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Abstract

We study a non-local version of the sine-Gordon model connected to a many-body syste
backward and umklapp scattering processes. Using renormalization group methods we de
flow equations for the couplings and show how non-locality affects the gap in the spectr
charge-density excitations. We compare our results with previous predictions obtained throu
self-consistent harmonic approximation.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In general, Quantum Field Theories have been built in the context of local models.
ever, there exist physical situations that lead to non-local interactions in a straightfo
way. Let us mention, for instance, Wheeler and Feynman’s description of charged
cles [1], string theories with non-local vertices [2], and non-local kinetic terms that ap
when bosonizing fermions in 2+1 dimensions [3,4]. As we shall see, several recently c
sidered non-local field theories are related to the study of electronic systems in one
dimension (1D) [5,6]. Indeed, in recent years the physics of 1D systems of strongly
lated particles has become a very interesting subject since one can take advantag
simplicity of the models at hand and, at the same time, expect to make contact with
iments. For instance, the recently discovered carbon nanotubes are perfect exper
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realizations of 1D conductors [7]. On the other hand, as the dimensionality of a s
decreases, charge screening effects become less important and the long-range in
between electrons is expected to play a central role in determining the properties
system. In fact, from a theoretical point of view the effects of long-range interactions
been recently discussed in connection to several problems such as the Fermi-edge s
ity [8], the insulator-metal transition [9], the role of the lattice through umklapp scatte
and size dependent effects [10], etc. In the specific context of carbon nanotubes,
energy theory including Coulomb interactions has been also recently derived and an
[11]. Non-local fermionic models have been also used in the study of fluctuation effe
low-dimensional Spin–Peierls systems [12].

As shown in [13], starting from a non-local and non-covariant version of the Thi
model [14], in which the fermionic densities and currents are coupled through bi
distance-dependent potentials, one can make direct contact with the “g-ology” model
[15] currently used to describe different scattering processes characterized by co
functionsg1, g2, g3 and g4. When one bosonizes this theory by either operationa
functional methods, due to the contributions ofg1 (backscattering) [16] andg3 (umklapp)
[17] one finds an even more drastic departure from the local case. Indeed, instead
well-known integrable sine-Gordon model (SG) one gets a non-local extension of it, w
as far as we know, is not exactly solvable. Recently, in Ref. [13], the physical content
model was explored by using the self-consistent harmonic approximation (SCHA) [1
it is well known the SCHA is a non-controlled approximation, i.e., there is no perturb
parameter involved. It is then desirable to have an alternative analysis of this pro
This is the main motivation of the present work. We will apply the renormalization g
(RG) technique [19], usually employed in local cases, to the non-local sine-Gordon
(NLSG) mentioned above. For simplicity we shall assume that non-locality plays a
only in umklapp interactions (g3) whereas all other potentials are local, i.e., proportio
to delta functions. In Section 2 we briefly show how the NLSG action is obtained from
non-local Thirring model. In Section 3 we derive the RG equations and compute th
in the charge-density spectrum. This allows us to determine the effect of non-contg3
couplings. Finally, in Section 4, we discuss our results.

2. The model

Let us sketch the derivation of the NLSG action. We start from the fermionic(1 + 1)-
dimensional Quantum Field Theory with Euclidean action given by

(2.1)S = S0 + Sf s + Sbs + Sus,
where

(2.2)S0 =
∫
d2x �Ψ i/∂Ψ

is the unperturbed action associated to a linearized free dispersion relation. The co
tions of the different scattering processes can be written as∫
(2.3)Sf s = −g
2

2
d2x d2y (�ΨγµΨ )(x)V(µ)(x, y)(�ΨγµΨ )(y)
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and

(2.4)Sbs + Sus = −g
′2

2

∫
d2x d2y (�ΨΓµΨ )(x)U(µ)(x, y)(�ΨΓµΨ )(y),

where theγ ′
µs are the usual two-dimensional Dirac matrices andΓ0 = 1, Γ1 = γ5. The

coupling potentialsV(µ) andU(µ) are assumed to depend on the distance|x − y| and can
be expressed in terms of “g-ology” parameters as

(2.5)V(0)(x, y)= 1

g2 (g2 + g4)(x, y),

(2.6)V(1)(x, y)= 1

g2 (g2 − g4)(x, y),

(2.7)U(0)(x, y)= 1

g′2 (g3 + g1)(x, y),

(2.8)U(1)(x, y)= 1

g′2 (g3 − g1)(x, y).

In the above equationsg andg′ are just numerical constants that could be set equ
one. We keep them to facilitate comparison of our results with those corresponding
usual Thirring model. Indeed, this case is obtained by choosingg′ = 0 andV(0)(x, y) =
V(1)(x, y)= δ2(x − y). On the other hand, the non-covariant limitg′ = 0, V(1)(x, y)= 0
gives one version(g2 = g4) of the TL model [20].

The terms in the action containingg2 andg4 represent forward scattering events,
which the associated momentum transfer is small. In theg2 processes the two branch
(left- and right-moving particles) are coupled, whereas in theg4 processes all fou
participating electrons belong to the same branch. On the other hand,g1 andg3 are related
to scattering diagrams with larger momentum transfers of the order of 2kF (bs) and 4kF
(us) respectively (this last contribution is important only if the band is half-filled).
simplicity, throughout this paper we will consider spinless electrons. The extension
results to the spin-1/2 case with spin-flipping interactions, though not trivial, could be d
by following the lines of Ref. [21].

At this point we consider the partition functionZ expressed as a functional integral ov
fermionic variables. The implementation of a generalized Hubbard–Stratonovich id
[6] allows to writeZ in terms of a fermionic determinant. Although this determinan
highly non-trivial, one can combine a chiral change in the fermionic path-integral me
with a formal expansion ing′ in order to obtain a bosonic representation (see Ref. [13
details). One thus establishes an equivalence between the original fermionic action
following bosonic action depending on five scalarsΦ, η, C0, C1 andϕ:

Sbos=
∫

d2p

(2π)2

[
Φ(p)Φ(−p)A(p)+ η(p)η(−p)B(p)+Φ(p)η(−p)C(p)

+ ϕ(p)ϕ(−p)p
2

2

]
1
∫

+
2

d2x d2y Cµ(x)U
−1
(µ)(x, y)Cµ(y)
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(2.9)+ g′Λc
π

∫
d2x

[
C(0)(x)f0(x)+ iC(1)(x)f1(x)

]
,

where

(2.10)A(p)= 1

2

[
p2

0V̂
−1
(1) (p)+ p2

1

(
V̂−1
(0) (p)+

g2

π

)]
,

(2.11)B(p)= 1

2

[
p2

0V̂
−1
(0) (p)+ p2

1

(
V̂−1
(1) (p)−

g2

π

)]
,

(2.12)C(p)= p0p1

(
V̂−1
(0) (p)− V̂ −1

(1) (p)+
g2

π

)
,

and

(2.13)f0(x)= cos
((√

4π ϕ − 2igΦ
)
(x)
)
,

(2.14)f1(x)= sin
((√

4π ϕ − 2igΦ
)
(x)
)
.

Since the integrals inC0 andC1 are quadratic these fields are easily integrated out
one gets

(2.15)Z =N
∫

DΦDηDϕe−Seff[Φ,η,ϕ]

with

(2.16)Seff[Φ,η,ϕ] = S0 + Sint,

where

S0 =
∫

d2p

(2π)2

[
Φ(p)Φ(−p)A(p)+ η(p)η(−p)B(p)+Φ(p)η(−p)C(p)

(2.17)+ ϕ(p)ϕ(−p)p
2

2

]
,

Sint = − (Λc)
2

2π2

∫
d2x d2y g1(x, y)cos

[√
4π
(
ϕ(x)− ϕ(y))− 2ig

(
Φ(x)−Φ(y))]

(2.18)

− (Λc)2

2π2

∫
d2x d2y g3(x, y)cos

[√
4π
(
ϕ(x)+ ϕ(y))− 2ig

(
Φ(x)+Φ(y))].

It is now convenient to diagonalize the quadratic part of the effective actio
introducing the fieldsζ , χ andφ:

(2.19)Φ = iζ

g̃
+ 2ig̃Bp2

∆+ 2Bg̃2p2
φ,

(2.20)η= −iC
2Bg̃

ζ − ig̃Cp2

∆+ 2Bg̃2p2φ + 1

g̃
χ,
(2.21)ϕ = −ζ + ∆

∆+ 2Bg̃2p2
φ,
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where we have defined̃g2 = g2/π and∆(p)= C(p)2 − 4A(p)B(p). We then obtain

S0 = 1

2

∫
d2p

(2π)2

[
ζ(p)

(
p2 + ∆

2Bg̃2

)
ζ(−p)+ χ(p)2B

g̃2 χ(−p)

(2.22)+ φ(p) p2∆

∆+ 2Bg̃2p2φ(−p)
]
,

Sint = − (Λc)
2

2π2

∫
d2x d2y g1(x, y)cos

√
4π
[
φ(x)− φ(y)]

(2.23)− (Λc)2

2π2

∫
d2x d2y g3(x, y)cos

√
4π
[
φ(x)+ φ(y)].

One can see that theζ andχ fields become completely decoupled fromφ. Moreover, it
becomes apparent that theφ-dependent piece of the actionSint is the only one containin
potentially relevant contributions (i.e., gapped modes).

3. RG treatment of the non-local umklapp coupling

In this section we shall focus our attention on the non-local action derived abov
simplicity, from now on we will consider the case in whichg2(p) andg4(p) are constants
(local forward scattering) andg1 = 0, g3 �= 0, i.e., a pure non-local umklapp interactio
Thus, we start from the action

S[φ] =
∫

d2p

(2π)2
φ(p)

F (p)

2
φ(−p)

(3.1)− (Λc)2

2π2

∫
d2x d2y g3(x, y)cos

√
4π
[
φ(x)+ φ(y)]

with

(3.2)F(p)= 1

Kv

(
p2

0 + v2p2
1

)
,

(3.3)K =
√

1+ g4/π − g2/π

1+ g4/π + g2/π
,

(3.4)v =
√(

1+ g4

π
+ g2

π

)(
1+ g4

π
− g2

π

)
,

where we have now expressed all formulae in terms ofg coupling functions. In the loca
case (g3 = δ2(x − y)) the action (3.1) corresponds to the well-known sine-Gordon mo
which is an integrable, exactly solvable field theory. In particular, a RG analysis s
that the “stiffness constant”,K has to be lower than 0.5 in order to have a relevant cosin
interaction, i.e., to have a gap in the spectrum. Recently, by reinterpreting Bethe

results, Zamolodchikov obtained the exact expression for this gap [22]. Unfortunately, as
far as we know, the present non local version of the theory is not exactly soluble and one
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is then forced to consider an approximation. In Ref. [13] a SCHA was employed in
to estimate the energy gap. But this is a non-controlled, non-perturbative approxim
Besides this general disadvantage, the implementation of the SCHA technique le
set of coupled algebraic equations that could be numerically solved only for very
non-locality. It is then natural to try another method to attack the problem and even
improve the approximation. Let us consider the Wilsonian approach to the RG (se
instance, [19]). First of all we restrict our analysis to a non-local interaction of the for

(3.5)g3(x − y)= g3(x1 − y1)δ(x0 − y0),

with

(3.6)g3(x1)= λ0δ(x1)− ε0

Λ2∂
2
1δ(x1),

where∂2
1δ

2(x) is the second derivative of the delta function with respect tox1. At this point
it is worth mentioning that RG calculations involving fermionic non-local interact
already exist in the literature. For instance, the authors of Ref. [12] used a Jordan–W
fermion representation for the 1D Heisenberg–Ising model which includes not o
non-local fermion-fermion interaction but also a linear fermion-lattice coupling. Du
the curvature of the band, the non-trivial fermion-lattice coupling and the presen
both forward and umklapp scattering, comparison of their RG equations with ours
straightforward. Let us point out, however, that in [12] fermions corresponding to ne
neighbor lattice sites interact through a potential of the formg(q) = C1 × cosq , i.e.,
a unique constantC1 is associated tog(q). As shown in the above equation (3.6), in t
present work we are interested in a coupling which depends at least on two consλ
andε. In fact, the derivation of RG equations for these coupling constants will be our
task.

In condensed matter problems one is usually interested in the physics at long dis
compared to a lattice spacing of the order ofΛ−1. Since, in momentum space, th
corresponds to smallk1 = k, it is natural to consider correlations between fields w
momenta 0< k <Λ/s, with s very large. These are the so-called “slow modes”φ<. On the
other hand, the “fast modes”φ> are those carrying momenta that satisfyΛ/s � k �Λ. In
the present approach to RG these fast modes are integrated in the path integral fram
giving rise to an effective theory depending only on slow modes. From this actio
turn, one can read the flow equations for the couplings. Indeed, writing the initial a
asS0 − Sint, to first order, after a suitable rescaling of coordinates and momenta
redefinition of the fields (see Appendix A for details) we obtain the following relation
between the original and RG transformed actions:

Sint = (Λc)2

2π2

∫
d2x d2y

([
λ0 + λ0 (2− 4K)t − 2Kε0t

]
δ2(x − y)

− ε − 4Kεt

Λ2
∂2

1δ
2(x − y)

)
cos

√
4π
(
φ(x)+ φ(y))

= (Λc)2

2

∫
d2x d2y

(
λδ2(x − y)− ε

2
∂2

1δ
2(x − y)

)
cos

√
4π
(
φ(x)+ φ(y))
2π Λ

(3.7)= S′
int.
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As usual, imposing the invariance of the action under RG, we get the flow equatio
the couplingsλ andε:

(3.8)
dλ

dt
= (2− 4K)λ− 2Kε,

(3.9)
dε

dt
= −4Kε,

where lns = t , with the initial conditionsλ(0) = λ0 andε(0) = ε0. The solution of this
system is elementary, yielding:

(3.10)λ(t)= (λ0 −Kε0)exp
[
(2− 4K)t

]+Kε0 exp[−4Kt],

(3.11)ε(t)= ε0 exp[−4Kt].
From the last equation one clearly sees that the non-local piece of the interac
irrelevant, as expected. Concerning the local interaction one sees that it is relev
K < 1/2, i.e., non-locality does not modify this well-known condition already found
the local SG model. Therefore, forK < 1/2, λ will grow with increasingt and there will
be a gap in the CD spectrum which can be estimated by determining the valuet̃ for which
λ = 1. From now on we shall restrict our analysis to the caseK < 1/2. The gap is then
given by1E =Λµe−t̃ , whereµ = c/(π

√
2)≈ 0.198. It is also convenient to define th

dimensionless gapm = 1E/Λ. From Eq. (3.10) one can thus derive an equation fom
which gives the behavior of the energy gap as function of the forward scattering pote
(K) and the non-local contribution of the umklapp scattering (ε0). Before analyzing this
non-trivial equation it seems reasonable to check if it predicts sensible results for th
case. To this end we setε0 = 0 andλ= 1 in (3.10), obtaining:

(3.12)m0 = µλ
1

2−4K
0 .

This result can be compared with the exact solution obtained by Zamolodchikov
and with the approximated result given by the SCHA method [13]. The correspo
expressions for the gap are respectively given by:

(3.13)mZ = 2
−2K
1−2K√
π
µ

1
1−2K

Γ
(

K
1−2K

)
Γ
( 1

2−4K

)(π Γ (1− 2K)

Γ (2K)

) 1
2−4K

λ
1

2−4K
0

and

(3.14)mscha= 2√
K
(4πK)

1
2−4K µ

1
1−2K λ

1
2−4K
0 .

In order to comparem0 andmschawith mZ in an efficient and easy to visualize way, w
have computed the relative error1m/mZ as function ofK for both approximations. Th
results are depicted in Fig. 1 where one sees that our RG computation gives value
gap closer to the exact values for a wide range of the stiffness constantK. Interestingly,
the SCHA result works well when one approaches the end points of the interval.
Going back to the caseε0 �= 0, by combining Eqs. (3.8) and (3.9) one readily gets a
phase diagram in theε–λ plane (see Fig. 2). There is a critical line given byλ = Kε. If
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Fig. 1. Relative error1m/m as function of the stiffness constant, for the local case. The dashed line corres
to the SCHA whereas the solid line shows the RG result.

Fig. 2. Phase diagram in theε–λ plane, forK = 0.25. The dashed line is the critical lineλ=Kε.

the initial parameters are tuned to lie on this line, the system will flow to the Tomon
Luttinger fixed point, at the origin. In this case, of course, the system remains gaple
the other hand, for initial conditions outside the critical line, the system flows to s
coupling, giving rise to a gapm, as mentioned above. For simplicity let us consider
caseλ > ε and define the variablex =m/m0. The gap equation can then be written as

(3.15)x2 − ν

ε0
x2−4K + ν

ε0

(
1− Kε0

λ0

)
= 0,

whereν = λ
−2K
1−2K
0 /K. This equation is one of our main results. For fixed values oK

andλ0 it gives the behaviour of the energy gap as function of the non-local contrib
to umklapp scattering, associated to non-contact interactions. The form of this fo
suggests that it could be easier to handle the inverted equation:

2−4K
(3.16)ε0(x)= εcritν
1− x
ν − εcritx2 ,
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Fig. 3. Numerical solution of the gap equation forλ0 = 0.5 andK = 0.25. The gapm decreases for increasingε0.

Fig. 4. Numerical solutions of the gap equations forλ0 = 0.5, K = 0.25, and 0� ε0 � 0.1. The dashed line
corresponds to the SCHA whereas the solid line shows the RG result. The unit function is included to
comparison with the local case.

whereεcrit = λ0/K. In Fig. 3 we show the numerical solution of this last equation
λ0 = 0.5 andK = 0.25. We see thatx decreases for increasingε0, in qualitative agreemen
with the SCHA prediction [13]. A quantitative comparison between both approxima
is given in Fig. 4, for the same fixed values ofλ0 andK. Since the SCHA result obtained
[13] is valid for small values of the coefficient associated to non-locality, we have pl
the solutions in the interval 0� ε0 � 0.1. We find that the gap decay predicted by R
for increasing non-locality, is much slower than the one obtained through the Ga
approximation.
As a final comment, we note that the RG treatment for non-local interactions depicted
in this work can be extended to a more general coupling function including an arbitrary
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number of even powers ofp1. In coordinate space such an interaction can be written a

(3.17)g3(x)=
n∑
i=0

(−1)i
λi

Λ2i
∂2iδ(x),

whereλ1 = ε0. The corresponding set of RG equations for theλ′
i s can be obtained from

the expansion of the cosine integral function which appears when one integrates t
modes after the mode separation (see Appendix A). The result is

dλ0

dt
= (2− 4K)λ0 − 2K

n∑
i=1

λi

...

dλj

dt
= (2− 2j − 4K)λj − 2K

n∑
i=j+1

λi

...

(3.18)
dλn

dt
= (2− 2n− 4K)λn.

The general solution of this system can be expressed as a combination of expon
and the computation of the gap cannot be done, in principle, in an analytical way. It i
illustrative to consider a particular case in which this calculation is simplified. Indee
small t , it can be proved by induction that the solutions of this system of equations a
the form:

(3.19)λj (t)= λ0
j exp

[
t

(
2− 2j − 4K − 2K

λ0
j

n∑
i=j+1

λ0
i

)]
.

In this limit one obtains the following expression for the gap:

(3.20)m= µλ1/2−4K−2K/λ0
0
∑n
i=1λ

0
i

0 ,

which is consistent with the conditionsλ0 ∼ 1− andK � 1/2.

4. Conclusions

In this paper we have considered a non-local extension of the sine-Gordon m
This theory is obtained when one bosonizes a non-local and non-covariant version
Thirring model used to describe certain 1d many-body systems. Since the integr
of this non-local sine-Gordon model has not been proved, one needs to implemen
approximation to study its physical content. We have performed a RG calculation
first order in the coupling functiong3, which in a condensed matter context is associa
to the so-called umklapp scattering. We obtained an expression for the energy

function of the non-local piece of the interactionε0. For purely local interactions (the
exactly solvable SG) our result seems to be a sensible approximation, improving the
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SCHA predictions for a wide range of forward interactions. In the non-local cas
which no exact answer is known, we predict decreasing values for the gap for incr
values ofε0, in qualitative agreement with a previous SCHA computation. We were
to give a precise comparison between both approximations in the interval 0� ε0 � 0.1,
showing that the gap decrease, for increasing non-locality, is much weaker acc
to the RG computation. Since, as is well known, the SCHA method is not a cont
approximation, the present results contribute to a better understanding of the phy
non-local field theories. We think that our results are also of interest in the conte
1D many-body systems (Luttinger liquids) in which most of the previous investiga
involving umklapp scattering do not consider non-local effects associated to long
interactions [23].
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Appendix A

In order to illustrate the computation leading to the flow equations we first defin
free bosonic propagator:

(A.1)
〈
φ(k)φ(q)

〉
0 = 1

Z0

∫
Dφφ(k)φ(q)e−S0 = 1

Z0

δ2Z(j)

δj (k)δj (q)

∣∣∣∣
j=0

with

(A.2)Z(j)=
∫
Dφ exp

[
−
∫

d2p

2(2π)2
(
Φ(p)F(p)φ(−p)− J (p)φ(p))].

The result is

(A.3)
〈
φ(p)φ(q)

〉
0 = δ2(p+ q)4π2Kv

p2
0 + v2p2

1

.

The next step is the analysis ofSint, as given by the second term of Eq. (3.1). F
simplicity, in this appendix we disregard the overall constant(Λc)2/(2π2). Going to
momentum space and performing the separation in slow and fast modesφ< and φ>,
according to:

(A.4)φ(x)= 1

(2π)2

∫
d2pφ(p)eip.x ,
(A.5)φ(p)= φ<(p), |p1|< Λ

s
,
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(A.6)φ(p)= φ>(p), Λ

s
� |p1| �Λ,

we obtain

Sint =
∫
d2x dy1g3(x1 − y1)

(A.7)

×
(

cos

[ √
4π

(2π)2

∫
d2pφ<(p)f (p,x, y1)

]
× cos

[ √
4π

(2π)2

∫
d2pφ>(p)f (p,x, y1)

]
− sin

[ √
4π

(2π)2

∫
d2pφ<(p)f (p,x, y1)

]
× sin

[ √
4π

(2π)2

∫
d2pφ>(p)f (p,x, y1)

])
,

where

(A.8)f (p,x, y1)= eip.x + ei(p0x0+p1x1).

Now we expand the functional integral up to first order ing3 and integrate over the fa
modes. One finds the following results:

(A.9)

〈
sin

[ √
4π

(2π)2

∫
d2p φ>(p)f (p,x, y1)

]〉
0
= 0

and 〈
cos

[ √
4π

(2π)2

∫
d2pφ>(p)f (p,x, y1)

]〉
0

= exp

(
−K

∫
dp1

(
θ(p1)− θ(−p1)

)1+ cos(p1(x1 − y1))

p1

)
(A.10)= exp

(
−K

[
2 lns + 2Ci

(
Λ(x1 − y1)

)− 2Ci

(
Λ

s
(x1 − y1)

)])
,

whereCi(x) is the cosine integral function and the free vacuum expectation values a
course, taken with respect to fast modes. Rescaling momenta, coordinates and fiel
that the free piece of the actionS0 remains invariant:

(A.11)p′ = sp, x ′ = s−1x, φ′(p′)= s−2φ<(p
′/s),

and using the fact that lns = t, s � 1+ t , Sint can be written as

Sint =
∫
d2x ′ dy ′

1g3
(
s(x ′

1 − y ′
1)
)
cos

[ √
4π

(2π)2

∫
d2pφ<(p)f (p,x, y1)

]
( [ ( ) K ( ) ] )
(A.12)× 1+ (3− 4K)+K Λ(x ′
1 − y ′

1)
2 −

12
Λ(x ′

1 − y ′
1)

4
t ,
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where we have used the power expansion of the functionCi(x). Finally, using the explicit
expression forg3 in terms ofλ0 andε0 we obtain

Sint =
∫
d2x ′ d2y ′

[(
λ0 + λ0[2− 4K]t − 2Kε0t

)
δ2(x ′

1 − y ′
1)

− ε0 − 4Kε0t

Λ2 ∂2
1δ

2(x ′
1 − y ′

1)

]
cos

√
4π
[
φ(x ′)+ φ(y ′)

]
=
∫
d2x ′ d2y ′

[
λ′δ2(x ′

1 − y ′
1)−

ε′

Λ2∂
2
1δ

2(x ′
1 − y ′

1)

]
cos

√
4π
[
φ(x ′)+ φ(y ′)

]
(A.13)= S′

int,

which leads to the flow equations forλ andε.
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