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Measurements of ψ(2S) and X(3872) → J/ψπ+π−
production in pp collisions at

√
s = 8 TeV with the

ATLAS detector

The ATLAS Collaboration

Differential cross sections are presented for the prompt and non-prompt production of the
hidden-charm states X(3872) and ψ(2S ), in the decay mode J/ψπ+π−, measured using
11.4 fb−1 of pp collisions at

√
s = 8 TeV by the ATLAS detector at the LHC. The ra-

tio of cross-sections X(3872)/ψ(2S ) is also given, separately for prompt and non-prompt
components, as well as the non-prompt fractions of X(3872) and ψ(2S ). Assuming in-
dependent single effective lifetimes for non-prompt X(3872) and ψ(2S ) production gives
RB =

B(B→X(3872) + any)B(X(3872)→J/ψπ+π−)
B(B→ψ(2S ) + any)B(ψ(2S )→J/ψπ+π−) = (3.95 ± 0.32(stat) ± 0.08(sys)) × 10−2, while

separating short- and long-lived contributions, assuming that the short-lived component
is due to Bc decays, gives RB = (3.57 ± 0.33(stat) ± 0.11(sys)) × 10−2, with the frac-
tion of non-prompt X(3872) produced via Bc decays for pT(X(3872)) > 10 GeV being
(25 ± 13(stat) ± 2(sys) ± 5(spin))%. The distributions of the dipion invariant mass in the
X(3872) and ψ(2S ) decays are also measured and compared to theoretical predictions.
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1 Introduction

The hidden-charm state X(3872) was discovered by the Belle Collaboration in 2003 [1] through its de-
cay to J/ψπ+π− in the exclusive decay B± → K±J/ψπ+π−. Its existence was subsequently confirmed by
CDF [2] through its production in pp̄ collisions, and its production was also observed by the BaBar [3]
and D0 [4] experiments shortly after. CDF determined [5] that the only possible quantum numbers for
X(3872) were JPC = 1++ and 2−+. At the LHC, the X(3872) was first observed by the LHCb Collabora-
tion [6], which finally confirmed its quantum numbers to be 1++ [7]. A particularly interesting aspect of
the X(3872) is the closeness of its mass, 3871.69 ± 0.17MeV [8], to the D0D̄∗0 threshold, such that it was
hypothesised to be a D0D̄∗0 molecule with a very small binding energy [9]. A cross-section measurement
of promptly produced X(3872) was performed by CMS [10] as a function of pT, and showed the non-
relativistic QCD (NRQCD) prediction [11] for prompt X(3872) production, assuming a D0D̄∗0 molecule,
to be too high, although the shape of the pT dependence was described fairly well. A later interpretation
of X(3872) as a mixed χc1(2P)–D0D̄∗0 state, where the X(3872) is produced predominantly through its
χc1(2P) component, was adopted in conjunction with the next-to-leading-order (NLO) NRQCD model
and fitted to CMS data, showing good agreement [12].

ATLAS previously observed the X(3872) state while measuring the cross section of prompt and non-
prompt ψ(2S ) meson production in the J/ψπ+π− decay channel with 2011 data at a centre-of-mass en-
ergy

√
s = 7TeV [13]. ATLAS later performed cross-section measurements for J/ψ and ψ(2S ) decaying

through the µ+µ− channel at
√

s = 7TeV and
√

s = 8TeV [14].

In this analysis, a measurement of the differential cross sections for the production of ψ(2S ) and X(3872)
states in the decay channel J/ψπ+π− is performed, using 11.4 fb−1 of proton–proton collision data collec-
ted by the ATLAS experiment at the LHC at

√
s = 8TeV. The J/ψπ+π− final state allows good invariant

mass resolution through the use of a constrained fit, and provides a straightforward way of comparing the
production characteristics of ψ(2S ) and X(3872) states, which are fairly close in mass. The prompt and
non-prompt contributions for ψ(2S ) and X(3872) are separated, based on an analysis of the displacement
of the production vertex. Non-prompt production fractions for ψ(2S ) and X(3872) are measured, and the
X(3872)/ψ(2S ) production ratios are measured separately for prompt and non-prompt components. The
non-prompt results show that while the non-prompt ψ(2S ) data is readily described by a traditional single-
effective-lifetime fit, there are indications in the non-prompt X(3872) data which suggest introducing a
two-lifetime fit with both a short-lived and long-lived component. Results are presented here based on
both the single- and two-lifetime fit models. In the two-lifetime case, assuming that the short-lived non-
prompt component of X(3872) originates from the decays of Bc mesons, the best-fit fractional contribution
of the Bc component is determined. The distributions of the dipion invariant mass in ψ(2S ) → J/ψπ+π−

and X(3872) → J/ψπ+π− decays are also measured. Comparisons are made with theoretical models and
available experimental data.

2 The ATLAS detector

The ATLAS detector [15] is a cylindrical, forward-backward symmetric, general-purpose particle de-
tector. The innermost part of the inner detector (ID) comprises pixel and silicon microstrip (SCT) tracking
technology for high-precision measurements, complemented further outwards by the transition radiation
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tracker (TRT). The inner detector spans the pseudorapidity1 range |η| < 2.5 and is immersed in a 2 T
axial magnetic field. Enclosing the ID and the solenoidal magnet are the electromagnetic and hadronic
sampling calorimeters, which provide good containment of the electromagnetic and hadronic showers in
order to limit punch-through into the muon spectrometer (MS). Surrounding the calorimeters, the MS cov-
ers the rapidity range |η| < 2.7 and utilises three air-core toroidal magnets, each consisting of eight coils,
generating a magnetic field providing 1.5–7.5 T·m of bending power. The MS consists of fast-trigger
detectors (thin-gap chambers and resistive plate chambers) as well as precision-measurement detectors
(monitored drift tubes and cathode strip chambers).

The ATLAS detector uses a three-level trigger system in order to select 300 Hz of interesting events to
be written out from the 20 MHz of proton bunch collisions. This analysis uses a dimuon trigger with the
lowest available transverse momentum threshold of 4 GeV for each muon. The level-1 muon trigger finds
regions-of-interest (RoIs) by searching for hit coincidences in layers of the muon trigger detectors inside
predefined geometrical windows. The software-based two-stage high-level trigger (HLT) is seeded by the
level-1 RoIs, and uses more precise MS and ID information to reconstruct the final muon trigger objects
with a resolution comparable to the full offline reconstruction.

3 Event selection

Events used in this analysis are triggered by a pair of muons successfully fitted to a common vertex.
The data sample corresponds to an integrated luminosity of 11.4 fb−1 [16], collected at a proton–proton
collision energy

√
s = 8TeV. Each muon candidate reconstructed offline is required to have good spatial

matching to a trigger object, satisfying ∆R ≡
√

(∆η)2 + (∆φ)2 < 0.01. Events where two oppositely
charged muon candidates are reconstructed with pseudorapidity |ηµ| < 2.3 and transverse momenta pµT >
4GeV are kept for further analysis only if the invariant mass of the dimuon system falls within ±120 MeV
of the mass of the J/ψ meson, m(J/ψ) = 3096.916 ± 0.011 MeV [8].

The two muon tracks are fitted to a common vertex with a loose cut on fit quality, χ2 < 200. The dimuon
invariant mass is then constrained to the J/ψmass, and the four-track vertex fit of the two muon tracks and
pairs of non-muon tracks is performed to find J/ψπ+π− candidates. The two non-muon tracks are assigned
pion masses, and are required to have opposite charges and to satisfy the conditions pπT > 0.6 GeV,
|ηπ| < 2.4. Four-track candidates with fit χ2 probability P(χ2) < 4% are discarded.

Only J/ψπ+π− combinations with rapidity y within the range |y| < 0.75 are considered in this analysis,
with most of the contributing tracks measured within the barrel part of the detector |η| . 1 where the
tracking resolution is optimal. Then the transverse momenta of the J/ψπ+π− candidates are required to
be within the range 10 GeV< pT < 70 GeV.

Further selection requirements are applied to the remaining J/ψπ+π− combinations:

∆R(J/ψ, π±) < 0.5, Q < 0.3GeV, (1)

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward.
Polar coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity η
is defined in terms of the polar angle θ as η = − ln tan(θ/2), and the transverse momentum pT is defined as pT = p sin θ. The
rapidity y is defined as y = 0.5 ln[(E + pz)/(E − pz)], where E and pz = p cos θ refer to energy and longitudinal momentum,
respectively.
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where ∆R(J/ψ, π±) is the angular distance between the momenta of the dimuon system and each pion
candidate, while Q ≡ m(J/ψπ+π−) − m(J/ψ) − m(π+π−). Here m(J/ψπ+π−) and m(π+π−) are the fitted
invariant masses of the µ+µ−π+π− and the dipion system, respectively. These requirements are found to
be > 90% efficient for the signal from ψ(2S ) and X(3872) decays, while significantly suppressing the
combinatorial background.

The invariant mass distribution of the dimuons contributing to the selected J/ψπ+π− combinations is
shown in Figure 1(a) between the dashed vertical lines. The distribution is fitted with the sum of a
second-order polynomial background and a double-Gaussian function, which contains about 3.6 M J/ψ
candidates. The invariant mass distribution of the J/ψπ+π− candidates selected for further analysis is
presented in Figure 1(b). The fitted function is the sum of a fourth-order polynomial background and two
double-Gaussian functions. The double-Gaussian functions for ψ(2S ) and X(3872) contain about 470 k
and 30 k candidates, respectively.

Monte Carlo (MC) simulation is used to study the selection and reconstruction efficiencies. The MC
samples with b-hadron production and decays are generated with Pythia 6.4 [17], complemented, where
necessary, with a dedicated extension for Bc production based on calculations from Refs. [18–21]. The
decays of b-hadrons are then simulated with EvtGen [22]. The generated events are passed through a full
simulation of the detector using the ATLAS simulation framework [23] based on Geant4 [24, 25] and
processed with the same software as that used for the data.
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Figure 1: (a) The invariant mass distribution of the J/ψ candidates satisfying all selection criteria except the
±120MeV J/ψ mass window requirement indicated here by the dotted vertical lines. The curve shows the result of
a fit with a double-Gaussian function for signal and a second-order polynomial for background. (b) Invariant mass
of the selected J/ψπ+π− candidates collected over the full pT range 10–70 GeV and the rapidity range |y| < 0.75
after selection requirements. The curve shows the results of the fit using double-Gaussian functions for the ψ(2S )
and X(3872) peaks and a fourth-order polynomial for the background. The X(3872) mass range is highlighted in
the inset.
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4 Analysis method

The production cross sections of the ψ(2S ) and X(3872) states decaying to J/ψπ+π− are measured in five
bins of J/ψπ+π− transverse momentum, with bin boundaries (10, 12, 16, 22, 40, 70) GeV.

The selected J/ψπ+π− candidates are weighted in order to correct for signal loss at various stages of the
selection process. Following previous similar analyses [13, 14] a per-candidate weight ω was calculated
as

ω =
[
A(pT, y) · εtrig(pµ

±

T , η
µ± , yJ/ψ) · εµ(pµ+

T , ηµ+) · εµ(pµ−T , ηµ−) · επ(pπ+
T , ηπ+) · επ(pπ−T , ηπ−)

]−1
. (2)

Here, pT and y stand for the transverse momentum and rapidity of the J/ψπ+π− candidate, yJ/ψ is the
rapidity of the J/ψ candidate, while pπ

±

T , pµ
±

T , ηπ
±

and ηµ
±

are transverse momenta and pseudorapidities of
the respective pions and muons. The trigger efficiency εtrig and the muon reconstruction efficiency εµ were
obtained using data-driven tag-and-probe methods described in Refs. [14, 26]. The pion reconstruction
efficiency επ is obtained through MC simulations using the method described in Ref. [13].

The acceptance A(pT, y) is defined as the probability that the muons and pions comprising a J/ψπ+π−

candidate with transverse momentum pT and rapidity y fall within the fiducial limits described in Sec-
tion 3. The acceptance map is created using generator-level simulation, with small reconstruction-level
corrections applied at a later stage (see Ref. [14] for more details). The different quantum numbers of
the ψ(2S ) and X(3872) (JPC = 1−− and 1++, respectively) cause a difference in the expected dependence
of the acceptance on the spin-alignments of the two states. The cross sections measured in this paper
are obtained assuming no spin-alignment, but appropriate sets of correction factors for a number of ex-
treme spin-alignment scenarios are calculated and presented in Appendix A for each pT bin, separately
for ψ(2S ) and X(3872).

The efficiencies of the reconstruction-quality requirements and the background-suppression requirements
described in Section 3 are determined using MC simulations, and the corrections are applied in each of the
pT bins, separately for ψ(2S ) and X(3872). These efficiencies are found to vary between 84% and 95%.
The simulated distributions are reweighted to match the data, and values with and without reweighting
are used to estimate systematic uncertainties (see Section 6).

In order to separate prompt production of the ψ(2S ) and X(3872) states from the non-prompt production
occurring via the decays of long-lived particles such as b-hadrons, the data sample in each pT bin is
further divided into intervals of pseudo-proper lifetime τ, defined as

τ =
Lxym
cpT

, (3)

where m is the invariant mass, pT is the transverse momentum and Lxy is the transverse decay length of
the J/ψπ+π− candidate. Lxy is defined as

Lxy =
~L · ~pT

pT
, (4)

where ~L is the vector pointing from the primary pp collision vertex to the J/ψπ+π− vertex, while ~pT is
the transverse momentum vector of the J/ψπ+π− system. The coordinates of the primary vertices (PV)
are obtained from charged-particle tracks with pT > 0.4 GeV not used in the decay vertices, and are
transversely constrained to the luminous region of the colliding beams. The matching of a J/ψπ+π−
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candidate to a PV is made by finding the one with the smallest three-dimensional impact parameter,
calculated between the J/ψπ+π− momentum and each PV.

Based on an analysis of the lifetime resolution and lifetime dependence of the signal, four lifetime inter-
vals were defined:

w0 : −0.3 ps < τ(J/ψππ) < 0.025 ps,

w1 : 0.025 ps < τ(J/ψππ) < 0.3 ps,

w2 : 0.3 ps < τ(J/ψππ) < 1.5 ps,

w3 : 1.5 ps < τ(J/ψππ) < 15.0 ps.

In each of these intervals, and for each pT bin, the invariant mass distribution of the J/ψπ+π− system is
built using fully corrected weighted events. These distributions are shown in Figure 2 for representative
pT bins.

In order to determine the yields of the ψ(2S ) and X(3872) signals, the distributions are fitted in each
lifetime interval to the function:

f (m) = Yψ
(

f1Gψ
1 (m) + (1 − f1) Gψ

2 (m)
)

+ YX
(

f1GX
1 (m) + (1 − f1) GX

2 (m)
)

+N(m − mth)p1ep2(m−mth)P(m − mth),
(5)

where the threshold mass mth = mJ/ψ + 2mπ = 3376.06 MeV. The ψ(2S ) and X(3872) signal yields Yψ

and YX , coefficients of the second-order polynomial P, parameters p1 and p2, and the normalisation of the
background term N, are determined from the fits. Signal peaks for ψ(2S ) and X(3872) are described by
normalised double-Gaussian functions with common means: Gψ

1 (m) and GX
1 (m) are the narrower Gaussian

functions with respective widths σψ and σX , while Gψ
2 (m) and GX

2 (m) are wider Gaussian functions with
widths 2σψ and 2σX . The fraction of the narrower Gaussian function f1 is assumed to be the same for
ψ(2S ) and X(3872), while the widths σψ and σX are related by σX = κσψ. The parameters f1 and κ are
fixed for the main fits to the values f1 = 0.76 ± 0.04, κ = 1.52 ± 0.05 as determined from a fit applied
in the range 16 GeV< pT < 70 GeV, which offers a better signal-to-background ratio than the full range,
and is varied within these errors in the systematic uncertainty studies. The fit quality is found to be good
throughout the range of transverse momenta and lifetimes. The yields extracted from the fits are shown
in Table 1 for the ψ(2S ) and Table 2 for the X(3872).

Corrected yields of ψ(2S) [×105] vs. pT [GeV]
τ window 10–12 12–16 16–22 22–40 40–70

w0 17.48 ± 0.36 11.03 ± 0.11 3.53 ± 0.03 1.14 ± 0.01 0.078 ± 0.004
w1 14.07 ± 0.37 9.04 ± 0.10 2.94 ± 0.03 1.01 ± 0.01 0.071 ± 0.003
w2 9.13 ± 0.29 7.04 ± 0.09 2.97 ± 0.03 1.27 ± 0.01 0.104 ± 0.004
w3 6.74 ± 0.16 5.21 ± 0.06 2.22 ± 0.02 0.94 ± 0.01 0.081 ± 0.003

Table 1: Fitted yields of ψ(2S) in bins of pseudo-proper lifetime and pT. Uncertainties are statistical only.
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Figure 2: The invariant mass spectra of the J/ψπ+π− candidates to extract ψ(2S ) and X(3872) signal for each
pseudo-proper lifetime window in the pT bin (a) [12, 16]GeV and (b) [22, 40]GeV. Shown underneath the fits are
the corresponding pull distributions, with respective values of χ2 per degree of freedom for each fit.
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Corrected yields of X(3872) [×104] vs. pT [GeV]
τ window 10–12 12–16 16–22 22–40 40–70

w0 10.8 ± 2.3 10.55 ± 0.76 3.53 ± 0.26 1.19 ± 0.11 0.093 ± 0.030
w1 9.3 ± 2.7 8.21 ± 0.71 2.60 ± 0.24 0.72 ± 0.11 0.039 ± 0.023
w2 4.1 ± 1.7 3.83 ± 0.63 1.29 ± 0.21 0.45 ± 0.10 0.036 ± 0.023
w3 2.06 ± 0.81 2.09 ± 0.34 0.98 ± 0.13 0.30 ± 0.06 0.020 ± 0.014

Table 2: Fitted yields of X(3872) in bins of pseudo-proper lifetime and pT. Uncertainties are statistical only.

Once the corrected yields Yψ and YX are determined in each pT bin, the double differential cross sections
(times the product of the relevant branching fractions) can be calculated:

B(i→ J/ψπ+π−)B(J/ψ→ µ+µ−)
d2σ(i)
dpTdy

=
Y i

∆pT∆y
∫
Ldt

, (6)

where i stands for ψ(2S ) or X(3872),
∫
Ldt is the integrated luminosity, while ∆pT and ∆y are widths of the

relevant transverse momentum and rapidity bins, with ∆y = 1.5. B(i → J/ψπ+π−) and B(J/ψ → µ+µ−)
are the branching fractions of these respective decays.

5 Lifetime fits

The probability density function (PDF) describing the dependence of ψ(2S ) and X(3872) signal yields on
the pseudo-proper lifetime τ is a superposition of prompt (P) and non-prompt (NP) components:

Fi(τ) = (1 − f i
NP)Fi

P(τ) + f i
NPFi

NP(τ), (7)

where fNP is the non-prompt fraction, while i stands for either ψ(2S ) or X(3872). The prompt components
of ψ(2S ) and X(3872) production should not have any observable decay length, and hence FP(τ) is effect-
ively described by the lifetime resolution function Fres(τ), assumed to be the same for ψ(2S ) and X(3872)
signals. This was verified with simulated data samples. The resolution function Fres(τ) is parameterised
as a weighted sum of three normalised Gaussian functions with a common mean, with respective width
parameters σ1 = στ, σ2 = 2στ and σ3 = 4στ. The resolution parameter στ and the relative weights of
the three Gaussian functions are determined separately for each analysis pT bin, using two-dimensional
mass–lifetime unbinned maximum-likelihood fits on the subset of data which contains a narrow range of
masses around the ψ(2S ) peak. The fitted values for στ are within the range of 32–52 fs, with the weight
of the narrowest Gaussian function steadily increasing with pT from 6% to about 50%.

The simplest description of the non-prompt components of the signal PDF is given by a single one-sided
exponential smeared with the resolution function, with the effective lifetime τeff determined from the fit.
This model, referred to as a ‘single-lifetime fit’, is applied to the ψ(2S ) and X(3872) yields from Tables 1
and 2, and the results of the corresponding binned minimum-χ2 fits are shown in Figure 3.

Figure 3(a) shows the effective pseudo-proper lifetimes τeff for non-prompt ψ(2S ) and X(3872) signals in
bins of pT (see also Table 3). While for ψ(2S ) the fitted values of τeff are measured to be around 1.45 ps
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pT bin [GeV] τeff(ψ(2S )) [ps] τeff(X(3872)) [ps]
10–12 1.44 ± 0.04 1.12 ± 0.40
12–16 1.43 ± 0.02 1.18 ± 0.17
16–22 1.43 ± 0.01 1.45 ± 0.21
22–40 1.41 ± 0.01 1.37 ± 0.26
40–70 1.44 ± 0.04 1.27 ± 0.62

Table 3: Effective pseudo-proper lifetimes for non-prompt ψ(2S ) and X(3872) obtained with the single-lifetime fit
model.
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Figure 3: (a) Measured effective pseudo-proper lifetimes for non-prompt X(3872) and ψ(2S ). (b) Ratio of non-
prompt production cross sections times branching fractions, X(3872)/ψ(2S ), in the single-lifetime fit model. The
measured distribution is fitted to the kinematic template described in the text.

in all pT bins, the signal from X(3872) at low pT tends to have shorter lifetimes, possibly hinting at a
different production mechanism at low pT.

In Figure 3(b) the ratio of non-prompt production cross sections of X(3872) and ψ(2S ), times respective
branching fractions, for the single-lifetime fit is plotted as a function of transverse momentum. The meas-
ured distribution is compared to the kinematic template, which is calculated as a ratio of the simulated pT
distributions of non-prompt X(3872) and non-prompt ψ(2S ), assuming that the same mix of the parent
b-hadrons contributes to both signals. The shape of the template reflects the kinematics of the decay of a
b-hadron into ψ(2S ) or X(3872), with the width of the band showing the range of variation for extreme
values of the invariant mass of the recoiling hadronic system. A fit of the measured ratio to this template
allows determination of the ratio of the average branching fractions:

R1L
B =

B(B→ X(3872) + any)B(X(3872)→ J/ψπ+π−)
B(B→ ψ(2S ) + any)B(ψ(2S )→ J/ψπ+π−)

= (3.95 ± 0.32(stat) ± 0.08(sys)) × 10−2, (8)

where the systematic uncertainty reflects the variation of the kinematic template. The χ2 of the fit is 5.4
for the four degrees of freedom (dof).
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An alternative lifetime model, also implemented in this analysis, allows for two non-prompt contributions
with distinctly different effective lifetimes (the ‘two-lifetime fit’). The statistical power of the data sample
is insufficient for determining two free lifetimes, especially in the case of X(3872) production, so in this
fit model the non-prompt PDFs are represented in each pT bin by a sum of two contributions with different
fixed lifetimes, and a relative weight determined by the fit:

Fi
NP(τ) = (1 − f i

SL)FLL(τ) + f i
SLFSL(τ). (9)

Here, the labels SL and LL refer to short-lived and long-lived non-prompt components, respectively, and
f i
SL are the short-lived non-prompt fractions for i = ψ(2S ), X(3872). The PDFs FSL(τ) and FLL(τ) are

parameterised as single one-sided exponential functions with fixed lifetimes, smeared with the lifetime
resolution function Fres(τ) described above. Any long-lived part of the non-prompt contribution is as-
sumed to originate from the usual mix of B±, B0, Bs mesons and b-baryons, while any short-lived part
would be due to the contribution of B±c mesons.

Simulations show that the observed effective pseudo-proper lifetime of ψ(2S ) or X(3872) from Bc decays
depends on the invariant mass of the hadronic system recoiling from the hidden-charm state. Within the
kinematic range of this measurement, it varies from about 0.3 ps for small masses of the recoiling system
to about 0.5 ps for the largest ones. The majority of the decays are expected to have masses of the recoiling
system between these values, therefore τSL is taken as the mean of the two extremes, 0.40 ± 0.05 ps.

The effective pseudo-proper lifetime of the long-lived component, τLL, is determined from the two-
lifetime test fits to the ψ(2S ) mass range, with τLL free and allowing for an unknown contribution of
a short-lived component with lifetime τSL. Across the pT bins, τLL is found to be within the range
1.45 ± 0.05 ps. The effective pseudo-proper lifetimes τLL and τSL are fixed to the above values for the
main fits, and are varied within the quoted errors during systematic uncertainty studies.

Figure 4 shows the pT dependence of the ratio of X(3872) to ψ(2S ) cross sections (times respective
branching fractions), separately for prompt and non-prompt production contributions. The non-prompt
production cross section of X(3872) is further split into short-lived and long-lived components. The short-
lived contribution to non-prompt ψ(2S ) production is found to be not significant (see Table 6 below). The
measured ratio of long-lived X(3872) to long-lived ψ(2S ), shown in Figure 4(b) with blue triangles, is
fitted with the MC kinematic template described before to obtain

R2L
B =

B(B→ X(3872) + any)B(X(3872)→ J/ψπ+π−)
B(B→ ψ(2S ) + any)B(ψ(2S )→ J/ψπ+π−)

= (3.57 ± 0.33(stat) ± 0.11(sys)) × 10−2, (10)

with χ2/dof = 2.3/4. This value of RB is somewhat lower than the corresponding result in Equation (8)
obtained from the same data with the single-lifetime fit model. Either is significantly smaller than the
value 0.18 ± 0.08 obtained by using the estimate for the numerator, (1.9 ± 0.8) × 10−4 [11], obtained
from the Tevatron data, and the world average values for the branching fractions in the denominator:
B(B→ ψ(2S )) = (3.07 ± 0.21) × 10−3, B(ψ(2S )→ J/ψπ+π−) = (34.46 ± 0.30)%.
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Figure 4: Ratio of cross sections times branching fractions, X(3872)/ψ(2S ), for (a) prompt and (b) non-prompt
production, in the two-lifetime fit model. In (b), the total non-prompt ratio (black circles) is separated into short-
lived (red squares) and long-lived (blue triangles) components for the X(3872), shown with respective fits described
in the text. The data points are slightly shifted horizontally for visibility.

Production of Bc mesons in high-energy hadronic collisions at low transverse momentum is expected to be
dominated by non-fragmentation processes [27]. These processes are expected to have pT dependence ∝
p−2

T relative to the fragmentation contribution, while it is the fragmentation contribution which dominates
the production of long-lived b-hadrons [28].

So the ratio of short-lived non-prompt X(3872) to non-prompt ψ(2S ), shown in Figure 4(b) with red
squares, is fitted with a function a/p2

T to find a = 2.04±1.43(stat)±0.34(sys)GeV2, with χ2/dof = 0.43/4.
This value of a, and the measured non-prompt yields of X(3872) and ψ(2S ) states, are used to determine
the fraction of non-prompt X(3872) from short-lived sources, integrated over the pT range (pT > 10GeV)
covered in this measurement, giving:

σ(pp→ Bc)B(Bc → X(3872))
σ(pp→ non-prompt X(3872))

= (25 ± 13(stat) ± 2(sys) ± 5(spin))%, (11)

where the last uncertainty comes from varying the spin-alignment of X(3872) over the extreme scenarios
discussed in Appendix A. Since Bc production is only small fraction of the inclusive beauty production,
this value of the ratio would mean that the production of X(3872) in Bc decays is strongly enhanced
compared to its production in the decays of other b-hadrons.

The two-lifetime fits are used for ψ(2S ) and X(3872) to obtain all subsequent results in this paper, unless
specified otherwise, with the relatively small differences between the results of the single-lifetime and
two-lifetime fits being highlighted alongside all other sources of systematic uncertainty.

6 Systematic uncertainties

The sources of various uncertainties and their smallest (Min), median (Med) and largest (Max) values
across the pT bins are summarised in Table 4 for the differential cross sections of X(3872) and ψ(2S )
states, and in Table 5 for the measured fractions.
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ψ(2S )[%] X(3872)[%]
Source of uncertainty Min Med Max Min Med Max

Statistical 0.9 1.4 5.4 7.3 9.9 63
Trigger eff. 1.0 1.3 2.5 1.1 1.3 2.6
Muon tracking 2.0 2.0 2.0 2.0 2.0 2.0
Muon reconstruction eff. 0.2 0.2 0.3 0.2 0.2 0.4
Pion reconstruction eff. 2.5 2.5 2.5 2.5 2.5 2.5
Bkgd suppression req. 0.8 0.8 3.0 2.0 3.0 6.0
Mass fit model variation 0.6 0.8 1.2 0.9 1.6 2.6
Short-lifetime variation 0.1 0.2 0.3 0.2 0.7 1.7
Long-lifetime variation 0.6 1.0 1.2 0.3 0.6 0.9
Lifetime resolution model 0.4 1.5 4.0 0.6 2.6 3.4
Total systematic 3.5 3.6 6.4 4.1 4.9 7.5

(2L-fit − 1L-fit) / 2L-fit (prompt) −0.1 −0.4 −0.6 −0.3 −0.5 −3.4
(2L-fit − 1L-fit) / 2L-fit (non-prompt) +0.1 +0.4 +0.7 +0.1 +1.4 +9.8

Table 4: Summary of relative uncertainties for the ψ(2S ) and X(3872) cross-section measurements showing the
smallest (Min), median (Med) and largest (Max) values across the pT bins. The last two rows are described in the
text. The uncertainty of the integrated luminosity (1.9%) is not included.

Uncertainties in the trigger efficiency, and in the muon and pion reconstruction efficiencies are determ-
ined using the procedures adopted in Ref. [13]. Additional uncertainty of ±2% [14] is assigned to the
tracking efficiency of the two muons within the ID, primarily due to its dependence on the total number
of pp collisions per event. The uncertainties in matching generator-level particles to reconstruction-level
particles, and in the detector material simulation within the barrel part of the inner detector are found to
be the main contributions to the systematic uncertainty of the pion reconstruction efficiency, estimated to
be ±2.5%. Such efficiency uncertainties largely cancel in the various non-prompt fractions (Table 5).

The uncertainties in the efficiency of the background suppression requirements (see Section 4), obtained
by combining MC statistical errors and systematic errors in quadrature, are in the range 1%–6%. The
uncertainties in the mass fits are estimated by varying the values of parameters that were fixed during the
main fit, and by increasing the order of the polynomial P in the background parameterisation (see Equa-
tion (5)). Similarly, the systematic uncertainties of the lifetime fits are determined by varying the values
of the fixed lifetimes and the parameters of the lifetime resolution function within their predetermined
ranges.

The statistical and individual systematic uncertainties are added in quadrature to form the total error
shown in the tables. In general, the results for X(3872) are dominated by statistical errors, while for
ψ(2S ) statistical and systematic uncertainties are of comparable size.

The last rows in Tables 4 and 5 show the relative differences between the values obtained using the single-
and two-lifetime fits, labelled as ‘1L-fit’ and ‘2L-fit’, respectively. For the quantities listed in Tables 4
and 5, these differences were found to be generally fairly small, compared to the combined systematic
uncertainty from other sources.
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Absolute uncertainty [%]
f ψNP f X

NP f X
SL

Source of uncertainty Min Med Max Min Med Max Min Med Max

Statistical 0.4 0.5 1.4 4.2 5.8 17.8 16.4 25.8 63
Trigger eff. 0.1 0.1 0.3 0.1 0.1 0.4 0.0 0.1 0.1
Muon tracking eff. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Muon reconstruction eff. 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1
Pion reconstruction eff. 0.4 0.5 0.7 0.3 0.3 0.4 0.0 0.3 0.4
Bkgd suppression req. 0.8 1.1 1.4 0.6 0.7 0.7 0.1 0.1 0.7
Mass fit model variation 0.1 0.1 0.2 0.2 0.6 1.8 1.0 1.3 2.4
Lifetime resolution variation 0.2 0.7 1.7 0.4 1.0 2.9 1.8 3.6 12.1
Short-lifetime variation 0.0 0.1 0.1 0.1 0.4 0.8 0.3 0.7 2.8
Long-lifetime variation 0.3 0.4 0.4 0.2 0.2 0.3 3.3 4.0 4.4
Total systematic 1.3 1.5 2.4 1.0 1.4 3.6 4.1 4.9 13.5

(2L-fit − 1L-fit) / 2L-fit +0.4 +0.6 +0.9 +0.9 +3.1 +9.1 − − −

Table 5: Summary of uncertainties for ψ(2S ) and X(3872) non-prompt fractions, and short-lived non-prompt frac-
tion for X(3872) production, showing the smallest (Min), median (Med) and largest (Max) values across the pT
bins. The last row is described in the text.

7 Results and discussion

The measured differential cross section (times the product of the relevant branching fractions) for prompt
production of ψ(2S ) is shown in Figure 5(a). It is described fairly well by the NLO NRQCD model [29]
with long-distance matrix elements (LDMEs) determined from the Tevatron data, although some over-
estimation is observed at the highest pT values. The kT factorisation model [30], which includes the
colour-octet (CO) contributions tuned to 7TeV CMS data [31] in addition to colour-singlet (CS) pro-
duction, describes ATLAS data fairly well, with a slight underestimation at higher pT. The NNLO*
Colour-Singlet Model (CSM) predictions [32] are close to the data points at low pT, but significantly
underestimate them at higher pT values. The measured differential cross section for non-prompt ψ(2S )
production is presented in Figure 5(b), compared with the predictions of the FONLL calculation [28].
The calculation describes the data well over the whole range of transverse momenta.

Similarly, the differential cross section for prompt production of X(3872) is shown in Figure 6(a). It is
described within the theoretical uncertainty by the prediction of the NRQCD model which, in this case,
considers X(3872) to be a mixture of χc1(2P) and a D0D̄∗0 molecular state [12], with the production be-
ing dominated by the χc1(2P) component and the normalisation fixed through the fit to CMS data [10].
The measured differential cross section for non-prompt production of X(3872) is shown in Figure 6(b).
This is compared to a calculation based on the FONLL model prediction for ψ(2S ), recalculated for
X(3872) using the kinematic template for the non-prompt X(3872)/ψ(2S ) ratio shown in Figure 3(b) and
the effective value of the product of the branching fractions B(B → X(3872))B(X(3872) → J/ψπ+π−) =

(1.9 ± 0.8) × 10−4 estimated in Ref. [11] based on the Tevatron data [33]. This calculation overestim-
ates the data by a factor increasing with pT from about four to about eight over the pT range of this
measurement.

13



 [GeV]
T

(2S) pψ
10 20 30 40 50 60 70

dy
[n

b/
G

eV
]

T
/d

p
σ2

)d- π+ π)- µ+ µ(
ψ

J/
→

(2
S

)
ψ

B
r(

6−10

5−10

4−10

3−10

2−10

1−10

ATLAS data

NLO NRQCD

NNLO* CSM

 fact., CS + COTk

ATLAS
-1=8 TeV, 11.4 fbs

(2S)ψPrompt 

 [GeV]
T

(2S) pψ
10 20 30 40 50 60 70

T
he

or
y 

/ D
at

a

0

0.5

1

1.5

2

2.5
ATLAS data

NNLO* CSM

NLO NRQCD

 fact., CS + COTk

(a)

 [GeV]
T

(2S) pψ 
10 20 30 40 50 60 70

dy
[n

b/
G

eV
]

T
/d

p
σ2

)d- π+ π)- µ+ µ(
ψ

J/
→

(2
S

)
ψ

B
r(

6−10

5−10

4−10

3−10

2−10

1−10

ATLAS data

FONLL

ATLAS
-1=8 TeV, 11.4 fbs

(2S)ψNon-prompt 

 [GeV]
T

(2S) pψ 
10 20 30 40 50 60 70

T
he

or
y 

/ D
at

a

0

0.5

1

1.5

2

2.5
ATLAS data FONLL

(b)

Figure 5: Measured cross section times branching fractions as a function of pT for (a) prompt ψ(2S ) production
compared to NLO NRQCD [29], the kT factorisation model [30] and the NNLO* CSM [32], and (b) non-prompt
ψ(2S ) production compared to FONLL [28] predictions.

The non-prompt fractions of ψ(2S ) and X(3872) production are shown in Figure 7. In the case of ψ(2S ),
fNP increases with pT, in good agreement with measurements obtained with dimuon decays of ψ(2S )
from ATLAS [14] and CMS [34]. The non-prompt fraction of X(3872) shows no sizeable dependence on
pT. This measurement agrees within errors with the CMS result obtained at

√
s =7 TeV [10].

The numerical values of all cross sections and fractions shown in Figures 4–7 are presented in Table 6.
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Figure 6: Measured cross section times branching fractions as a function of pT for (a) prompt X(3872) compared to
NLO NRQCD predictions with the X(3872) modelled as a mixture of χc1(2P) and a D0D̄∗0 molecular state [12], and
(b) non-prompt X(3872) compared to the FONLL [28] model prediction, recalculated using the branching fraction
estimate from Ref. [11] as described in the text.
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8 Dipion invariant mass spectra

The distributions of the dipion invariant mass mππ in the ψ(2S ) → J/ψπ+π− and X(3872) → J/ψπ+π−

decays are measured by determining the corrected yields of ψ(2S ) and X(3872) signals in narrow bins of
mππ. The two additional selection requirements (Equation (1)) used specifically to reduce combinatorial
background in the cross-section measurement, are found to bias the mππ distributions and are therefore
replaced for this study by requirements on the pseudo-proper lifetime significance, τ/∆τ < 2.5, and the
transverse momentum of the J/ψπ+π− candidates, pT > 12 GeV.

The invariant mass distributions of the corrected J/ψπ+π− candidates selected for this analysis are shown
in Figure 8(a) for the mass range around ψ(2S ) peak and in Figure 8(b) for X(3872).
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Figure 8: The invariant mass distributions of the J/ψπ+π− candidates to extract (a) ψ(2S ) and (b) X(3872) signal
integrated over a wide range of mππ.

The interval of allowed mππ values is subdivided into 21 and 11 bins for ψ(2S ) and X(3872), respectively.
In each mππ bin, the signal yield is extracted using a fit to the function

f (m) = Y
[
f1G1(m) + (1 − f1)G2(m)

]
+ Nbkg

(
m − p0

m0 − p0

)p1

e−p2(m−p0)−p3(m−p0)2
, (12)

where m is the invariant mass of the J/ψπ+π− system, Y is the yield of the parent resonance, Nbkg is the
normalisation factor of the background PDF, m0 is the world average mass [8] of the parent resonance,
and p0,1,2,3 are free parameters. The signals are described by the same double-Gaussian PDFs f1G1(m) +

(1 − f1)G2(m) as the ones used in the cross-section analysis described in Section 4. In most mππ bins
the position of the signal peak is determined from the fit; however, in some bins with small signal yields
it is necessary to fix the centre and the width of the signal peak to the values obtained from the fits
over the whole mππ range shown in Figure 8(b). As in the cross-section analysis, the fraction of the
narrow Gaussian function f1 is fixed to 0.76 ± 0.04, varied within the range of ±0.04 during systematic
uncertainty studies. In another variation a first-order polynomial is added as a factor multiplying the PDF
in Equation (12). For both the ψ(2S ) and X(3872) samples, the errors from the fits in mππ bins are found
to be statistically dominated.
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Figure 9: (a) Normalised differential decay width of ψ(2S ) → J/ψ(→ µ+µ−)π+π− in bins of dipion invariant
mass over the range 0.280GeV < mππ < 0.595GeV, fitted with the Voloshin–Zakharov model. Also shown is
the normalised mππ phase-space distribution (red shaded histogram). (b) Normalised differential decay width of
X(3872) → J/ψ(→ µ+µ−)π+π− in bins of dipion invariant mass over the range 0.28GeV < mππ < 0.79GeV. Also
shown is the MC prediction for the decay X(3872) → J/ψ(→ µ+µ−)ρ0(→ π+π−) (blue histogram) and the normal-
ised distribution of mππ phase-space (red shaded histogram).

The resulting normalised differential distributions in mππ are shown in Figure 9(a) for ψ(2S )→ J/ψπ+π−

and in Figure 9(b) for X(3872)→ J/ψπ+π− decays. The solid blue curve in Figure 9(a) represents a fit to
the data points with the Voloshin–Zakharov distribution [35]

1
Γ

dΓ

dmππ
∝

(
m2
ππ − λm2

π

)2
× PS, (13)

where PS stands for the dipion phase-space. The fitted value of the parameter λ is found to be λ =

4.16±0.06(stat)±0.03(sys), in agreement with λ = 4.35±0.18 measured by BES [36], and λ = 4.46±0.25
measured by LHCb [37]. The shaded blue histogram in Figure 9(b) is obtained from straightforward
simulations, assuming the dipion system in the decay X(3872)→ J/ψπ+π− is produced purely via the ρ0

meson, and appears to be in good agreement with the data. In both decays the measured mππ spectrum
strongly disfavours the dipion phase-space distribution (shown in Figures 9(a) and 9(b) by the red shaded
area), with the data clearly preferring higher masses in either case.

9 Summary

The measurement of the differential production cross section of ψ(2S ) and X(3872) states in the J/ψπ+π−

final state is carried out using 11.4 fb−1 of
√

s = 8 TeV pp collision data recorded by the ATLAS
detector at the LHC. The prompt and non-prompt production of ψ(2S ) and X(3872) is studied separately,
as a function of transverse momentum in the rapidity region |y| < 0.75 and transverse momentum range
10GeV < pT < 70GeV.

The ψ(2S ) cross-section measurements show good consistency with the theoretical predictions based on
NLO NRQCD and FONLL for prompt and non-prompt production, respectively. The predictions from
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the kT factorisation model with the colour-octet component tuned to 7 TeV CMS data describe the prompt
ψ(2S ) measurement fairly well, while NNLO* colour-singlet model calculations underestimate the data,
especially at higher transverse momenta.

The prompt X(3872) cross-section measurement shows good agreement with the CMS result for trans-
verse momenta 10GeV < pT < 30GeV where they overlap, and extends the range of transverse momenta
up to 70GeV. Good agreement is found with theoretical predictions within the model based on NLO
NRQCD, which considers X(3872) to be a mixture of χc1(2P) and a D0D̄∗0 molecular state, with the pro-
duction being dominated by the χc1(2P) component and the normalisation fixed through the fit to CMS
data.

The non-prompt production of ψ(2S ) is described by the FONLL predictions within the uncertainties. But
the same predictions, recalculated for X(3872) using the branching fraction extracted from the Tevatron
data, overestimate the non-prompt production of X(3872), especially at large transverse momenta.

Two models of lifetime dependence of the non-prompt production are considered: a model with a single
effective lifetime, and an alternative model with two distinctly different effective lifetimes. The two
models give compatible results for the prompt and non-prompt differential cross sections of ψ(2S ) and
X(3872).

Within the single-lifetime model, assuming that non-prompt ψ(2S ) and X(3872) originate from the same
mix of parent b-hadrons, the following result is obtained for the ratio of the branching fractions:

R1L
B =

B(B→ X(3872) + any)B(X(3872)→ J/ψπ+π−)
B(B→ ψ(2S ) + any)B(ψ(2S )→ J/ψπ+π−)

= (3.95 ± 0.32(stat) ± 0.08(sys)) × 10−2. (14)

In the two-lifetime model, the two lifetimes are fixed to expected values for X(3872) originating from
the decays of Bc and from long-lived b-hadrons, respectively, with their relative weight determined from
the fits to the data. The ratio of the branching fractions RB is determined from the long-lived component
alone:

R2L
B =

B(B→ X(3872) + any)B(X(3872)→ J/ψπ+π−)
B(B→ ψ(2S ) + any)B(ψ(2S )→ J/ψπ+π−)

= (3.57 ± 0.33(stat) ± 0.11(sys)) × 10−2. (15)

In the two-lifetime model, the fraction of the short-lived non-prompt component in X(3872) production,
for pT > 10 GeV, is found to be

σ(pp→ Bc + any)B(Bc → X(3872) + any)
σ(pp→ non-prompt X(3872) + any)

= (25 ± 13(stat) ± 2(sys) ± 5(spin))%. (16)

The invariant mass distributions of the dipion system in ψ(2S )→ J/ψπ+π− and X(3872)→ J/ψπ+π− de-
cays are also measured. The results disfavour a phase-space distribution in both cases, and point strongly
to the dominance of the X(3872)→ J/ψρ0 mode in X(3872) decays.
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Appendix

A Spin-alignment

The acceptance of the µ+µ−π+π− final state depends on the spin-alignment of the parent state. Several
polarisation hypotheses were considered, based on the measured quantum numbers of the hidden-charm
states (JP = 1− for ψ(2S ) and J/ψ [8], 1+ for X(3872) [7]) and of the dipion system (0+ in ψ(2S ) →
J/ψπ+π− decay [36], 1− in X(3872)→ J/ψπ+π− [7]). In both decays, the dipion system is assumed to be
in S -wave with respect to the J/ψ.

The spin-alignment scenarios considered in this paper were derived using the helicity formalism [39–41],
and are conveniently classified in terms of the various helicity amplitudes of the parent state, Am, with
m = −1, 0,+1:

• Unpolarised - an incoherent superposition of A− = 1, A0 = 1 and A+ = 1, which is labelled
UNPOL. This is used as the central hypothesis.

• Transversely polarised with either A+ = +1, A0 = 0, A− = 0, or A+ = 0, A0 = 0, A− = +1, which is
labelled T+0.

• Transversely polarised with A+ = +1/
√

2, A0 = 0, A− = +1/
√

2, which is labelled T++.

• Transversely polarised with A+ = −1/
√

2, A0 = 0, A− = +1/
√

2, which is labelled T+−.

• Longitudinally polarised with A+ = 0, A0 = +1, A− = 0, which is labelled LONG.

• Off-Plane Positive - with A+ = −
√

6/3, A0 = +
√

3/3, A− = 0, which is labelled OFFP+.

• Off-Plane Negative - with A+ = +
√

6/3, A0 = +
√

3/3, A− = 0, which is labelled OFFP−.

Average acceptance weights are calculated for each of these scenarios in each of the analysis pT bins. The
ratios of the average weights for each polarisation scenario to those of the unpolarised case are shown
in Figure 10(a) for ψ(2S ) and Figure 10(b) for X(3872), with the values tabulated in Tables 7 and 8,
respectively.

No individual production process can lead to an unpolarised vector state, but an unpolarised vector
state can be observed due to a superposition of several production subprocesses with different spin-
alignments [42]. The polarisation of prompt ψ(2S ) has been measured by CMS [43] and LHCb [44]
and it was found that the angular dependence was close to isotropic, justifying the choice of unpolarised
production for the central hypothesis. The non-prompt ψ(2S ) and X(3872) are unlikely to show signific-
ant spin-alignment, since they are produced from a large number of different incoherent exclusive decays
of parent b-hadrons.
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Figure 10: Correction factors for the (a) ψ(2S ) and (b) X(3872) yields for various polarisation hypotheses.

pT [GeV]
Polarisation hypothesis 10–12 12–16 16–22 22–40 40–70

T+0 1.306 1.277 1.229 1.168 1.098
T++ 1.508 1.331 1.247 1.173 1.099
T+− 1.156 1.228 1.213 1.163 1.097

LONG 0.682 0.698 0.729 0.777 0.848
OFFP+ 1.049 1.042 1.028 1.015 1.005
OFFP− 0.956 0.962 0.974 0.985 0.995

Table 7: Correction factors for various polarisation hypotheses in pT bins for ψ(2S) production.

pT [GeV]
Polarisation hypothesis 10–12 12–16 16–22 22–40 40–70

T+0 0.921 0.920 0.929 0.943 0.960
T++ 0.900 0.915 0.928 0.942 0.960
T+− 0.944 0.925 0.930 0.943 0.960

LONG 1.207 1.212 1.181 1.139 1.091
OFFP+ 0.969 0.974 0.983 0.990 0.997
OFFP− 1.033 1.027 1.018 1.010 1.003

Table 8: Correction factors for various polarisation hypotheses in pT bins for X(3872) production.
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