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Abstract. In this paper, we study the mathematical model of the steady state fluid
flow in a porous media with a single crack. Two models are considered and compared:
a semianalytical one which solves the general potential solution of the singular in-
tegral equation modelling the steady-state flow in a cracked porous medium, and a
numerical one based on the Extended Finite Element Method (X-FEM). The semi-
analytical model is used to verify the application of the X-FEM. We include then the
coupling with the mechanical response of the specimen, which is analyzed using only
the X-FEM. Several numerical experiments are then carried out which illustrate the
variation of the hydro-mechanical quantities around the crack and within the crack.

Keywords: Fractured porous media; steady-state fluid flow; Biot-Coussy model, sin-
gular integral equation; eXtended Finite Element Method.

1. Introduction

The analysis of the hydro-mechanical behaviour of saturated fractured porous media is
significant in many engineering applications, such as flow transport in geologic media,
hydraulic fracturing for petroleum engineering and mining industry, permeability anal-
ysis for damage estimation, enviromental engineering, just to mention few. Given its
relevance to the applications, this problem has received much attention in the scientific
comunity and has been analysed from the experimental, analytical and numerical point
of view.
The experimental studies carried out on the steady-state flow in fractured rocks, geo-
logical formations or concrete under given farfield conditions, provide information on
the effective permeability of the medium, the connected voids and the interconnec-
tion with macro and micro cracks of the material under study. Experiments on water
permeability and its variation with crack opening on saturated concrete especimens
are reported in [1], where the splitting tensile test (Brazilian test) has been used for
concrete fracturing tests. Further experimental results on permeability of damaged
concrete can be found in [16], where the concrete specimens deteriorate as a result of
the exposition to cycles of high and low temperature conditions, and of alkali-silice
reactions. The final aim of these experiments is to quantify the level of deterioration of
a material from its transport properties. Since the ocurrence of damage modifies the
elastic properties and permeability of the material, the importance of studying crack-
ing processes and its influence on the fluid flow is of major interest for the durability
analysis of structures.
Exact analytical solutions have been obtained mainly for steady state conditions. Un-
der these assumptions, the poroelasticty equations decouple into the Laplacian equa-
tion for the pressure, and the linear elastic equations for the effective stresses. Both
elliptic equations are posed over a domain of no-Lipschitz type, with cracks lines, hence
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the classical methods for potential equations on singular domains, such as the complex
variable methods and the integral transform methods, apply. Notably applications are
the one by [15] that determine the stress field of an edge dislocation in a poroelastic
solid by applying the Gousat potential function, by applying similar methods to those
used in linear fracture analysis, and the one by [9] that apply the theory of complex
potentials and the theory of Cauchy integrals In this latter work, the authors consider
a domain with no-intersecting cracks and assume different boundary conditions on the
cracks, in the form of either a given fluid pressure or a given pressure gradient on the
crack opposite faces. In [9] the general governing equations are reduced to a singu-
lar integral equation which are solved by applying the Gauss-Chebyshev integration
method. In [13, 14] this method is then extended to intersecting cracks with discharge
along the cracks and to anisotropic porous body.
The numerical methods as the finite element method has been used to solve this prob-
lem as for example in [5, 6, 11] where the model to describe fractures in a saturated
porous solid is proposed through the concept of partition of unity. The space of shape
functions is augmented by specialized enrichment functions that are able to reproduce
the discontinuous and singular elastic fields associated with the crack. These enrich-
ment functions are introduced only to the elements in the vicinity of the fracture and
its tips. This method has been originally proposed by Belytshko and Black [3] and
Moes et al.[10] and is well known as XFEM. Other numerical approaches can be found
in Clari and Armero [2] such as the boundary element method.
Our interest is not only in studying the fluid flow in a fractured saturated porous
media but in assessing the state of stresses obtained by the numerical method. A
generally accepted physical model for this problem consists in idealizing the porous
saturated media as a mixture of the two phases, the fluid and the solid, which exist
simultanously at each point in space but they do not mix each other. Only the fluid
is allowed to leave the domain, considered then as open space. Since the fractures
are very permeable layers where the pressure applied by the fluid within the cracks is
equilibrated with pressure of the fluid within the pores, this allows the pore pressure
to be continuous at matrix fracture interface. Nevertheless, the presence of a crack
introduces two new boundaries, the opposite faces of the crack, and a new domain
bounded by the faces. We will later assume that this new domain is filled up only with
the fluid, no solid phase is considered. If the crack intersects the external boundary
of the body, boundary conditions related to the flow need then to be added. The
amount of fluid that flows from the porous faces to the crack can be determined and
related to the jump in the pressure gradient. This fact can be simulated by enlarging
also the space of the pressure field in such a way that the gradient of the pressure
is discontinuous in the crack. The advantage of using XFEM is that this method
facilitates the modelling of propagating cracks.
Hence, for the numerical resolution of this type of problem, several aspects need to
be taken into account, as follows: (i) the mechanical deformation of a material under
mechanical loading, in particular the action of fluid (ii) for porous material, the flow of
fluid inside the porous space. (iii) assuming the presence of cracks within the material,
mechanical deformation of the crack faces due to the pressure induced by the fluid,
(iv) the fluid flow inside the crack.
To gain insight into the numerical tools available to simulate this type of problems,
three numerical examples are solved and analysed with the proposed solution methods.
For one of the examples, the comparison with available experimental observations on
the subject is also presented. Hence, the paper is written as follows: first, the fluid flow
problem through out a fractured porous media is formulated as an initial boundary

2



value problem in Section 2, afterwards the problem is solved following two fronts, a
numerical one and a semianalytical, Sections 3 and 4, respectively. Finally, in Section
5.4, two numerical examples aim to compare both methods, a third example couples
fluid and mechanical response, whereas the last example compares the X-FEM with
experimental meassurements.

2. Governing equations of fractured porous media

In this section we present the strong form of the equations governing the diffusion
of fluid through a deformable fractured porous media. The basic assumptions in the
derivation are: small deformations, negligible convective and inertial terms, homo-
geneous and isotropic solid matrix and saturated conditions. We will focus on the
classical formultion of fluid flow in porous media as proposed by Coussy [7], including
discontinuities or cracks in the solid matrix by introducing new boundary conditions
on the flow and pressure due to the presence of the crack.
The saturated porous media is considered as the superimposition of two continua or
phases, a porous solid and a fluid, at each infinitesimal volume. To determine the flow
and pressure distribution of the fluid and the deformation of the solid phase all over
the space, we need to introduce the mass balance equation and the balance of linear
momentum for each phase, together with the constitutive equations and boundary
conditions.
Let Ω ∈ R2 be a reference volume of a saturated porous media made of a solid and
a fluid phase. Denote then by ρs(x, t) and ρf(x, t) the solid and fluid mass density,
respectively, and by n ∈ [0, 1] the solid porosity whereas ndΩ represents the volume
ocuppied by the fluid in a differential volume of the saturated porous media domain
Ω, assuming no mass exchange between the solid and the fluid. Let also consider the
presence of a crack Γ in Ω. This crack can end inside Ω, or on the boundary ∂Ω.
The intersection of Γ with ∂Ω is denoted as γ. The line Γ is represented by a smooth
function z(x∗), with x∗ the curvilinear parameter. No intersection of cracks will be
considered in this work. Since Γ ⊂ Ω, the set of points x ∈ Ω \ Γ are called matrix
points, whereas z ∈ Γ are points located at the cracked surface. The orientation of
such surface is defined by the normal nΓ to the tangent plane at z ∈ Γ (see Figure 1).
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Figure 1. Infinitesimal volume of a porous medium, superimposing a
porous solid phase with porous space filled with fluid.

The mass balance of the solid phase integrated in Ω, with ∂Ω its boundary, using the
Reynolds transport theorem can be expressed in the form

(2.1)
ds

dt

∫

Ω

(1− n)ρsdΩ =

∫

Ω

(1− n)
∂ρs
∂t

+

∫

∂Ω

(1− n)ρsvs · ndΩ = 0 ,

where vs is the solid velocity and n the unit normal to the boundary ∂Ω. We note
that for an incompressible solid matrix, ∂ρs/∂t = 0 with n = n(x), therefore we can
deduce that ∇ · vs = 0 in uncracked solid phase.
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Analogously for the fluid phase, the integral form of the mass balance in Ω reads

(2.2)
df

dt

∫

Ω

nρfdΩ =

∫

Ω

∂(nρf )

∂t
dΩ +

∫

∂Ω

(nρf)vf · ndΩ +

∫

γ

ρfq ·mdl = 0

with vf the fluid velocity nvf · n is the flux passing through ∂Ω and m = ∂z/∂x∗

the unit vector tangent to the crack surface or line. We can therefore denote as q =

q ·m =
∫ h

−h
v(y∗)dy∗ the flux leaving the crack on γ, which is calculated as the integral

of the tangential component of fluid velocity v = vf ·m, in the thickness of the crack.
Since we have included a discontinuity in Ω, the divergence theorem for the vector field
vf in Ω and q in Γ take the form

(2.3)

∫

∂Ω
(nρf )vf · nds =

∫

Ω\Γ
∇ · (nρfvf )dΩ−

∫

Γ
(nρf )[[vf ]] · nΓdΩ

∫

γ
ρfq ·mdl =

∫

Γ
∇x∗ · (ρfq)dΓ

with nΓ the unit normal to the discontinuity Γ pointing to Γ+. The notation [[∗]] =
∗+ − ∗− represents the difference between of values of ∗ at opposite faces of the crack,
Γ+ and Γ− respectively, therefore part of the flow in the porous media that passes Γ−

joins the flow inside the crack, ∇x∗ · ρfq is the surface divergence of ρfq. The first
integral, at the right hand side of the equality sign in (2.2), is written as the sum of
the following integrals in Ω \ Γ and Γ

(2.4)

∫

Ω

∂(nρf )

∂t
dΩ =

∫

Ω\Γ

∂(nρf )

∂t
dΩ +

∫

Γ

∂(2hρf )

∂t
dΓ

where n = 1 inside the integral over Γ, h is half the crack thickness and 2hρf represents
the fluid mass content per unit surface of the crack. Replacing (2.3) and (2.4) into
(2.2) we obtain the following

(2.5)
∫

Ω\Γ

[

∂(nρf )

∂t
+∇ · (nρfvf )

]

dΩ +

∫

Γ

[

nρf [[vf ]] · nΓ +
∂(2hρf )

∂t
+∇x∗ · (ρfq)

]

dΓ = 0

The mass balance in local form is written as follows

(2.6)

∂(nρf )

∂t
+ nρf∇ · vs +∇ · nρf(vf − vs) = 0 ∀x ∈ Ω \ Γ

∂(2hρf )

∂t
+ ρf [[vf ]] · nΓ +∇x∗ · (ρfq) = 0 ∀z(x∗) ∈ Γ \ γ

Allowing the fluid to be compressible, n
dρf
ρf

= dp

Kf
the mass balance equations (2.6) in

a saturated porous media can be reduced to the following equation

(2.7)
1

Kf

∂p

∂t
+ n∇ · vs +∇ · n(vf − vs) = 0 ∀x ∈ Ω \ Γ

Having neglected the inertial terms, the momentum balance for the fluid phase reduces
to the linear motion equation known as Darcy’s law

(2.8) n(vf − vs) =
k

µ
(−∇p + ρfb)
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with k intrinsic isotropic permeability of the porous matrix, µ the dynamic viscosity
of the fluid and b is the body force per unit mass vector.
The flow model in cracks is commonly described by the Poiseuille type of law, where
the flux vector is linearly related to inplane pressure gradient inside the crack, and
defined as follows

(2.9) q(x∗) = −kd∇x∗p(x∗)

with ∇x∗p = ∂p/∂z·m and kd the hydraulic conductivity. For the laminar flow between

two infinite and parallel planes, the conductivity is determined as kd = 1
f

(2h)3

12µ
, with

2h the crack aperture and f a coefficient that depends on the rugosity of the crack
surface. We can note that kd → ∞ correspond to very high conductivity and constant
pressure along the crack, simulating the case of void crack.
Finally, we introduce the momentum balance over the saturated porous media domain
Ω as follows

(2.10)

∫

∂Ω

σ · nda+

∫

Ω

ρb dΩ = 0

where t̄ = σ · n and ρ = (1 − n)ρs + nρf is density of the mixture. The macroscopic
total stress tensor σ = (1−n)σs+np1 is also obtained using the mixture theory, which
relates through averaging procedures, the microscopic stress field with the macroscopic
stress, i.e. σs is the averaged stress acting in the solid matrix and np the averaged
fluid pressure applied on the internal walls of solid matrix. Equation (2.10) written in
local form

(2.11) ∇ · σ + ρb = 0 .

The constitutive equations of the porous media, composed of a deformable solid matrix
and a saturating fluid, needs to be introduced. The Clausius-Duhem inequality related
to deformable porous continua is of the form Φ = Φs + Φf + Φth ≥ 0, with Φ the
overall dissipation, where Φs, Φf and Φth the different sources of dissipation. The
thermal dissipation Φth is not considered in this work since we have assumed isothermal
conditions. Assuming that the fluid contained in dΩ changes, i.e. there is fluid mass
exchange with the exterior before and after the deformation of the solid matrix, the
domain is called an open system. Hence, the solid matrix dissipation Φs is of the form

(2.12) Φs = σ :
dε

dt
− φ

dp

dt
− dGs

dt

with Gs = Gs(ε, p) the Gibbs energy and φdp

dt
takes into account the pore pressure

acting on the matrix porous walls, φ is the Lagrangian porosity with φdΩ0 = ndΩ,
and φ = Jn ≈ (1 + ǫ)n for small deformations. Assuming negligible matrix volume
changes, i.e. incompresible solid matrix ǫs = 0: φ = ǫ = tr ε.
The disssipation related to the fluid movement with respect to the solid matrix is of
the form

(2.13) Φf = −∇p · n(vf − vs) .

Assuming that the dissipation related to elastic solid matrix Φs is zero the constitutive
equations reduce to state equations. Linear isotropic poroelasticity is then obtained
by choosing the following quadratic energy expression with respect to the first (ǫ) and
second (e : e) strain invariants, with e = ε− 1

3
ǫ1
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(2.14) Gs(ǫ, e, p) =
1

2
Kǫ2 − bpǫ− 1

2

p2

N
+Ge : e

Since s = ∂Gs/∂e, σ = ∂Gs/∂ǫ and φ = −∂Gs/∂p, for a poroelastic isotropic linear
solid, we obtain the constitutive equations as follows

(2.15) σ = s+ σ1 = 2Ge+ (Kǫ− bp)1 ; φ = bǫ− p

N
G and K denote the shear and volumetric elastic modulus, respectively; b = 1−K/Ks ≤
1 the Biot’s coefficient and 1/N = (b− φ0)/Ks the Biot’s modulus, φ0 initial porosity,
K denotes the bulk moduli of the porous medium and Ks of the solid grains (see [15]
for more details).
To complete the formulation of the initial boundary value problem, the boundary and
initial values of the field variables need to be specified. Classically the boundary ∂Ω of a
continuum body is subdivided into two parts, the part where the primary variables are
prescribed, in our case ∂uΩ y ∂pΩ and where the traction and velocities are prescribed,
respectively ∂tΩ and ∂vΩ.
It is assumed that both porous space and cracks are saturated, pressure across the
crack is constant, and there is no pressure jump across the faces of fracture (continuity
of the pressure field).
Given the initial conditions on the solid displacement, the fluid velocity and pressure,
the problem is formulated as follows:
Find u, vf and p in Ω \ Γ, bounded by ∂Ω and Γ, and the flux q inside Γ, such that
the following equations re satisfied

Balance equations:

1

Kf

∂p

∂t
+ n∇ · vs +∇ · n(vf − vs) = 0 ∀x ∈ Ω \ Γ eq. (2.6)1

∂(2hρf )

∂t
+ ρf [[vf ]] · nΓ +∇x∗ · (ρfq) = 0 ∀z ∈ Γ \ γ eq. (2.6)2

∇ · σ + ρb = 0 ∀x ∈ Ω eq. (2.11)

n(vf − vs) =
k

µ
(−∇p + ρfb) ∀x ∈ Ω \ Γ eq. (2.8)1

q = −kd∇x∗p ∀z ∈ Γ eq. (2.9)
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Constitutive laws:

σ = 2Ge+ (Kǫ− bp)1 ∀x ∈ Ω eq. (2.15)1

φ = bǫ− p

N
∀x ∈ Ω eq. (2.15)2

Boundary conditions:

p = p̄ ∀x ∈ ∂pΩ

u = ū ∀x ∈ ∂uΩ

n(vf − vs) · n = v̄ ∀x ∈ ∂vΩ

σ · n = t̄ ∀x ∈ ∂tΩ

σ · nΓ = −p̄nΓ ∀z ∈ Γ

q ·m = q̄ ∀z ∈ γ

with u the displacement vector of the solid, vs = du/dt the solid velocity vector and
v̄ is the normal relative velocity prescribed on ∂vΩ. The points in γ where the crack
intersects the boundary prescribes the discharge q̄. Also, the usual conditions on the
boundaries are verified: ∂vΩ ∪ ∂pΩ = ∂Ω and ∂tΩ ∪ ∂uΩ = ∂Ω. The extreme points of
a crack constitute a set a singular points.
For the solution of the problem two solution methods will be used and compared,
a semianalytical approach and a numerical approach. In the former one, cracks are
assimilated to a repartition of point sources. Therefore the analytical solution is known
in terms of a singular integral equation, which is solved numerically. For the numerical
approach, the so called eXtended Finite Element Method (XFEM) is employed. In this
case the displacement and pressure field variables are enriched locally by introducing
the near tip asymptotic solutions, displacement and pressure gradient discontinuity
jumps, through out the partition of unity property of the shape functions.

x*
α(t,   )

nΓ

mΓ

Ω

 

β

q∞

t

x

y

ba

+

-
2h

y*

Γ

Figure 2. Single crack in an infinite plate. Distance from each point
in the crack to a point z = x+ iy on the plane.

3. Semianalitical solution of the flow problem in porous cracked

problem

3.1. General analytical solution of the problem. The analytical resolution of a
2D fluid flow in fractured porous medium, as deduced by [9] and [13], is presented in
this section for different boundary conditions along the crack. Assuming an isotropic
saturated porous domain Ω that is infinite, and contains a discontinuity Γ as shown
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in Figure 2, for a flow under steady-state regime, the mass balance (2.6) is reduced to
the Laplace equation

(3.1) ∆p =
∂2p

∂x2
+

∂2p

∂y2
= 0 ∀(x, y) ∈ Ω \ Γ.

The general solution of (3.1), see [12] for plane strain elasticity equations expressed in
terms of Goursat Muskhelishvili potential functions of the complex variable, is given
as

(3.2)
p(x, y) = 2Re(Φ(x, y))

with Φ(x̂) =
q∞
2
x̂ e−iβ + Φ̄(x̂)

with Φ the pressure potential of the steady state fluid flow, an analytic complex function
in terms of x̂ = x+ iy, i =

√
−1, q∞ homogeneous fluid flow, β angle between the flow

and the x-axis. The boundary conditions along the crack’s opposite faces can then be
introduced, either as known pressure or fluid velocity.
Let consider first the case where the pore pressure p̄ along the crack is given, and the
potential function has the form

(3.3) Φ̄ =
1

2π

∫

Γ

φ(t)

t− x̂
dt

with φ(t) the unknown density function integrable and continuous on Γ, t ∈ Γ a
complex coordinate point. The potential Φ̄ is an integral of Cauchy type along the
boundary of the crack Γ and an holomorphic function in Ω \ Γ that approaches zero
for large distances r = |t− x̂|, with (t− x̂ = reiθ and θ = arg(t− x̂)).
We can then reformulate the problem as follows
Find φ = φ(t), with t ∈ Γ, such that

(3.4)
p(x̂) =

q∞
2
x̂ cos(β) +

1

π

∫

Γ

φ(t)

|t− x̂|dr x̂ ∈ Γ

with p±(t0) = p̄(t0) t0 ∈ Γ .

the pressure induced by point sources sinks in Γ is p̄, wheres ± denotes the limiting
values of a function as the boundary approaches to + or − side of the crack.
Once φ(t) has been determined the pressure distribution over the domain can be easily
calculated.
Let consider now a second case where the flow inside the crack is assumed of Poiseuille
type, in [14], the following potential function is proposed

(3.5)
Φ =

q∞
2
x̂ exp iβ +

∫

Γ

φ(t) ln(x̂− t)dt

with φ(t(x∗)) =
1

2πk
∇x∗q(t(x∗))

where (3.5)2 is deduced from the mass balance inside the crack (equation (2.6)2) and
the assumption of steady state regime (see Pouya for more details). Hence, the problem
is reformulated as follows
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Find q(t(x∗)), with t, t0 ∈ Γ, such that

(3.6)
p(t0) =

q∞
2
t0 cos(β) +

1

2πk

∫

Γ

∇x∗q(t) ln |t0 − t|dt

with p±(t0) =
∫ t0

0
q(t) dt , q(t0) = −kd∇tp(t0) t0 ∈ Γ .

To solve (3.4) and (3.6) approximately, direct methods can be used such as the one
proposed in [8], the apropiate quadrature formula to be chosen depends on the type
of singularity at the ending points a and b. At the points of geometrical singularity a
and b the function φ can be either bounded or has an integrable singularity, and this
depends on the physical arguments of the problem. When the unknown function is the
pore pressure potential, as is usually the case, φ is bounded at the extremities. For this
case in [8], the Gauss-Chebyshev quadrature formula is proposed where the points of
integration tj ∈ Γ along Γ, with i = 1, ..., N are the zeros of the Chebyshev polynomial
of the first kind of degree N and the collocation points x̂i ∈ Ω, with i = 1, ..., N + 1
where pore pressure p is determined, are the zeros of the Chebyshev polynomial of
second kind of degree N + 1.
Denoting as w(x∗) the fundamental function of the singular integral equation (3.6),
and g(x∗) a bounded function, continuous in s ∈ [a, b], we can write φ(x∗) as follows

(3.7) φ(x∗) = w(x∗)g(x∗) , (a < x∗ < b)

with w(x∗) =
√

(x∗ − a)(x∗ − b). Numerical methods for the determination of g(x∗)
will be developed in the following subsection for different Dirichlet and Neumann
boundary conditions. The value of the function φ is then determined at some spe-
cific nodes, which are solution of the resulting system of linear algebraic equations.

3.1.1. Prescribed pressure inside single crack. Let us consider a problem with Dirichlet
boundary conditions, i.e. the pressure distribution inside the crack p̄(t0) is known for
every t0 ∈ Γ, and q∞ = 0 as shown in Figure 3, hence from (3.4) the following relation
holds

(3.9) p̄(t0) =
1

π

∫

Γ

φ(t)

|t− t0|
dr .

with r = |t− t0| and for t = t0 the integral of equation is singular.
To calculate pore pressure p in x̂ ∈ Ω, the unknown densities φ need to be defined
in such a way that the boundary condition, eq. (3.9), along the crack is satisfied.
Following [8, 9] for the numerical resolution, a set of collocation points x̂i ∈ Ω, with
i = 1, ..., N + 1, are chosen together with a set of integration points tj ∈ Γ, with
j = 1, ..., N . This method produces a discrete approximation, hence a system of N +1
linear algebraic equations in N unknowns gj = g(tj) needs then to be solved, note that
equation N/2 + 1 can then be ignored. Denoting as t0i the collocations points x̂i ∈ Γ,
i.e. t0i = x̂i.

(3.10) p̄(t0i) =
1

π

N
∑

j=1

wj

gj
|tj − t0i|

, i = 1, ..., N + 1

(3.11) wj = w(tj) =
π

N + 1
sin2

(

jπ

N + 1

)

The fundamental function wj is selected in such a way to result the corresponding
weight function and tj are then called the integration points and correspond to the
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(3.8)
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Figure 3. Single crack in an infinite plate: (a) Subjected to constant
pressure, (b) Subjected to .

zeros of the orthogonal polynomials related to the particular Gaussian quadrature.
For the case of integrable singularities at the end points, the orthogonal polynomials
reduce to the Chebyshev polynomials of first kind are written

(3.12) tj =
b− a

2
ζj +

b+ a

2
t0i =

b− a

2
ηi +

b+ a

2
ζj the integration points, roots of the Chebyshev polynomials of second kind and order
N , ηi collocation points, roots of the Chebyshev polynomials of the first kind and order
(N + 1) refering to an interval [−1, 1] as follows with and

(3.13) ζj = cos

(

jπ

N + 1

)

, j = 1, ..., N ; ηi = cos

(

π(2i− 1)

2(N + 1)

)

, i = 1, ..., N + 1

Once gj is determined, the pressure and the gradient of the pressure in the entire
domain Ω is calculated as follows
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(3.14)

p(x̂i) =
1

π

n
∑

j=1

wj

gj
|tj − x̂i|

∇x̂p(x̂i) =
1

2

(

∂p(x̂i)

∂x
− i

∂p(x̂i)

∂y

)

=
1

2π

n
∑

j=1

wjgj
cosα(tj , x̂i)

|tj − x̂i|2
− i

1

2π

n
∑

j=1

wjgj
sinα(tj , x̂i)

|tj − x̂i|2

α is the angle formed by the vector tjx̂ and the axis Ox̂. The complete algorithm is
summarized in Box 1.

Box 1. Numerical Integration Algorithm for Semianalytical Resolution

Given: a, b, N, M and p(t0i) = p̄ ∀t0i ∈ Γ , i = 1, ..., N + 1;

with t0i =
b− a

2
ηi +

b+ a

2
and ηi = cos

(

π(2i − 1)

2(N + 1)

)

Compute: for j = 1, ..., N

wj =
π

n+ 1
sin2

(

jπ

N + 1

)

tj =
b− a

2
ζj +

b + a

2

ζj = cos

(

jπ

N + 1

)

Bij =
wj

|tj − t0i|
,

Solve: g(tj) = [Bij ]
−1p(t0i)

Find: ∀x̂k ∈ Ω \ Γ, with k = 1, ...,M

p(x̂k) =
1

π

wjgj

|tj − x̂k|

∇x̂p(x̂k) =
1

2π

N
∑

j=1

wjgj
cosα(tj , x̂k)

|tj − x̂k|2
− i

1

2π

N
∑

j=1

wjgj
sinα(tj , x̂k)

|tj − x̂k|2
End

3.1.2. Poiseuille flow inside the crack. Let here consider again the problem of a single
straight crack Γ in a porous domain but under constant pressure gradient at an infinite
boundary and a flux q inside Γ is of Poiseuille type.
Assuming then that the fluid flow at the infinite boundary is of the form q∞(x, y) = A,
and placing the origin of the coordinate system at the center of the crack (see Figure
2.9), x∗ ≡ x, the symmetry on the geometry and the boundary lead to p(−x, y) =
−p(x, y), q(−x) = −q(x) and p(0, 0) = 0. Therefore the pressure at a point Γ with
complex coordintes t0 = x0+0i can be calculated as the integral of the pressure gradient
along the crack, as follows

(3.15) p(x0, 0) =

∫ x0

0

∇xpdx

11



We have assumed pressure pore continuity from the porous matrix to the crack cavity
through σ ·nΓ = −p̄nΓ and fluid flow through the discontinuity faces. The part of the
fluid coming from the porous matrix through the crack faces flow away in the cavity,
introduces a discontinuity jump in the normal fluid flow.
Since the integral term of (3.15) is the only that contributes to the discontinuity jump
of the pressure gradient across the crack, as deduced in [13], the following relation
satisfies the balance equations for a point on the crack Γ at the absice x,

(3.16) φ(x) =
1

2πk
∇xq(x)

Replacing (3.16) in equation (3.15) and integrating by parts the integral over Γ takes
the form
(3.17)

1

2πk

∫ b

a

∇xq(x) ln |x0 − x|dx =
1

2πk
[q(x) ln |x0 − x|]ba −

1

2πk

∫ b

a

q(x)∇x ln |x0 − x|dx

The contribution of the first term on the r.h.s of (3.17), together with the Poiseuille
law q = −kd∇xp, the solution takes the form

(3.18) p(x0) = Ax0 +
kd
2πk

∫ b

a

∇xp
x0 − x

|x0 − x|2dx

By taking a = −1 and b = 1, the unknown function ∇xp will be obtained numerically
by first rewritting ∇xp(x) = w(x)g(x), where g(x) is a bounded continuous function
in [−1, 1]. Due to the singular character of equation (3.19), the problem is formulated
at x0 using (3.15) and (3.19) as follows ∀x0 ∈ [0, 1]

(3.19)

p(x0)−
kd
2πk

∫ 1

−1

∇xp(x)

x0 − x
dx = Ax0

∫ x0

0

∇xpdx− kd
2πk

∫ 1

−1

∇xp(x)−∇xp(x0)

x0 − x
dx− kd

2πk
∇xp(x0) ln

1− x0

1 + x0
= Ax0

∫ x0

0

∇xpdx+
kd
πk

∫ 1

0

(∇xp(x)−∇xp(x0))
x0

x2 − x2
0

dx− kd
2πk

∇xp(x0) ln
1− x0

1 + x0

= Ax0

and the problem is formulated as follows
Find g(x0), ∀x0 ∈ [0, 1], such that

(3.20)

∫ x0

0

w(x)g(x)dx− kdx0

πk

∫ 1

0

w(x)
g(x)− g(x0)

x2 − x2
0

dx− kd
πk

g(x0) ln
1− x0

1 + x0

= Ax0

where the singularity at the extremity has been removed. For the solution of the
problem we will use a quadrature formula of Gaussian type. Evaluating the integral at
x0i (i = 1, ..., N +1), so called collocation points, we reduce the problem to a system of
linear equations in gj = g(xj), j = 1, ..., N unknowns, with xj the integration points.

(3.21)

i
∑

j=1

wjgj −
x0ikd
π

N
∑

k=1

wk

gk − g0i
x2
k − x2

0i

− kd
2π

g0i ln
1− x0i

1 + x0i
= k x0i
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Figure 4. Integration and collocation points along the crack for N = 3.

with i = 1, ..., N +1, , wi = x0i−x0(i−1) the last equation can be rewritten as a system
of discrete linear system,

(3.22)

N
∑

j=1

Bijgj −Ax0i = 0 ∀i = 1, ..., N + 1

Bij = wj −
kd
π
Tij if j < i

Bii =
1

2
wj −

kd
π

N
∑

k=1

Tik −
kd
2π

g0i log
1− x0i

1 + x0i
if i = j

Bij = −kd
π
Tij if j > i

with Tij =
wjx0i

x2
j − x2

0i

, if i 6= j; Tii = 0, if i = j.

Once (3.21) has been solved, the pressure at any point x̂ ∈ Ω can be calculated by
integrating numerically the equation

(3.23) p(x̂) = Ax+
kd
2πk

∫ 1

0

w(x)g(x)

[

t(x)− x̂

|t(x)− x̂|2 − t(x) + x̂

|t(x) + x̂|2
]

dx ,

as follows

(3.24) p(x̂i) = Axi +
kd
2πk

N
∑

j=1

wjgj

[

tj − x̂i

|tj − x̂i|2
− tj + x̂i

|tj + x̂i|2
]

.

4. Numerical solution of the hydromechanical coupled problem

The solution of the problem using the X-FEM will be presented in this section. This
method has been developed with the aim of taking into account discontinuities, and
its propagation, in the displacement field due to fractures, by enlarging the space of
the displacement field through the introduction of enrichment functions. This method
has been extended to the case of fluid transport by enriching also the pressure field.

4.1. Weak form of the governing equations. In light of the momentum and fluid
mass balance equtions (2), the mixed variational formulation at a time instant t = tn+1

takes the form

13



Box 2. Numerical Integration Algorithm for Semianalytical Resolution

GIVEN: a, b, N, M and q∞ = A

Compute: for j = 1, ..., N ; i = 1, ..., N + 1

x0i =
b− a

2
ηi +

b+ a

2
; ηi = cos

(

π(2i− 1)

2(N + 1)

)

wi = x0i − x0(i−1)

xj =
b− a

2
ζj +

b+ a

2
; ζj = cos

(

jπ

N + 1

)

if i 6= j, Tij =
wjx0i

x2
j − x2

0i

,

if i = j, Tii = 0,

Bij = wj −
kd

π
Tij ; if j < i

Bii =
1

2
wj −

kd

π

N
∑

k=1

Tik − kd

2π
g(x0i) log

1− x0i

1 + x0i
; if i = j

Bij = −kd

π
Tij ; if j > i

Solve:

n
∑

j=1

Bijgj −Ax0i = 0

Find: ∀x̂k ∈ Ω \ Γ, with k = 1, ...,M

Bij =

[

tj − x̂i

|tj − x̂i|2
− tj + x̂i

|tj + x̂i|2
]

then p(x̂i) = Axi +
kd

2πk

N
∑

1

wjgjBij(tj , x̂i) .

END

(4.1)
∫

V

∇(δu) : σdV −
∫

∂tΩ

δu · t̄dx∗ +

∫

Γ

[[δu]]pnΓdx∗ = 0
∫

V

δp
∂p

∂t

1

Kf

dV +

∫

V

nδp∇ · vsdV −
∫

V

w · ∇δpdV +

∫

Γ

[[δpw]] · nΓdx∗ +

∫

γ

δpqp dx∗ = 0

(4.2)
∫

Γ

δp
∂(2hρf )

∂t
dx∗ +

∫

Γ

δpρfvs · nΓdx
∗ +

∫

Γ

δpρf [[w]] · nΓdx
∗ +

∫

Γ

δp∇x∗ · (ρfq)dx∗ = 0

with n = 1 in Γ, w = n(vf − vs) the fluid relative velocity, [[δu]] = [δu− − δu+] and
since we have assumed that the pressure is constant through the thickness of the crack
we can write [[δpw]] = δp[[w]].
Considering the local coordinate system in the center of the crack (see Figure 2), since
the crack aperture is much smaller than the crack length, the first integral over Ω∗ can
be calculated as follows,
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(4.3)

∫

Ω∗

δp∇ · vsdΩ =

∫

Γ

∫ h

−h

δp∇ · vsdy
∗dx∗

=

∫

Γ

δp2h

〈

∂vs

∂x∗

〉

da +

∫

Γ

δp[[vs]]dx
∗

where we have assumed that the tangential component of the matrix velocity vs has
linear variation along y∗, and the symbol 〈·〉 represents the average value of the func-
tion. Also, the tangential derivative of the pressure does not vary along y∗ since the
pressure is assumed constant through the crack thickness.
Analogously, introducing the Poiseuille law for the fluid (2)

(4.4)

∫

Ω∗

kd∇δp · ∇p dv =

∫

Γ

(
∫ h

−h

kd∇δp · ∇p dy∗
)

dx∗ =

∫

Γ

2h kd
∂δp

∂x∗

∂p

∂x∗
dx∗

and similarly we deduce

(4.5)

∫

Ω∗

δp
1

Kf

∂p

∂t
dv =

∫

Γ

δp 2h
1

Kf

∂p

∂t
dx∗

The fluid tht enters into the crack cavity, flows then tangential to it, therefore, the
normal flow is discontinuous and also the pressure gradient normal to the crack

(4.6)

∫

Γ

δp[[vf − vs]] · nΓ dx∗ = −
∫

Γ

δp2h

〈

∂vs

∂x∗

〉

dx∗ −
∫

Γ

δp[[vr]] dx
∗+

+

∫

Γ

2h kd
∂δp

∂x∗

∂p

∂x∗
dx∗ −

∫

Γ

δp 2h
1

Kf

∂p

∂t
dx∗

4.2. Space and time discretization of the coupled problem. As to spatial dis-
cretization, the domain Ω is dicretized into finite elements, where for each specific
element the displacement and pore pressure are interpolated by using shape functions
N I

ar y N I
pr (with I the node within the element and r = 1 for standard interpolation

functions and r = 2, 3 for enrichment function associated with discontinuity and near
tip sigularity interpolation functions, respectively), of the form

(4.7)
u ≈ uh(x) =

∑

i∈I N
i
a1(x)u

i
1 +

∑

j∈J N
j
a2(x)u

j
2 +

∑

k∈K Nk
a3(x)u

k
3

p ≈ ph(x) =
∑

i∈I N
i
p1(x) p

i
1 +

∑

j∈J N
j
p2(x) p

j
2 +

∑

k∈K Nk
p3(x) p

k
3

where I denote the set of standard finite element nodes, J enrichment nodes related to
the Heaviside step function and K enrichment nodes related to the near tip asymptotic
function, (ui

1, p
i
1) conventional displacement and pressure values of node i, (uj

2, p
j
2) and

(uk
3, p

k
3) are the additional nodal values of displacement and pressure related to the

following shape functions

(4.8)
N j

a2(x) = N j
a1 (H(x)−H(xj)) Nk

a3(x) = Nk
a1 (F (x)− F (xk))

N j
p2(x) = N j

p1 (Z(x)− Z(xj)) Nk
p3(x) = Nk

p1 (G(x)−G(xk))

where H denote the Heaviside step shape function centered at the discontinuity and
Z denote the distance functions, F y G are enhaced basis defined as follows as follows

(4.9) H =

{

1 if x ∈ Ω+ ;
−1 if x ∈ Ω− .

Z =

{

d if x ∈ Ω+ ;
−d if x ∈ Ω− .
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(4.10)
{F (r, θ)}4l=1 = {√r cos θ/2,

√
r sin θ/2,

√
r sin θ/2 sin θ,

√
r cos θ/2 sin θ}

G(r, θ) =
√
r sin θ/2

with r the distance to the crack tip, θ angle with the crack direction.
In order to accommodate the propagation of discrete cracks through elements, Be-
lytschko used the partition of unity property of the finite element shape function Ni,
i.e.

∑n
i=1Na i = 1 with n the number of nodal points in an element. The crack is then

seen as a discontinuity in the displacement field, and the displacement can be written
as the sum of two continuous displacement fields

(4.11)
u = Na1a1 +Na2a2 +Na3a3 p = Np1p1 +Np2p2 +Np3p3

∇u = Ba1a1 +Ba2a2 +Ba3a3 ∇p = Bp1p1 +Bp2p2 +Bp3p3

where N and B = ∇N denotes the standard shape functions and gradient of the
shape functions respectively, whereas a1, i = 1, 2, 3, contains the conventional and
additional degrees of freedom

(4.12)
vs = Na1ȧ1 +Na2ȧ2 +Na3ȧ3 ∇ · vs = mT (Ba1a1 +Ba2a2 +Ba3a3)

ṗ = Np1ṗ1 +Np2ṗ2 +Np3ṗ3 ∇ṗ = Bp1ṗ1 +Bp2ṗ2 +Bp3ṗ3

(4.13)
∫

Ω

BT
aiσ dV +

∫

Γ

pNT
ainΓ dx

∗ −
∫

∂tΩ

NT
ait̄ dx

∗ = 0
∫

Ω

NT
pi∇ · vs dV +

∫

Ω

NT
pi

∂p

∂t

1

Kf

dV −
∫

Ω

BT
piw dV +

∫

Γ

NT
pi[[w]] · n dx∗ +

∫

∂Ω

NT
piq̄ dx

∗ = 0

with i = 1, 2, 3. Tractions, pressure and pressure test function have unique values
across the discontinuity.
The constitutive laws are then introduced.

(4.14)
σ = D : ε− αp1

w = −k∇p

The following coupled set of equations can be obtained as

(4.15) Cẋ+Kx+ f = 0

where xT = [a1,a2,a3, p1, p2, p3] vector of nodal unknowns. The definition of de
matrices C, K and f is given in Appendix XX.
The time discretization using the backward Euler integrated format of the mass and
linear momentum balance relation has the form

(4.16) Fn+1 = Cn+1
∆x

∆t
+Kn+1xn+1 + fn+1 = 0

with ∆x = xn+1 − xn, ∆t = tn+1 − tn, and (xn+1,xn) denote the unknowns at time
tn+1 and tn, respectively.
The equations as stated in (4.16) are conveniently solved using Newton–Raphson iter-
ations.
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5. Numerical examples

Four examples are presented in the following subsections. The first three have a single
crack inside the porous matrix with different boundary conditions, i.e. of Neumann
and Dirichlet type. The aim is to study the quality of the simulations using XFEM,
related to the semianalytical. Both methods were implemented in MATLAB codes.
As fourth example, experimental measurements of flow inside cylinder made of cement
paste with a slot of 0.02mm thickness are reported and reproduced with the X-FEM
to calibrate the permeability parameter of the model.

5.1. Pressure inside the crack is known. In the present example the model prob-
lem shown in Figure 5 is considered, made of porous fluid saturated material with a
straight single crack inside the element and bulk permeability k = 1. The boundary
conditions, shown in Figure 5, prescribes p̄ = 0 along the boundary ∂pΩ and p̄ = 1
inside the crack Γ.
For the X-FEM method, the domain has been discretized using 480 quadrilateral el-
ements. The displacements are interpolated with quadratic shape functions whereas
the pressure adopts linear functions. To reproduce the discontinuous displacement
field, between 36 and 100 integration points are adopted. The displacement boundary
conditions are also introduced to avoid rigid movements.
For the semianalytical approach, 92 integration points have been used for the inte-
gration along the discontinuity line. The boundary condition in Γ is p± = 1 with
p∞ = 0.

( )= 1

=0  

Ω 

= 6 

a              b     
= 6 

x

y

Figure 5. Single crack with prescribed pressure inside the crack.
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Figure 6. Pressure field distribution: (a) the X-FEM and (b) the semi-
analytical numerical method.
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Figure 7. Pressure gradient: (a)∂p/∂x along y = 2.7 ;(b)∂p/∂y along
y = 3.

The calculated pressure distribution is depicted in Figure 6 using X-FEM and semi-
analitical approach, respectively. We note that a more localize pressure distribution is
obtained with the semianalytical approach than with the X-FEM, for the same per-
meability and zero pressure at infinity and ∂pΩ, respectively. This is because, the
X-FEM has been used on the displacement field, but the constant pressure applied on
the crack opposite faces has been considered as Dirichlet boundary condition on the
pressure field, no enrichemnt of the pressure field hs been considered. The pressure
distribution on the finite element is then linear also over the displacement enriched
elements. This is also verified in Figure 7 (a) and (b), where the pressure gradients
along lines parallel to the crack direction are shown, i.e. ∂p/∂x along y = 2.7 and
∂p/∂y along y = 3, respectively. XFEM gives higher gradient values far from the dis-
continuity, in both cases, and a hat shape due to the presence of the crack tips. This
result should be improved specially with regards to the perpendicular fluid flow near
the crack tip. The pressure gradient ∂p/∂y verifies, for both approaches, the condition
of zero total flow inside the discontinuity.
To analyze the quality of the approximation, the problem has been solved semianalyt-
ically using different number of integration points N and with XFEM,increasing the
number of elements used in the discretization. In Figure 8 the percentage of absolute
relative error is shown for both cases, showing that the solution that gives less than 5%
error is between N = 152 and N = 92, for the seminalytical method and xxx elements
for X-FEM.

5.2. Poiseuille flow inside a crack. The second model problem considers a perme-
able solid matrix with lx = 6 and ly = 4 and the same material and flow properties as
the previous example, i.e. E = 30, ν = 0.2, b = 1, Kf = 1E18GPa and k = 1. In this
case, the crack is placed parallel to the axis y as shown in Figure 9.a. Assuming a pres-
sure gradient equal to one, the pressure on the upper boundary at y = 4 is p = 4 and
zero at y = 0. On the lateral faces, no fluid is allowed to flow normal to the boundary,
i.e. q = 0. The problem has symmetry with respect to the axis x, therefore half of
the problem will be solved. Analogously to the previous example, the displacement
field is restrained to avoid rigid movements. For the seminalytical approach, 60 inte-
gration points have been used along the discontinuity line. The boundary conditions
are: p̄(0, y) = 0 and p∞ = Ax.
Figure 9(b) shows the pressure distribution for λ = 1. Assuming a high conductivity
inside the crack (kd = 6.28 or λ = 1), an intermediate (kd = 0.628 ro λ = 0.1) and
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Figure 8. Absolute relative error of the pressure and fluid flow obtained
with different number of integration points(a) and with different number
of finite elements (b).
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Figure 9. (a)Poiseuille flow inside a crack. (b)Pressure field for a uni-
form pressure gradient parallel to the crack, with k = 1 and λ = 0.01.
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Figure 10. Pressure distribution along the crack for different values of
λ.
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y (for x=2.7)

Figure 11. Pressure gradient ∂p/∂x (normal to the crack) along x =
2.7 for different values of λ.
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Figure 12. Pressure gradient ∂p/∂y (tangential to the crack) along
x = 3 for different permeability values.

a low one (kd = 0.0628 or λ = 0.01). In Figure 10, the pressure distribution along
the crack (x = 3) is compared. Finally, Figure 11 and Figure 12 show the pressure
gradient ∂p/∂x along x = 2.7 and ∂p/∂y along x = 3, respectively.

5.3. Coupled problem. In this example the model problem of Figure 13 will be solved
assuming that the porous media is elastic, and the mechanical behaviour is coupled to
the fluid flow inside the porous matrix. Therefore, the crack opening will be analysed
for different permeability coefficients, using XFEM. Let the crack be parallel to the
axis y and on the upper face t y = 6 a prescribed pore pressure of p = 6 is assumed,
as shown in Figure 13.a.
Figure 13.b, 13.c and 13.d, show pressure distribution for different permeability values:
kd = 6.28, 0.628, 0.0628, i.e. λ = 1, 0.1, 0.01. Figure 14, show the pressure distribution
along a central line that passes along the crack. Figure 15 show the pressure gradient
normal to the crack along a parallel line placed at x = 2.7. Figure 16 show a pressure
gradient tangential to x = 3. Coupling the pressure field with the displacement field,
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Figure 13. (a)Poiseuille flow inside an internal crack. (b),(c) y
(d)Pressure field distribution for a uniform pressure gradient prallel to
the crack λ = 1, λ = 0.1 and λ = 0.01.
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Figure 14. Pressure along the crack for different values of λ.
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Figure 15. Pressure gradient along x direction for different values of λ.
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y (for x=3)

Figure 16. Pressure gradient along y direction for different values of λ.
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Figure 17. Crack aperture due to fluid flow for (a)λ = 1, (b)λ = 0.1 y
(c)λ = 0.01.
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an additional aperture of the crack is obtained. In Figure ?? the Gauss point position
near the crack is shown.

ccc

 

= 5 cm 
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= 2040 cm c.a.  

= 0 

= 0 = 0 

(a) (b)

Figure 18. Permebility test: (a) Geometry and (b) model problem.

5.4. Permeability test. The transport properties of a porous media that can be used
to characterize the internal structure of a porous material are: the water absortion,
capillary bsortion, water penetration and coefficient of water permeability. Since the
presence of cracks have strong impact on the this properties, in this example cement
paste cylinders of approaximately
The aim of this example is to calibrate the coefficient of permeability of a cement paste
specimen with a vertical slot placed in the center of it. See Figure 18 and [] for further
details on the experimental program that has been carried out following CPC RILEM
13.1. The number of specimens that has been tested is four of 50mmX150mm, and
slots of 0.02mm thick, 50mm height and 10, 20, 30 and 40mm length. To evaluate the
permeability, a ring of 25mm thickness, at the upper and lower faces, together with
the lateral faces were painted with water proof paint to avoid water loses and ensure
vertical flow. Applying and initial water pressure of of 0.1MPa, the pressure is later
increased until a stable flow is reached.
To carry out numerical simulations of this experimental test using X-FEM, we consider
the model problem shown in Figure 18 with a the central slot. We discretize the
domain using 456 mixed finite elements with biquadratic shape interpolation functions
for the displacement and bilinear for the pressure. The number of integration points
are taken between 36 and 100. Assuming an isotropic uniform permeability of km =
1e − 10cm/s, Biot’s coefficient α = 1 and compressibility modulus of Q = 1e18GPa,
ae cuasi incompressible behaviour is considered for the water. The elastic properties
for the solid material are E = 11GPa and µ = 0, 2, for the Young Modulus and
Poisson coefficient, respectivelly. For fluid flow insidede the discontinuity, friccion
coefficients of f = 1.00 and f = 1.65 are considered and dynamic viscocity of the
water of µ = 1.10−7Ns/cm2.
This example assumes Dirichlet boundary conditions, i.e. prescibed pressure at the
upper face of p = 2040cmc.a. and p = 0 at the lower face. With unidirectional vertical
water flow. To avoid rigid body movements, displacements of the lower and later faces
are restrained as shown in Figure 19. Numerical results obtained on the permeability
coefficient are depicted in Figure 19 showing good agreement with the experimental
ones.
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Figure 19. Permeability test: numerical with XFEM and experimental
results obtained for different slot length.

6. Concluding remarks

In this paper we have first formulated the problem of fluid flow through fractured
deformable porous media. With the aim of solving numerically this problem in a
coupled way, we have choosen the XFEM introduced by []. Since the analitical solution
of the problem is in terms of a singular integral (Cauchy type integral), a semianalytical
approach has been used to solve a simplified problem and compared the results with
the one obtained with XFEM. Then four examples have been developed. In the first
two, a rigid porous matrix with a single crack is considered assuming Dirichlet and
Neumann boundary conditions, respectively. Pressure and gradient pressure results
have been compared using both methods, plotting also the absolute relative error for
increasing number of discretization points. Results agree quite well, except for the
gradient of the pressure near the singularities. Particular interest has been given to
the enrichment function used for the pressure, since the calculation of gradient of the
pressure appears as delicate issue. The third example aim is to solve the coupled
problem but assuming an elastic porous material, showing the hability of the problem
to simulate the the increment of pressure and consequent apperture of the crack by
incresing the conductivity of the crack. The last example depicts the calibration with
experimental results of the permeability coefficient using XFEM.

7. Anexo

(7.1) C =

























0 0 0 Ĉa1p1 Ĉa1p2 Ĉa1p3

0 0 0 Ĉa2p1 Ĉa2p2 Ĉa2p3

0 0 0 Ĉa3p1 Ĉa3p2 Ĉa3p3

Cp1a1 Cp1a2 Cp1a3 Cp1p1 + Ĉp1p1 Cp1p2 + Ĉp1p2 Cp1p3 + Ĉp1p3

Cp2a1 Cp2a2 Cp2a3 Cp2p1 + Ĉp2p1 Cp2p2 + Ĉp2p2 Cp2p3 + Ĉp2p3

Cp3a1 Cp3a2 Cp3a3 Cp3p1 + Ĉp3p1 Cp3p2 + Ĉp3p2 Cp3p3 + Ĉp3p3
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(7.2) K =























Ka1a1 Ka1a2 Ka1a3 Ka1p1 Ka1p2 Ka1p3

Ka2a1 Ka2a2 Ka2a3 Ka2p1 Ka2p2 Ka2p3

Ka3a1 Ka3a2 Ka3a3 Ka3p1 Ka3p2 Ka3p3

0 0 0 Kp1p1 + K̂p1p1 Kp1p2 + K̂p1p2 Kp1p3 + K̂p1p3

0 0 0 Kp2p1 + K̂p2p1 Kp2p2 + K̂p2p2 Kp2p3 + K̂p2p3

0 0 0 Kp3p1 + K̂p3p1 Kp3p2 + K̂p3p2 Kp3p3 + K̂p3p3























(7.3) f =





















fa1

fa2

fa3

fp1

fp2

fp3





















donde:

(7.4)

Cp(i)a(j) = −
∫

Ω

αNT
p(i)m

TBa(j) dV

Cp(i)p(j) =

∫

Ω

K−1
f NT

p(i)Np(j) dV

Ka(i)a(j) =

∫

Ω

BT
a(i)DBa(j) dV

Ka(i)p(j) = −
∫

Ω

αBT
a(i)mNp(j) dV

Kp(i)p(j) = −
∫

Ω

kfB
T
p(i)Bp(j) dV

Ĉa(i)p(j) = −
∫

Γ

NT
p(i) 2h tΓ ·

〈

Ba(j)

〉

ds−
∫

Γ

NT
p(i)[[Ba(j)]] · nΓ ds

Ĉp(i)p(j) = −
∫

Γ

NT
p(i)

2h

Kf

Np(j) ds

K̂p(i)p(j) = −
∫

Γ

(

BT
p(i) · tTΓ

)

2h kd
(

tΓ ·Np(j)

)

ds

fa(i) =

∫

∂tΩ

NT
a(i)t ds

fp(i) =

∫

∂Ω

NT
p(i)q ds

con i, j = 1, 2, 3; mT = [1; 1; 0]; nΓ, tΓ vector normal y tangente a la fisura respectiva-
mente.
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