming the potential
origin at r f ∞, Ki take the values of the bulk concentrations
ci

∞. Note that the usual form of the Poisson-Boltzmann equation
for a spherical double layer is obtained from eqs 1 and 2
assuming that ci

max f ∞ (ideal ion behavior). Moreover,
assuming a simple cubic structure, a value for the effective ionic
radius can be calculated from the value of ci

max:25

On the other hand, due to the finite ionic size and to the
ion-particle surface interaction, we assume that ions of species
i cannot come closer to the particle surface than an effective
distance of minimum approach hi. The simplest way to take
this effect into account is to consider that, for the region a < r
< a + hi, the concentration of the ionic species i vanishes. This
implies that the constant Ki is equal to zero in this region.27

In previous works,26,27 we considered that the minimum approach
distance to the particle surface of each ionic species, hi, is equal to
the corresponding effective ionic radius, Ri. Accordingly, the
consideration of different effective ionic sizes should lead to
different minimum approach distance values for each ionic species.
However, it is reasonable to assume that, since the values of hi

depend on the ion-particle surface interaction, even ionic species
with the same effective volume in the solution could have different
minimum approach distances to the particle surface.

In this work we consider that all the ionic species have
different minimum approach distances and that they are ordered
in such a way that hi e hi+1 for i ) (1, 2, ..., m - 1). Therefore,
the region next to the particle surface can be divided into a
series of layers as shown in Figure 1. As already noted, the
constants Ki of the ionic concentrations are zero for a < r < a
+ hi and equal to the bulk concentration of the ionic species
ci

∞, for a + hi < r (Appendix A).
Combining eqs 1 and 2, the generalized Poisson equation becomes

1

r2

d
dr[r2dφ(r)

dr ] ) -
eNA

εe

∑
i)1

m

ziKi exp[-zieφ(r)

kT ]
1 + ∑
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(4)

where

Ki ) { 0 a < r < a + hi

ci
∞ a + hi < r

(5)

The boundary conditions needed to solve eq 4 are

Boundary condition 6 implies the knowledge of the electric
potential value at the particle surface; 7 is the Gauss law relating

1
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Figure 1. Graphical representation of the different layers considered
in the theoretical model.
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the surface charge density of the particle σs to the normal
component of the electric field at its surface; 8 and 9 express
the continuity of the electric potential and of the normal
component of the electric displacement at the boundaries
between the different regions of the system; and 10 specifies
the global electroneutrality of the system. Note that the choice
of boundary conditions 6 or 7 depends on the knowledge of
either the surface potential or the surface charge of the particle.
These two conditions cannot be simultaneously used.

It is usual to use the variables

y(r) ) eφ(r)
kT

(11)

x ) r - a (12)

which transform eq 4 into

while the boundary conditions, eqs 6-10, become

Note that the theoretical model presented here reduces to the
theoretical models presented in ref 27 for hi ) Ri ) R ∀i ∈
(1, ..., m), to the model used in ref 25 for hi ) 0 ∀i ∈ (1, ..., m),
and to the classical model (Poisson-Boltzmann equation) for
hi ) 0 and ci

max f ∞ ∀i ∈ (1, ..., m).
Numerical Calculations. There is no general analytical

solution for the theoretical model presented above. Only for
the case of plane geometry (a f ∞) and of point ions (ci

max f
∞), analytical solutions exist (see Appendix B). Therefore,
numerical methods are necessary to solve the model in the
general case.

The numerical calculations were performed using an algo-
rithm based on the network simulation method, which consists
of modeling the governing differential equations by means of
an electrical circuit. A full account of the network model used
in this work is given in refs 31 and 32, and a more general
explanation of the method is given in ref 33.

It must be noted that, since the electric potential changes
rapidly near the interface x ) 0, an appropriate simulation space
grid must be modeled. In this work, the x-space grid is
automatically adapted to the evolution of the electric potential
profiles. If, in the course of the simulation, strong changes of y
with x are detected in any x coordinate region, more grid points
are added into that region. Appropriate simulation space grids
were calculated in this way to ensure good accuracy and
moderate CPU times.

Results

Except when indicated otherwise, the simulations were made
using the parameter values shown in Table 1.

We consider the particular case of a negative surface charge
value because colloidal particles suspended in aqueous elec-
trolyte solutions usually acquire a negative charge. Therefore,
counterions are positive (cations) while co-ions are negative
(anions). For simplicity, we also assume that there are only two
ion species in the electrolyte solution.

It was shown in the literature36 that the typical value of the
effective ionic solvated diameter, determined from mobility
measurements, is approximately 0.6-0.8 nm. However, the
effective ion size to be used in the considered theoretical model
should be larger due to the ion-ion interactions.29 The value
of ci

max for the two ionic species was chosen considering an
effective solvated diameter in water of approximately 1 nm.
On the other hand, the minimum approach distance to the
particle surface has been chosen as equal to 0.5 nm for
counterions and 1.5 nm for co-ions. This corresponds to the
assumption that co-ions are excluded from the first monolayer
of counterions.22 Note that our hypothesis does not coincide
with the classical Grahame model,30 which assumes that the
minimum approach distance of counterions is smaller than that
of co-ions because the effective radius of adsorbed counterions
in the first monolayer is smaller than in the bulk.

Our assumptions could be compared to those used in existing
hard sphere simulations:34,35 the treatment of the excluded
volume effect is analogous to the local density approximation
while the incorporation of different minimum approach distances
of co-ions and counterions might be regarded as a weighted
density approximation for the nonlocal correlations between ions
and the surface. These studies generally show that the local
density approximation does not suffice for a good representation
of the double layer properties that require the use of weighted
density approximations.

In what follows, we present numerical results for the dimension-
less potential, y, as a function of the distance to the particle surface,
x, for different situations of interest. Once the potential-distance
relationship is solved, it is immediate to obtain the ionic concentra-
tions at any point of the double layer using eq 2.

Figure 2 shows the dependence of the electric potential and
the ion concentration profiles on the difference between the
minimum approach distances of co-ions and counterions. As
can be observed, these profiles are generally similar to those
corresponding to equal minimum approach distances previously
analyzed.26 However, the following important differences should
be noted:
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TABLE 1

σS ) -0.02 C/m2 a ) 100 nm z ) z1 ) -z2 ) 1
c1

∞ ) 100 mol/m3 h1 ) 0.5 nm c1
max ) 1500 mol/m3

c2
∞ ) 100 mol/m3 h2 ) 1.5 nm c2

max ) 1500 mol/m3

T ) 298 K εe ) 78.54 · ε0 ε0 ) 8.854 10-12 F/m
k ) 1.381 10-23 J/K NA ) 6.022 1023 mol-1 e ) 1.602 10-19 C
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(a) The surface potential as well as the potential at all points
around the particle increases when the difference between
the minimum approach distances of co-ions and coun-
terions, h2 - h1, increases while h1 is kept at a constant
value. When the minimum approach distance of co-ions
increases, the region accessible to only positive counter-
ions increases, so that the electric charge inside a sphere
of radius r also increases, which leads to higher values
of the electric potential.

(b) The co-ion concentration vanishes in the 0 < x < h2

region, and its value at x ) h2 increases when h2

increases. An increase of h2 leads to a corresponding
increase of the electric potential (preceding point) and,
therefore, to a smaller co-ion concentration deviation with
respect to its bulk value.

(c) The counterion concentration at h2 < x decreases when
h2 increases. Just as in the preceding point, an increase
of the electric potential leads to a lower deviation of the
counterion concentration relative to its bulk value.

(d) The counterion concentration profiles are discontinuous
at x ) h2 because of the discontinuity of the co-ion
concentration (eqs 2 and 4).

(e) For sufficiently large values of the difference h2 - h1,
the total electric charge of counterions in the h1 < x < h2

layer surpasses the absolute value of the electric charge
of the particle, leading to charge reversal. Thus, for h2 <
x, positive ions behave as co-ions and negative ions
behave as counterions. This charge reversal phenomenon
due to ionic size has been analyzed in several works using
Monte Carlo simulations10-14 and in a recent theoretical
prediction based on the Poisson-Boltzmann equation.21

Figure 3 shows the dependence of the electric potential and
the ion concentration profiles on the bulk ion concentration. In

Figure 3a, analytical results (Appendix B) have been included
for comparison. These results correspond to the cases of a plane
interface and ci

max f ∞ (circles) and to a plane interface, ci
max

f ∞, and h1 ) h2 ) 0.5 nm (squares). Horizontal lines
indicating the bulk concentrations for the considered cases, have
been included in Figure 3b. The following important features
can be observed in this figure:

(a) As expected, the surface potential increases in absolute
value when the bulk concentration decreases. This effect
is due to the dependence of the thickness of the diffuse
double layer with the electrolyte concentration: the Debye
length defined as

increases when the ion concentrations are lowered.
(b) In the case where ci

∞ ) 300 mol/m3, the counterion
concentration in the h1 < x < h2 region becomes so high
that the electric charge of the particle is completely
shielded, leading to charge reversal.

(c) The analytical solution for a plane interface, ci
max f ∞,

and the same minimum approach distance values as in
the numerical simulation (circles), leads to results that
are very close to the numerical ones. However, small
deviations become apparent at the lowest concentrations
when the assumption of a plane interface becomes

Figure 2. (a) Dimensionless electric potential and (b) ion concentration
profiles for the indicated differences between the minimum approach
distances to the particle surface of co-ions and counterions. The
remaining parameters are given in Table 1.

Figure 3. (a) Dimensionless electric potential and (b) ion concentration
profiles for the indicated bulk ion concentrations. The symbols represent
analytical results (Appendix B) corresponding to a plane interface, ci

max

f ∞, and either the same h1 and h2 values as used in the numerical
simulation (circles) or h1 ) h2 ) 0.5 nm (squares). The remaining
parameters are given in Table 1.

κ
-1 ) � kTεe

e2NA ∑
i)1

m

zi
2ci

∞

(19)
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objectionable. Actually, analytical results have not been
included in the remaining figures because they are
indistinguishable from the numerical ones for the param-
eter values given in Table 1.

(d) The analytical solution for a plane interface, ci
max f ∞,

and h1 ) h2 ) 0.5 nm (squares), leads to results that are
only acceptable for low electrolyte concentrations. Under
these conditions, the electric potential close to the particle
is large (in absolute value) so that the co-ion concentra-
tion is very low. Therefore, the presence of an exclusion
region for co-ions has little bearing on the potential
profiles. On the contrary, the presence of this region
becomes all important at high electrolyte concentrations
and correspondingly low absolute potential values. The
high concentration of co-ions close to the particle lowers
the concentration of counterions and eliminates the
possibility of charge reversal.

The analytical solution given in Appendix B makes it possible
to derive the following condition for the occurrence of charge
reversal:

As can be seen, this expression predicts that an increase of
the bulk concentration facilitates charge reversal, in agreement
with Figure 3. Furthermore, according to eq 20, an increase of
the counterion valence should also facilitate this phenomenon.
This effect can be observed in Figure 4, where the dependence
of the electric potential and the ion concentration profiles on

the counterion and co-ion valences is shown. Note that, since
the counterion and co-ion concentrations no longer coincide
when their valences differ, only the concentration of counterions
was kept at the constant value c1

∞ ) 100 mol/m3.
As expected, the counterion valence has a strong bearing on

the total electric charge in the h1 < x < h2 region, leading to
important changes in the electric potential and ionic concentra-
tion profiles. Specifically, an increase in the counterion valence
increases the counterion charge in the h1 < x < h2 region, which
can lead to charge reversal even for the moderate counterion
concentration considered in Figure 4a. On the contrary, the co-
ion valence has a very small bearing on the electric potential
since there are no co-ions in the h1 < x < h2 region, so that the
small differences observed in Figure 4 are only due to
dependences on the co-ion valence in the solution h2 < x region.

Finally, Figure 5 shows the dependence of the electric
potential and the ion concentration profiles on the surface charge
of the particle. Note that, in this figure, cations and anions
exchange their roles as counterions and co-ions when the surface
charge changes sign. As can be seen, the surface potential for
an uncharged particle is always different from zero (positive in
the considered case), and there is always a range of surface
charge values for which charge reversal occurs. In the considered
case (smaller minimum approach distance for cations than
anions), this range extends from a zero surface charge to a
negative value approximately given by eq 20. Therefore,
according to the considered model, charge reversal would appear
to be a common phenomenon occurring for weakly charged
particles rather than an exotic one only to be expected for
extremely high surface charges.

Figure 4. (a) Dimensionless electric potential and (b) ion concentration
profiles for the indicated counterion and co-ion valences. The remaining
parameters are given in Table 1, except for the co-ion concentration
that varies while the counterion concentration c1

∞ ) 100 mol/m3 remains
constant.

h2 - h1 > 1
z1e�2kTεe

c1
∞NA

tan-1 � σs
2

2kTεec1
∞NA

(20)

Figure 5. (a) Dimensionless electric potential and (b) ion concentration
profiles for the indicated surface charge values. The remaining
parameters are given in Table 1.
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Conclusion

In this work we present a study of the equilibrium double
layer surrounding charged spherical particles, considering that
ions in the suspending medium have a finite size. We assume
that the minimum approach distance to the particle surface is
larger for co-ions than for counterions, while the distance of
minimum approach between ions has the same value for both
ion species. Numerical calculations made using the network
simulation method and including all the features of the
considered theoretical model are presented, together with
rigorous analytical results valid for a flat interface and point
ions in the bulk electrolyte solution.

We show that the double-layer parameters are very sensitive
to the difference between the distances of minimum approach
of co-ions and counterions to the particle surface: for negative
particles, the potential at all points always increases with this
parameter. Furthermore, and under appropriate circumstances,
this increase becomes so high that the potential attains positive
values leading to charge reversal. The occurrence of this
phenomenon is favored by a high electrolyte concentration, high
counterion valence, and low surface charge (in modulus). An
analytical expression relating these parameters to the threshold
value of the difference between the minimum approach distances
of co-ions and counterions to the particle surface is presented.

This study shows that purely “physical” mechanisms (dif-
ference between minimum approach distances) suffice to
produce charge reversal, so that these mechanisms may certainly
have an important contribution to the full interpretation of this
phenomenon,37 which can also include “chemical” mechanisms
such as specific ion-particle surface interactions. It shows,
furthermore, that the consideration of minimum approach
distance values that are independent of the surface charge is
inadequate, since it predicts the occurrence of charge reversal
for any set of the system parameters, provided that the absolute
value of the surface charge is sufficiently low. This conclusion
is to be expected, since the minimum approach distances should
be determined by ion-particle surface interactions, which
certainly depend on the surface charge of the particle. This
dependence and its influence on the equilibrium and nonequi-
librium dielectric and electrokinetic properties will be the subject
of future work.
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Appendix A

Expression2followsfromamoregeneral result: theNernst-Planck
equations relating the ionic fluxes, jbi, with the local electric field
and the ionic concentrations:

where µi, γi, and Di are the electrochemical potential and the
activity and diffusion coefficients of the ionic species i,
respectively. Taking into account the spherical symmetry of the
system and the condition that, in equilibrium, the ionic fluxes
must vanish, transforms eq A.1 into

Therefore, the electrochemical potentials must be constant
throughout the system so that

where Ai are constants. Finally, assuming that the activity
coefficients satisfy the Bikermann expression,

leads to

Using this result together with

transforms eq A.3 into eq 2.
On the other hand, from eq A.2 and in order to ensure

equilibrium between the different regions, the electrochemical
potential of each ionic species must be continuous at the
boundaries between the different regions:

Taking into account that the electric potential must be
continuous at these same boundaries, expression A.7 simplifies
to

where eq A.3 was used.
Finally, using eq A.8 and recalling that, in the solution region,

r > a + hm, the Ki constants coincide with the corresponding
bulk ion concentrations, leads to

jbi( rb) ) -Dici( rb)∇µi( rb) )

-Dici( rb)∇{ln[γi( rb)ci( rb)] +
zieφ( rb)

kT } (A.1)

-Dici(r)
d
dr{ln[γi(r)ci(r)] +

zieφ(r)

kT } ) 0 (A.2)

γi(r)ci(r) exp[zieφ(r)

kT ] ) Ai ⇒ ci(r) )

Ai

γi(r)
exp[-zieφ(r)

kT ] (A.3)

γi(r) ) γ(r) ) 1

1 - ∑
i)1

m ci(r)

ci
max

(A.4)

γ(r) ) 1 + ∑
i)1

m Ai

ci
max

exp[-zieφ(r)

kT ] (A.5)

Ki )
Ai

1 + ∑
i)1

m Ai

ci
max

(A.6)

µi((a + hi+1)
-) ) µi((a + hi+1)

+) ∀i ∈ (1, 2, ..., m - 1)
(A.7)

ln[γ((a + hi+1)
+)ci((a + hi+1)

+)

γ((a + hi+1)
-)ci((a + hi+1)

-)] ) ln(Ki
+

Ki
-) ) 0 ⇒

Ki
+ ) Ki

- (A.8)

Ki ) { 0 a < r < a + hi

ci
∞ a + hi < r

(A.9)
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Appendix B

The generalized Poisson eq 13 written in terms of the dimen-
sionless potential and considering just two ion species in the
electrolyte solution is

where

in view of the condition of electroneutrality far from the particle:

Analytical solutions only exist for point ions (ci
max f ∞) and a

flat interface (a f ∞). Under these conditions, the equation to
be solved reduces to

External Region h2 < x

The full eq B.2 that can be written as

must be solved. Integrating this expression from a generic point
to infinity (where dy/dx ) 0),

and taking into account that the sign of y is opposite the sign
of dy/dx, leads to

This equation can be integrated from x ) h2 to a generic
point. However, analytic results can only be obtained for the
following three cases:38

(a) For z1 ) -z2 ) z:

(b) For z1 ) -2z2 ) 2z:

(c) For 2z1 ) -z2 ) 2z:

where y2 ) y(x ) h2).

Intermediate Region h1 < x < h2

The equation to be solved reduces to

Integrating this expression from a generic point to x ) h2,

and using eq B.3 together with the continuity of the electric
displacement at x ) h2 condition, gives

Integrating this expression from a generic point to x ) h2, leads
to two possible solutions:

(a) For �2 ) (z1e- z2y2 - z1 + z2)/z2 > 0

(b) For �2 ) -(z1e- z2y2 - z1 + z2)/z2 > 0
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dx2
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∞e-z1y + z2c2
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∞
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Internal Region 0 < x < h1

The expression to be solved reduces to the Laplace equation:

that has the solution

The value of R is determined by eq B.5 together with the
condition of continuity of the electric displacement at x ) h1.

(a) For �2 ) (z1e-z2y2 - z1 + z2)/z2 > 0. The sign of the derivative
can be determined calculating the value of the coordinate x )
xm for which the derivative vanishes and changes sign while y
attains a maximum value ym:

which leads to

If xm is less than h1, the derivative does not change sign between
h1 and h2 so that

If xm is between h1 and h2, the derivative changes sign between
h1 and h2 so that

(b) For �2 ) -(z1e-z2y2 - z1 + z2)/z2 > 0. In the above
expressions, y1 ) y(h1).

Finally, the surface potential is determined by the continuity
of the electric potential at x ) h1:

while the surface charge is determined by the discontinuity of the
electric displacement at x ) 0:

Condition for Charge Reversal

Charge reversal occurs for a limited range of surface charge
values. The upper limit of this range is clearly zero: for positive
surface charges, the potential is positive for all distances. As
for the lower limit, it is determined by the condition that the
potential y2 vanishes since, for smaller surface charges, the
potential is negative for all distances.

For y2 ) 0, condition (a) in the intermediate region is always
satisfied so that

Therefore, using eq B.6,

which, combined with eq B.7, leads to the following condition
for charge reversal:

or

It should be noted that these last results are valid for all values
of the valences z1 and z2. This happens because the restrictions
z1 ) -z2, z1 ) -2z2, or 2z1 ) -z2 only apply to the existence
of an analytical expression for the potential in the external
region. On the contrary, the calculation of the potential in the
intermediate and internal regions only requires an analytical
expression for the derivative dy/dx, which is available for all
valence values (eq B.4).
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