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Abstract
We clarify the relation among canonical, metric and Belinfante’s energy–
momentum tensors for general tensor field theories. For any tensor field T , we
define a new tensor field T̃ in terms of which metric and Belinfante’s energy–
momentum tensors are readily computed. We show that the latter is the one
that arises naturally from Noether’s theorem for an arbitrary spacetime and it
coincides on-shell with the metric one.

PACS numbers: 03.50.De, 11.30.−j

Symmetry as wide or as narrow as you may define
its meaning, is one idea which man through the
ages has tried to comprehend and create order,
beauty, and perfection.

Hermann Weyl [1]

1. Introduction

For many decades a suitable definition for the energy–momentum tensor has been under
investigation. This is more than merely a technical point, not only because T ab should
provide meaningful physical conserved quantities but also because it is the source of Einstein’s
gravitational field equations.

In flat spacetime the canonical energy–momentum tensor arises from Noether’s theorem
by considering the conserved currents associated with translation invariance. However, only
for scalar fields does the energy–momentum tensor constructed in this way turn out to be
symmetric. Moreover, for Maxwell’s theory, it breaks gauge symmetry. Of course, it is
possible to correct it through Belinfante’s symmetrization procedure [2], although this is
usually presented as an ad hoc prescription (see for example [3, 4]).

On the other hand, a completely different approach, based on the diffeomorphism
invariance of the theory, leads to the metric energy–momentum tensor (see for example
[5]) which is, by definition, symmetric and gauge invariant.
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The aim of this paper is to clarify the relation among these tensors.
In section 2, we define the tensor T̃ , which turns out to be a very useful tool for the rest

of our work. In section 3, we analyse the relation among the different energy–momentum
tensors for general tensor field theories on an arbitrary spacetime of any dimension.

2. Lie derivatives and the tensor T̃

Let ξ be a vector field on a (pseudo) Riemannian manifold of dimension n and φt a local
one-parameter group of diffeomorphism generated by ξ. This diffeomorphism maps each
tensor field T at p of the type (r, s) into φt∗T |φ(p), the pullback of T .

As is well-known (see for instance [5, 6]), the Lie derivative LξT of a tensor field T with
respect to ξ is defined to be minus the derivative with respect to t of this family of tensor fields,
evaluated at t = 0, i.e.

LξT = lim
t→0

1

t
(T |p − φt∗T |p). (1)

Thus, it measures how much the tensor field T (xa) deviates from being formally invariant
under the infinitesimal transformation x ′a = xa − tξ a , with t � 1.

The coordinate components are

LξT
b1...bp

c1...cq
= ∂aT

b1...bp
c1...cq

ξ a − T ab2...bp
c1...cq

∂aξ
b1 − T b1a...bp

c1...cq
∂aξ

b2 − · · ·
+ T b1...bp

ac2...cq
∂c1ξ

a + T b1...bp
c1a...cq

∂c2ξ
a + · · · . (2)

Of course, for any torsion free connection, the partial derivatives can be replaced by covariant
ones.

The following definition will prove useful. For each tensor field T c1...cp
d1...dq

of type (p, q)

we define a tensor field T̃ c1...cp
d1...dq

a
b of type (p + 1, q + 1), such that

T̃ c1...cp
d1...dq

a
b := T ac2...cp

d1...dq
δ

c1
b + T c1a...cp

d1...dq
δ

c2
b + · · · − T c1...cp

bd2...dq
δa
d1

− T c1...cp
d1b...dq

δa
d2

− · · · . (3)

For a scalar field ϕ we define ϕ̃ = 0, since there is no index to be replaced. So, in terms of T̃ ,
(2) can be written as

LξT
c1...cp

d1...dq
= ∂aT

c1...cp
d1...dq

ξ a − T̃ c1...cp
d1...dq

a
b∂aξ

b

= ∇aT
b1...bp

c1...cq
ξ a − T̃ c1...cp

d1...dq

a
b∇aξ

b, (4)

where ∇a denotes the covariant derivative associated with the Levi-Civita connection. In index
free notation, our definition (3) reads

T̃ (∇ξ) := ∇ξT − LξT . (5)

Some simple examples are in order. For instance, for the tensor δa
b we have

δ̃a
b

c
d = δc

bδ
a
d − δa

d δ
c
b = 0, (6)

which expresses the fact that Lξδ
a
b = ∇ξδ

a
b = 0. Moreover, for the metric tensor we have

g̃ab
c
d = −gdbδ

c
a − gadδ

c
b, (7)

and so

Lξgab = ∇cgabξ
c − g̃ab

c
d∇cξ

d = gdb∇aξ
d + gad∇bξ

d = ∇aξb + ∇bξa. (8)

On the other hand, the well-known expression for the derivative of the volume element

Lξ

√
|g| = 1

2

√
|g|gabLξgab =

√
|g|∇aξ

a, (9)
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can also be obtained from

ε̃a1a2...an

b
c = −εca2...an

δb
a1

− εa1c...an
δb
a2

− · · · = −εa1a2...an
δb
c , (10)

where εa1a2...an
is the Levi-Civita alternating symbol.

Consequently, with this notation, other classical formulae of Ricci calculus simplify:

∇aT
c1...cp

d1...dq
= ∂aT

c1...cp
d1...dq

+ �b
caT̃

c1...cp
d1...dq

c
b, (11)

or

(∇a∇b − ∇b∇a)T
c1...cp

d1...dq
= Rd

cabT̃
c1...cp

d1...dq

c
d , (12)

where Rd
cab is the Riemann curvature tensor.

Note that

T̃ ⊗ S = T̃ ⊗ S + T ⊗ S̃, (13)

and

∇̃eT
c1...cp

d1...dq

a
b = ∇e

(
T̃ c1...cp

d1...dq

a
b

) − δa
e ∇bT

c1...cp
d1...dq

, (14)

because there is an additional covariant index to be replaced in the left-hand side.
When there is no danger of confusion, we shall suppress the unnecessary indices and

write, for instance, (14) as

∇̃eT
...

...
a

b = ∇eT̃
...

...
a
b − δa

e ∇bT
...

..., (15)

or, as in next section, even as

∇̃eT
a
b = ∇eT̃

a
b − δa

e ∇bT . (16)

We shall now consider the commutator [Lξ,∇] between the Lie derivative Lξ and the covariant
one ∇ associated with the Levi-Civita connection. It is a map which takes each smooth tensor
field of type (p, q) to a smooth (p, q + 1) tensor field. In the index notation, we denote the
tensor field resulting from the action of [Lξ,∇] on T b1...bp

c1...cq
by DξaT

b1...bp
c1...cq

. On scalar
fields it vanishes, for

[Lξ,∇]f = Lξ df − dLξf = 0 so Dξaf = 0. (17)

Moreover, its action on the metric tensor is very simple

Dξagbc = −∇aLξgbc = −∇a(∇bξc + ∇cξb). (18)

Since, for any two tensors T and S

[Lξ,∇](T ⊗ S) = [Lξ,∇]T ⊗ S + T ⊗ [Lξ,∇]S, (19)

we have

Dξa

(
T b1...

c1...S
d1...

e1...

) = Dξa

(
T b1...

c1...

)
Sd1...

e1... + T b1...
c1...Dξa

(
Sd1...

e1...

)
. (20)

We can derive the general formula for the action of [Lξ,∇] on an arbitrary tensor field from
the Leibniz rule (20) if we know its action on scalars and one-forms (or vectors). However,
we can achieve it in an easier way by using the symbol T̃ ...

..., for

DξaT
...

... = Lξ∇aT
...

... − ∇aLξT
...

...

= ξb∇b∇aT
...

... − ∇̃aT
...

...
b
c∇bξ

c − ∇a

(
ξb∇bT

...
... − T̃ ...

...
b
c∇bξ

c
)

= ξb(∇a∇b − ∇b∇a)T
...

... + T̃ ...
...

b
c∇a∇bξ

c

= (
Rc

bdaξ
d + ∇a∇bξ

c
)
T̃ ...

...
b
c, (21)
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where we have used (15) and (12). By defining

Cξ
c
ba := Rc

bdaξ
d + ∇a∇bξ

c, (22)

for any tensor field T ...
..., we can write

DξaT
...

... = Cξ
c
baT̃

...
...

b
c. (23)

Note that Cξ
c
ba is symmetric in the lower indices, for

Cξ
c
ba = Rc

bdaξ
d + ∇b∇aξ

c + (∇a∇b − ∇b∇a)ξ
c

= (
Rc

bda + Rc
dab

)
ξd + ∇b∇aξ

c

= Rc
adbξ

d + ∇b∇aξ
c = Cξ

c
ab, (24)

where we have used the symmetry properties of the Riemann tensor.
Now, for the metric tensor (23) reads

Dξagbc = −∇aLξgbc = −Cξcba − Cξbca. (25)

By index substitution, we also have

−∇bLξgca = −Cξacb − Cξcab, (26)

−∇cLξgab = −Cξbac − Cξabc. (27)

We add equations (25) and (26) and then subtract equation (27). Using the symmetry property
of Cξ

c
ba we find

Cξ
d
ab = 1

2gdc(∇aLξgbc + ∇bLξgac − ∇cLξgab)

= 1
2gdc(∇a(∇bξc + ∇cξb) + ∇b(∇aξc + ∇cξa) − ∇c(∇aξb + ∇bξa)). (28)

Of course, (28) can be readily obtained by adding to the definition (22) the null term 3∇[a∇bξc].
Therefore, we see that Cξ

c
ba are linear combinations of the covariant derivatives of the

Lie derivative of the metric tensor. Thus we can write (23) as

DξaT
...

... = 1
2 T̃ ...

...
bc(∇aLξgbc + ∇bLξgac − ∇cLξgab). (29)

Note that the action of [Lξ,∇] on any tensor field vanishes when ∇aLξgbc = ∇a(∇bξc +
∇cξb) = 0, and so Lie derivative and the covariant one commute in this case. In particular, it
occurs when ξb is a Killing vector, so

∇aLξT
...

... = Lξ∇aT
...

..., (30)

for any tensor field T ...
... when ξb is a Killing vector field.

3. Energy–momentum tensor and the tensor T̃

3.1. Diffeomophism invariance of the action

Let us consider a field theory where the Lagrangian L is a local function of a collection
of tensor fields ψ

b1...bp

(	) c1...cq
defined on a (pseudo)-Riemannian manifold, their first covariant

derivatives ∇aψ
b1...bp

(	) c1...cq
, and the metric tensor gab. Often we shall suppress all tensor indices

and denote the fields by ψ(	).
As usual, we obtain the equations of motion by requiring that the action

S =
∫




L (∇aψ(	), ψ(	), gab)
√

|g| dnx, (31)
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Ωt

Ω
tξ

Figure 1. The boundary contribution to equation (34).

be stationary under arbitrary variations of the fields δψ(	) in the interior of any compact region

. Thus, one obtains

∇a

(
∂L

∂∇aψ(	)

)
= ∂L

∂ψ(	)

. (32)

The action (31) must be independent of the coordinates we choose. Needless to say,
even in flat spacetime we are allowed to use curvilinear coordinates, so it must be invariant
under general coordinate transformations. By making a change of coordinates generated by
the vector field ξa , xa → xa − tξ a , the action can be written as

S =
∫


t

Lt

√
|gt | dx, (33)

where Lt = L (∇aφt∗(ψ(	)), φt∗(ψ(	)), φt∗(gab)), that is the same function L evaluated on
the Lie-dragged tensors fields, and |gt | = det(φt∗(gab)). Now, taking the derivative of (33)
with respect to t and evaluating it at t = 0 we get three terms:∫




d

dt
(Lt )t=0

√
|g| dnx +

∫



L
d

dt
(
√

|gt |)t=0 dx +
d

dt

(∫

t

L
√

|g| dnx

)
t=0

= 0. (34)

The first one, by definition, contains the Lie derivative of L ; the second one, the derivative
of the volume element (9), while the last one (see figure 1) is a boundary term which by using
the Gauss theorem can be rewritten as a volume integral, so we get

0 =
∫




[LξL + L ∇aξ
a − ∇a(L ξa)]

√
|g| dnx

=
∫




[LξL − ∇a(L )ξa]
√

|g| dnx. (35)

Therefore, taking into account that the vector field ξa is completely arbitrary, we have

LξL − ∇a(L )ξa = 0, (36)

which just reflects that the Lagrangian L must be a scalar function. Thus, the result is very
simple, the invariance of the action under general coordinate transformations requires L to
be an scalar function, and (36) must hold for any vector field ξa .

Now, taking into account that the Lagrangian L depends on the coordinates only through
the tensor fields ∇aψ(	), ψ(	) and gab, we can write (36) as

∂L

∂∇aψ(	)

Lξ∇aψ(	) +
∂L

∂ψ(	)

Lξψ(	) +
∂L

∂gab

Lξgab − ∇a(L )ξa = 0, (37)

which is a linear combination of the vector field ξb and its first derivatives ∇bξc.
Now, from (4) (see also (3) for our definition of ψ̃(	)

c
d ) we can write

Lξψ(	) = ∇bψ(	)ξb − ψ̃(	)
bc∇bξc, (38)
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and, consequently,

Lξ∇aψ(	) = ∇b∇aψ(	)ξb − ∇̃aψ(	)
bc∇bξc

= ∇b∇aψ(	)ξb − ∇aψ̃(	)
bc∇bξc + δb

a∇cψ(	)∇bξc

= ∇a∇bψ(	)ξb − ∇aψ̃(	)
bc∇bξc + ∇bψ(	)∇aξb + (∇b∇a − ∇a∇b)ψ(	)ξb, (39)

where in the second line we have used (15). Using the field equations (32), (38) and (39) we
can write the first two terms in (37) as

∂L

∂∇aψ(	)

Lξ∇aψ(	) +
∂L

∂ψ(	)

Lξψ(	) = ∇a

(
∂L

∂∇aψ(	)

∇bψ(	)ξb

)

−∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab

)
∇aξb +

∂L

∂∇aψ(	)

(∇b∇a − ∇a∇b)ψ(	)ξb. (40)

Now, we shall rewrite the last term. From (12) we can write

∂L

∂∇aψ(	)

(∇b∇a − ∇a∇b)ψ(	) = ∂L

∂∇aψ(	)

Rd b
c aψ̃(	)

c
d = Rb

adc

∂L

∂∇aψ(	)

ψ̃(	)
[cd], (41)

where, as usual ψ̃(	)
[cd] = 1

2

(
ψ̃(	)

cd − ψ̃(	)
dc

)
.

Now, defining

T̂ abc := ∂L

∂∇aψ(	)

ψ̃(	)
[cb] +

symmetric under b←−−→ c︷ ︸︸ ︷
∂L

∂∇bψ(	)

ψ̃(	)
[ac] +

∂L

∂∇cψ(	)

ψ̃(	)
[ab]

︸ ︷︷ ︸
antisymmetric under a←−−→ b

, (42)

we can rewrite (41) as

∂L

∂∇aψ(	)

(∇b∇a − ∇a∇b)ψ(	) = −Rb
adcT̂

acd , (43)

since there is no contribution from the last two terms in T̂ acd , due to the antisymmetry of the
Riemann tensor in the last two indices. But, using now the symmetry properties of Rb

adc and
T̂ abc, we get

∂L

∂∇aψ(	)

(∇b∇a − ∇a∇b)ψ(	) = −1

2

(
Rb

adcT̂
acd + Rb

cdaT̂
cad

)
= −1

2

(
Rb

acd + Rb
cda

)
T̂ cad = 1

2
Rb

dacT̂
cad

= 1

2
(∇a∇c − ∇c∇a)T̂

cab = ∇a∇cT̂
cab. (44)

So, we can write the last term in (40) as

∂L

∂∇aψ(	)

(∇b∇a − ∇a∇b)ψ(	)ξb = ∇a∇cT̂
cabξb

= ∇a(∇cT̂
cabξb) − ∇cT̂

cab∇aξb. (45)

Hence, the first two terms in (37) can be written as

∇a

(
∂L

∂∇aψ(	)

∇bψ(	)ξb + ∇cT̂
cabξb

)
− ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab + T̂ cab

)
∇aξb. (46)
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Therefore, the requirement that L be scalar leads, for any ξb, to

∇a

(
∂L

∂∇aψ(	)

∇bψ(	)ξb + ∇cT̂
cabξb − L ξa

)

+

[
2

∂L

∂gab

− ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab + T̂ cab

)
+ gabL

]
∇aξb = 0, (47)

where we have used (8) and the obvious symmetry of the tensor field ∂L
∂gab

.

3.2. Definitions of the energy–momentum tensors T ab
C , T ab

B and T ab
M

Now, we define the canonical energy–momentum tensor as

T ab
C := − ∂L

∂∇aψ(	)

∇bψ(	) + gabL (48)

and the metric one as

T ab
M := 2

∂L

∂gab

− ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab + T̂ cab

)
+ gabL

= 2
∂L

∂gab

− ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
(ab) +

∂L

∂∇aψ(	)

ψ̃(	)
[cb] +

∂L

∂∇bψ(	)

ψ̃(	)
[ca]

)
+ gabL . (49)

By definition, T ab
M is symmetric.

By using these definitions, for any vector field ξa , we can write (47) as

∇a

(−T ab
C ξb + ∇cT̂

cabξb

)
+ T ab

M ∇aξb = 0. (50)

Therefore, defining the Belinfante energy–momentum tensor

T ab
B := T ab

C − ∇cT̂
cab = − ∂L

∂∇aψ(	)

∇bψ(	)

−∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
[ba] +

∂L

∂∇aψ(	)

ψ̃(	)
[cb] +

∂L

∂∇bψ(	)

ψ̃(	)
[ca]

)
+ gabL , (51)

we finally get

∇a

(
T ab

B ξb

) − T ab
M ∇aξb = 0, (52)

or, alternatively,

∇a

((
T ab

B − T ab
M

)
ξb

)
+ ∇a

(
T ab

M

)
ξb = 0. (53)

Moreover, taking into account the symmetry of T ab
M , we can also write (52) as

∇a

(
T ab

B ξb

) − 1
2T ab

MLξgab = 0. (54)

Equation (52), a rewritten form of (36), which holds on shell for any vector field ξa , has
several important consequences. In fact, we shall use it in five different ways.

3.3. Noether currents

Let us restrict attention to the case where ξa is a Killing vector field, i.e. a generator of an
infinitesimal isometry, so Lξgab = ∇aξb + ∇bξa = 0. From (54), we directly obtain the
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Noether conserved current J a
ξ associated with this symmetry

∇aJ a
ξ = ∇a

(
T ab

B ξb

) = 0 (55)

for, in this case, the last term in (54) clearly vanishes. So, we can think of T ab
B as a linear

function from covector fields to vector fields such that

T B(Killing covector) = conserved current. (56)

3.4. T ab
B conservation

At any point of the manifold we can choose Riemannian normal coordinates xα (i.e., a local
inertial coordinate system). Moreover, we can choose for ξb any set of n linear independent
covectors with constant components in this coordinate system. For instance, the dual basis
covectors dxα

b . So, in this local coordinate system, (54) reads

∂α

(
T

αβ

B

)
ξβ + T

αβ

B ∂αξβ − T
αβ

M ∂αξβ = ∂α

(
T

αβ

B

)
ξβ = 0, (57)

because of the vanishing of Christoffel symbols and partial derivatives of ξβ . Hence, we get
∇αT

αβ

B = ∂αT
αβ

B = 0. But this is a tensor relation, then

∇aT
ab
B = 0. (58)

3.5. T ab
M conservation

Now, we integrate (53) over any compact region 
, taking arbitrary vector fields ξa vanishing
everywhere except in its interior. The first contribution may be transformed into an integral
over the boundary which vanishes as ξa is zero there. Since the second term must therefore
be zero for arbitrary ξa , it follows that

∇aT
ab
M = 0. (59)

3.6. On shell equality of the tensors T ab
B and T ab

M

Now, coming back to (53), we see that the diffeomorphism invariance of the action yields not
only ∇aT

ab
B = ∇aT

ab
M = 0, but also

∇a

((
T ab

B − T ab
M

)
ξb

) = (
T ab

B − T ab
M

)∇aξb = 0, (60)

for any covector field ξb. Therefore, since ∇aξb is arbitrary, we conclude that both tensors
coincide

T ab
B = T ab

M . (61)

Therefore, we have shown that

∇aT
ab
B = 0, ∇aT

ab
M = 0, and T ab

B = T ab
M , (62)

follow as a consequence of the diffeomophism invariance of the action.

3.7. On the canonical energy–momentum tensor T ab
C

For any covector ξb, due to the asymmetry of T̂ abc, it holds

∇a(∇cT̂
cabξb + T̂ cab∇cξb) = ∇a∇c(T̂

cabξb)

= 1
2 (∇a∇c − ∇c∇a)(T̂

cabξb)

= 1
2

(
Rc

dacT̂
dabξb + Ra

dacT̂
cdbξb

) = RacT̂
cabξb = 0, (63)
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because of the symmetry of the Ricci tensor Rab. Thus, we can also write (50) as

∇a

(
T ab

C ξb + T̂ cab∇cξb

) − T ab
M ∇aξb = 0. (64)

The last term in (64) vanishes for any Killing vector field owing to the symmetry of T ab
M . So,

besides T ab
B ξb, we get another conserved current

T ab
C ξb + T̂ cab∇cξb, (65)

which is, in general, linear in the Killing vector field ξa and its first covariant derivatives. Of
course, this current differs from T ab

B ξb by the divergentless vector ∇c(T̂
cabξb).

For scalar fields ψ(	) the last term in this current is absent, since ψ̃(	) vanishes in this case,
and both currents coincide.

On the other hand, for general tensor fields, this vanishing also occurs if there exists a
parallel Killing vector, i.e. ∇aξb = 0. So,

∇a

(
T ab

C ξb

) = ∇aT
ab
C ξb = 0, for any parallel ξb, (66)

thus, the vector ∇aT
ab
C is orthogonal to ξb. Of course, this occurs in flat spacetime, where we

can always find n linear independent parallel vectors, for example the Cartesian coordinates
vectors. Then, in that case, we have ∇aT

ab
C = 0. But, as we are going to see, this is an

exception. ∇aT
ab
C �= 0 for curved spacetime.

Note that the conservation of the current (65) means that

∇a

(
∂L

∂∇aψ(	)

Lξψ(	) − L ξa

)
= 0, (67)

which holds for any Killing vector ξa and fields satisfying the field equations (32). This result
can also be readily obtained from (36) using the fact, shown in the preceding section, that the
Lie derivative with respect to a Killing vector field and the covariant one commute.

Some comments are in order. We want to point out that T ab
B does not depend on Killing

vectors. T ab
B depends on the fields, their derivatives and the metric, and ∇aT

ab
B = 0 is always

true, even when the metric has no isometry at all. But, of course, a tensor by itself does
not give rise to any conserved quantity1 so, in order to construct conserved quantities, it is
necessary to have a Killing vector at hand to construct the current J a

ξ = T ab
C ξb.

The T ab
B as defined in (51) is the one that arises naturally from Noether’s theorem, since

(55) shows that if spacetime admits a Killing vector we obtain from T ab
B a conserved current

J a
ξ . Thus, for instance, the n(n + 1)/2 currents in Minkowski spacetime are obtained from

T ab
B by contracting it with the corresponding Killing vectors.

The canonical energy–momentum tensor T ab
C is not symmetric except for scalar fields. It

is not even gauge invariant for gauge theories. Of course, in flat spacetime, it holds ∇aT
ab
C = 0.

But, as we mentioned above, it is worthwhile noticing that this is not even true for curved
spacetime. Since, taking into account that the Lagrangian L depends on the coordinates only
through the tensor fields ∇aψ(	), ψ(	) and gab, we can compute

∇b(L ) = ∂L

∂∇aψ(	)

∇b∇aψ(	) +
∂L

∂ψ(	)

∇bψ(	)

= ∂L

∂∇aψ(	)

∇a∇bψ(	) + ∇a

(
∂L

∂∇aψ(	)

)
∇bψ(	) − ∂L

∂∇aψ(	)

(∇a∇b − ∇b∇a)ψ(	)

= ∇a

(
∂L

∂∇aψ(	)

∇bψ(	)

)
− ∂L

∂∇aψ(	)

Rd
cabψ̃(	)

c
d , (68)

1 For ∇aT
ab = ∂a(

√−gT ab)√−g
+ T ac�b

ca.
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where we have used the field equations (32), and (12). So, we get

∇aT
ab
C = ∂L

∂∇aψ(	)

Rb
adcψ̃(	)

cd . (69)

Thus, except for scalar fields, T ab
C is not ‘conserved’ when spacetime is curved.

Moreover, even in flat spacetime, for a Killing field ξb it holds ∇a

(
T ab

C ξb

) = T
[ab]
C ∇aξb, so

it vanishes only for parallel ξb for general tensor fields, since T ab
C is not symmetric. Then we get

from T ab
C only n conserved currents associated with the parallel Killing vectors (translations).

A similar result holds for curved spacetime, even though ∇aT
ab
C �= 0. In fact, if there exists a

parallel Killing vector (∇aξ
b = 0), (66) shows that ∇a

(
T ab

C ξb

) = 0.
Therefore, the canonical energy–momentum tensor T ab

C is rather an exception that occurs
only when spacetime admits parallel Killing vectors. Our computations clearly show that,
in general, it is T ab

B and not T ab
C that arises naturally from Noether’s theorem, so there is no

reason to expect much from T ab
C . So, we find no reason to start from T ab

C and then symmetrize
it in order to get the right tensor T ab

B (see for example [3, 4]). After all, we can always find a
nonsense correction to a wrong result to get the right one.

3.8. Off-shell relation between the tensors T ab
B and T ab

M

Notice that the on-shell equality T ab
B = T ab

M means that for any scalar Lagrangian depending
on the tensor fields ∇aψ(	), ψ(	) and gab, for fields satisfying the field equations, it must hold

2
∂L

∂gab

= ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab

)
− ∂L

∂∇aψ(	)

∇bψ(	). (70)

It is worthwhile noticing that (70) is a consequence of L̃ = 0, since for any scalar L we have

L̃ ab = 0 = ∂L

∂∇cψ(	)

∇̃cψ(	)
ab +

∂L

∂ψ(	)

ψ̃(	)
ab +

∂L

∂gcd

g̃cd
ab, (71)

taking into account that g̃cd
ab = −δa

c δ
b
d − δa

d δ
b
c , we get

2
∂L

∂gab

= ∂L

∂∇cψ(	)

∇̃cψ(	)
ab +

∂L

∂ψ(	)

ψ̃(	)
ab. (72)

But, from (15), we have

∇̃cψ(	)
ab = ∇cψ̃(	)

ab − δa
c ∇bψ(	). (73)

Thus

2
∂L

∂gab

= ∂L

∂∇cψ(	)

∇cψ̃(	)
ab +

∂L

∂ψ(	)

ψ̃(	)
ab − ∂L

∂∇aψ(	)

∇bψ(	). (74)

Now, for fields satisfying the field equations (32), we get (70).
For instance, for a scalar field φ the first term in (70) vanishes, since φ̃ = 0, and so we get

2
∂L

∂gab

= − ∂L

∂∂aφ
∂bφ. (75)

Moreover, as the right-hand side of (70) is a symmetric tensor field, so is the left-hand
side. Hence, for fields satisfying the field equation, we have the nontrivial on-shell relations

∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ba

)
− ∂L

∂∇bψ(	)

∇aψ(	) = ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab

)
− ∂L

∂∇aψ(	)

∇bψ(	). (76)
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In order to obtain the off-shell relation between the tensors T ab
B and T ab

M , we subtract their
definitions (49) and (51)

T ab
M − T ab

B = 2
∂L

∂gab

+
∂L

∂∇aψ(	)

∇bψ(	) − ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab

)

= −
(

∇c

(
∂L

∂∇cψ(	)

)
− ∂L

∂ψ(	)

)
ψ̃(	)

ab, (77)

where, in the second step, we have used equation (74), so the equality holds off-shell only for
scalar fields.

On the other hand, while T ab
M is symmetric, by definition, everywhere this is not so for

T ab
B , for taking the antisymmetric part of (77) we get

T
[ab]
B =

(
∇c

(
∂L

∂∇cψ(	)

)
− ∂L

∂ψ(	)

)
ψ̃(	)

[ab], (78)

and, again except for scalar fields, T ab
B is not in general symmetric off-shell.

3.9. An example: the electromagnetic field

For the sake of clarity, we write down here the most important results of this section for
electromagnetic fields. In this case, the Lagrangian is a local function L = L (Fab, gab) of
Fab (the exterior derivative, ∂aAb − ∂bAa , of a one-form field Ab) and the metric tensor gab.
The field equations are

∇b

(
∂L

∂∇bAa

)
= 0, (79)

since ∂L
∂Aa

= 0.

Taking into account that Ãd
ab = −δa

dA
b and the obvious antisymmetry of the (2, 0) tensor

field ∂L
∂∇aAd

= 2 ∂L
∂Fad

, equation (74) reads

2
∂L

∂gab

= − ∂L

∂∇cAa

∇cA
b − ∂L

∂∇aAd

∇bAd = − ∂L

∂∇aAc

F b
c. (80)

which is valid everywhere. As aforementioned, this last result is a consequence of

L̃ ab = 0 = ∂L

∂Fcd

F̃cd
ab +

∂L

∂gcd

g̃cd
ab = −2

∂L

∂Fac

F b
c − 2

∂L

∂gab

. (81)

From (42) we get

T̂ cab = ∂L

∂∇cAd

Ãd
[ba] +

∂L

∂∇aAd

Ãd
[cb] +

∂L

∂∇bAd

Ãd
[ca] = ∂L

∂∇cAa

Ab, (82)

so, the second term in

T ab
M = 2

∂L

∂gab

− ∇c

(
∂L

∂∇cAd

Ãd
ab + T̂ cab

)
+ gabL , (83)

vanishes, and therefore we have

T ab
M = 2

∂L

∂gab

+ gabL = − ∂L

∂∇aAc

F b
c + gabL . (84)

On the other hand, from (51) and (82) we get

T ab
B = − ∂L

∂∇aAc

∇bAc − ∇c

(
∂L

∂∇cAa

Ab

)
+ gabL

= − ∂L

∂∇aAc

F b
c + gabL − ∇c

(
∂L

∂∇cAa

)
Ab, (85)
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on shell, the last term vanishes, and so T ab
M and T ab

B coincide. Moreover it shows that the
symmetry of T ab

B only holds on shell.

3.10. The standard definition of T ab
M

Usually the metric energy–momentum tensor is defined through the variation of the action
(31) (see for instance [5])

δS := 1

2

∫



T ab
M δgab

√
|g| dnx, (86)

where δgab are arbitrary variations of the metric vanishing everywhere except in the interior
of 
. We can easily show that it coincides with the one defined in (49) for, under the change
gab → gab + δgab,

δL = ∂L

∂∇aψ(	)

δ∇aψ(	) +
∂L

∂gab

δgab. (87)

But, according to (11),

δ∇aψ(	) = δ
(
∂aψ(	) + �b

caψ̃(	)
c
b

) = δ�b
caψ̃(	)

c
b. (88)

Thus, by using the well-known relation

δ�b
ca = 1

2gbd(∇aδgdc + ∇cδgad − ∇dδgac), (89)

we can write the first term in (87) as
∂L

∂∇aψ(	)

δ∇aψ(	) = 1

2

∂L

∂∇aψ(	)

ψ̃(	)
cb (∇aδgbc + ∇cδgab − ∇bδgac)

= 1

2

(
∂L

∂∇aψ(	)

ψ̃(	)
bc + T̂ abc

)
∇aδgbc. (90)

Therefore, under the change gab → gab + δgab

δ(L
√

|g|) = 1

2

(
2

∂L

∂gab

− ∇c

(
∂L

∂∇cψ(	)

ψ̃(	)
ab + T̂ cab

)
+ gabL

)
δgab

√
|g|

+
1

2
∇c

((
∂L

∂∇cψ(	)

ψ̃(	)
ab + T̂ cab

)
δgab

)√
|g|, (91)

where we have used the well-known result

δ
√

|g| = 1
2

√
|g|gabδgab. (92)

Finally, by integrating (91) over any compact region 
, taking arbitrary symmetric tensor
fields δgab vanishing everywhere except in its interior, we show that definitions (49) and (86)
coincide.

Equation (90) shows that the term between brackets in (49) arises from the Lagrangian
dependence on the affine connection. In particular, it is absent for scalar or electromagnetic
fields. Thus, in these cases, we have

T ab
M := 2

∂L

∂gab

+ gabL . (93)

In these cases, the ‘tilde calculus’ also turns out to be unnecessary to write down T ab
M . In fact,

there is a simpler definition for the energy–momentum tensor for Maxwell’s theory [7]

T ab
E.M. := −2

∂L
∂Fac

F b
c + gabL , (94)

which turns out to be symmetric and gauge-invariant for any field theory where the Lagrangian
L is a local function of Fab, the exterior derivative ∂aAb − ∂bAa of a one-form field Ab.
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4. Conclusions

Summarizing, we have shown that the Belinfante energy–momentum is the one that arises
naturally from Noether’s theorem when the metric has isometries, and all the currents are
written as J a

ξ = T ab
B ξb. Moreover, it coincides on-shell with T ab

M for general tensor field
theories.

On the other hand, the utility of our definition of T̃ is apparent if we take into account
that most of the equations of this work contain at least one tilde.
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