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In this work we describe the fundamentals of the phenomenon of dielectric dispersion in aqueous colloidal
suspensions, aswell as themost recent advances on the subject.Webegin by establishing the admitteddefinitions of
the permittivity of a heterogeneous system consisting of a certain volume of a material dispersed in the form of
identical spheres (theparticles) in a liquidmedium(anelectrolyte solution). Attention is alsopaid to the relationship
between the electric permittivity of the suspension and the strength and frequency dependence of the dipole
moment induced by the external field.
A thoroughhistorical revision is provided, describing thekey contributions, both experimental and theoretical, to the
development of this field of electrokinetics and interface physics. In fact, elucidation of themechanisms responsible
for the values of the permittivity of disperse systems over a wide enough frequency range is a rich exercise in
electromagnetism, fluid mechanics and electrochemistry of interfaces.
Threemechanismsare typically responsible for thedielectricdispersionof the suspension. Thegammadispersion is a
manifestationof the frequencydependenceof thepermittivityof theaqueouselectrolyte solutionwhere theparticles
are suspended. It is mainly determined by the polar nature of thewatermolecules and its characteristic frequency is
in theGHz range. Thedeltadispersion (typically in theMHz range) is determinedby theMaxwell–Wagner–O'Konski
relaxation mechanism: it occurs because of the different permittivities and conductivities of the particle and the
surrounding medium. Finally, the alpha- or Low Frequency Dielectric Dispersion (LFDD) is a phenomenon
characterized by a huge increase of the permittivity at very low frequencies (kHz range). Its relationship with the
phenomenon of concentration polarization is carefully discussed, as it is an essential feature of the electric permit-
tivity of suspensions.
Themathematical treatment of the problem is rather complex, and analytical solutions are only available in a limited
number of cases. Attention is hence also devoted to describing and comparing the numerical approaches that can be
used. Experimental determination of the (particularly low frequency) dielectric dispersion is complicated mainly
because of the phenomenon of the polarization of the electrode–solution interface. In this contribution we describe
the solutions reported to this problem, both in the frequency and in the time domains.
An interesting aspect of dielectric dispersion determinations, not shared by other techniques, is their applicability to
concentrated suspensions. Themodifications of the theory of the permittivity of suspensions, required to account for
the hydrodynamic and electrical interactions are also described, stressing the fact that suspensions often considered
as dilute are actually far from being so.
The review isfinishedwithadescriptionof themost recentadvances, namely theconsiderationof suspensionsof soft
particles and extensions of the standard electrokinetic model in order to reach a better agreement between theory
and experiments. The conclusion of the work refers to the expected developments, particularly in the field of
experimental determinations (mainly in the high frequency side of the dispersion), and of descriptions of the solid/
liquid interface with corresponding extensions of the standard electrokinetic model.
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1. Introduction

It is probably not an exaggeration to claim that fewphysical quantities
are so informative about the electrical state of the solid/liquid interface,
and its non-equilibrium properties as the permittivity ε⁎ of colloidal
suspensions [1]. If one has the possibility to determine it over a wide
enough frequency range (actuallynot verydemanding: a fewkHz to a few
MHz is sufficient), thenonehasathandaveryversatile technique, that can
be equally well applied to dilute and concentrated suspensions, to
aqueous and non-aqueous systems, or to particles of different shapes, to
mention some examples [1,2].

The key point is that the permittivity is very sensitive to such
quantities as: the particle size and shape, the tendency of the particles to
aggregate or not, the equilibrium electric potential at the slip surface (the
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electrokinetic or ζ potential), the concentrations, charges and diffusion
coefficients of ions in themedium, the volume fraction of dispersed solids,
ϕ, and so forth. Such information is implicit specifically in the frequency
spectrum of the permittivity, the so-called dielectric dispersion of the
colloidal system. The spectrum will be designated as ε⁎(ω), and refers to
the dependence between the permittivity (very often, its relative value
εr⁎(ω)=ε⁎(ω)/ε0, ε0 being the permittivity of vacuum) and the angular
frequencyω of the electric field applied to the suspension.

The permittivity is the macroscopic manifestation of the polariz-
ability of theparticles (in awide sense, as byparticlewemean the solid—
typically, but not necessarily—core and its ionic atmosphere, the electric
double layer). This in turn can be obtained using the basic equations of
electrokinetics, althoughdielectric dispersion isnot, strictly speaking, an
electrokinetic phenomenon, since the relativemotion between the solid
and the liquid (at the slip plane) is not in the basis of the phenomenon.
This is just a question of terminology, and, in the authors' view, the
importance of polarization is so high in electrokinetics that dielectric
dispersion, the pristine manifestation of polarization, cannot be outside
the catalogue of electrokinetic processes.

To these arguments we may add that the analysis of the dielectric
response of dispersed systems is also interesting from a more applied
point of view. It has demonstrated its usefulness wherever structural
changes takeplaceat interfaces, for instance inmonitoring (inapractically
non-invasive manner) the growth of cultured cells or bacteria [3,4]. In
such cases, the evaluation of dielectric dispersion of the cells in their
culture medium provides information on the cell concentration and
growth, their membrane capacity or permeability, their ionic or solvent
exchanges with the surrounding medium, etc. Furthermore, this can be
done in real time, without perturbing the system and no matter the
turbidity of the suspension or the concentration of cells. As an additional
example, online use of dielectric dispersion measurements can be
reported in the biopharmaceutical field, specifically, in the quality control
in drug production or incorporation to colloidal vehicles, or in the
structural analysis of gels and other semisolid systems [5,6].

An exhaustive list of the technological fieldswhere the techniquemay
be useful is out of the scope of this communication. Let us summarize by
saying that dielectric spectroscopy can be extremely useful in the analysis
of various aspects of the solid/liquid interface. However, some of its
drawbacks must also be mentioned: neither theoretical treatments nor
experimental data acquisition is straightforward. In fact, disagreements
between theoretical predictions and experimental data are often reported
[7]. As a proof of these difficulties, let usmention that few equipments are
commercially accessible [8]; this is probably themost serious problem for
awider use of dielectric dispersion in laboratories focussing on interfaces.

To beginwith, amethodmust be furnished for defining an effective or
macroscopic permittivity, ε⁎, faithfully characterizing a heterogeneous
system in which solid (typically, but not necessarily) inclusions are dis-
tributed in a liquidmedium. Complications come from the following facts:

(i) The liquid can have free charge carriers (the ions) in addition to
polarizable solvent molecules. It is a leaky dielectric.

(ii) The particle is also polarizable, but in addition it can bemade of a
conductingmaterial (metal or semiconductor). Most often it will
possess a surface charge, homogeneously distributed (or not).

(iii) The existence of the electric double layer provides the particle
with an excess conductivity (the surface conductivity, Kσ)
which adds to the intrinsic particle conductivity, Kp.

(iv) Since the diffuse part of the double layer bears a net charge
density, an applied electric field leads to fluid motion with
respect to the particle.

Notwithstanding these difficulties, the problem has been solved both
numerically and analytically (for some values of the parameters of in-
terest) for many situations, geometries, sizes, ionic strengths, concentra-
tions of particles, double layer structures, zeta potentials, and soon [9–14].
It can be said that there is a common route to the evaluation of the
dielectric properties. First, oneneeds tofind, asmentionedabove, aproper
definition of the permittivity of the disperse system. Then, it is required to
relate the permittivity to the induced dipole moments of individual
particles and, finally, to determine this dipole moment.

As to the first step, one starts by assuming that a complex electric
conductivity K⁎ can be defined for the suspension; this quantity
relates the average values of the current density and the electric field:

〈J⁎ expðiωtÞ〉 = K⁎
〈E expðiωtÞ〉 ð1Þ

where the field is assumed to be harmonic with frequency ω, and all
field-dependent quantities will be assumed to have the same time
dependence. Concerning the averages in Eq. (1), these refer to volume
averages extended over the whole suspension volume, V:

〈·〉 =
1
V
∭
V

ð·ÞdV : ð2Þ

Considering that in alternating current or AC fields the current has
two contributions, one due to free carriers and the other corresponding
to the displacement current, the same contributions can be thought of
for the complex conductivity:

K⁎ = KDC + iωε⁎ = KDC + iωε⁎rε0 ð3Þ

where KDC (the direct current or DC conductivity) will have contribu-
tions from ions in the solution, from the electric double layers of the
charged particles, and from the mobility of the particles themselves
(a contribution often neglected, see Ref. [15]).

Eq. (3) is a definition of the permittivity of the suspension. It is
customary and useful to identify the role of the dispersed particles by
defining conductivity (δK⁎) and relative permittivity (δεr⁎) incre-
ments, as follows:

K⁎ = K⁎
m + δK⁎

ε⁎r = ε′r−iε″r = ε⁎rm + δε⁎
ð4Þ

where Km⁎ is the complex conductivity of the dispersion medium, and
εrm⁎ is its relative permittivity. The value of the former quantity is:

K⁎
m = Km + iωε⁎rmε0 ð5Þ

Km being the DC conductivity of the supporting solution. For the sake
of completeness, we point out that the conductivity and permittivity
increments are linearly dependent on the volume fraction of solids if
the suspensions are dilute, and hence specific increments (Δεr⁎, ΔK⁎)
are also introduced. Of course, all these quantities can be expressed in
terms of their real (′) and imaginary (″) components:

ΔK⁎ = ΔK ′−iΔK″ = δK⁎
=ϕ = ðδK ′−iδK″Þ=ϕ

Δε⁎r = Δε′r−iΔε″r = δε⁎ =ϕ = ðδε′r−iδε″Þ= ϕ:
ð6Þ

Concerning the relationship between these dielectric or conductivity
increments and the induced dipolemoments of the particles, it is usual to
follow Maxwell's method [16]: we imagine two spheres of identical
radius, both immersed in the electrolyte solution whose complex
conductivity is Km⁎. One of the spheres contains a volume fraction ϕ of
spherical colloidal particles bearing a dipolemomentd⁎(ω), and the other
contains an imaginary material with complex conductivity K⁎(ω). In
Maxwell's model, the latter is chosen in such a way that when the same
field is applied toboth spheres, thefielddistributionsoutside eachof them
are identical. In such a case, we ascribe the value K⁎(ω) to the complex
conductivity of the suspension. The result is [17] (theω dependence will
not be made explicit unless necessary):

K⁎ = Km⁎ ð1 + 3ϕC⁎Þ ð7Þ
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where C⁎(ω), the so-called dipole coefficient, relates the dipole moment
to the applied field. For the case of a sphere:

d⁎ðωÞ = 4πε⁎rmε0a
3C⁎ðωÞE = 4πε⁎rmε0a

3½C′ðωÞ−iC′ðωÞ�E: ð8Þ

From Eqs. (4)–(7) it is finally possible to express the conductivity
and permittivity increments in terms of the fundamental physical
quantity C⁎(ω):

δε
0

rðωÞ = ε
0

rðωÞ−ε
0

rmðωÞ

= 3ϕε
0

rmðωÞ C′ðωÞ− Km

ωε0ε
0
rmðωÞC

′ðωÞ− εWrmðωÞ
ε
0
rmðωÞC

′ðωÞ
" # ð9Þ

δεWr ðωÞ = εWr ðωÞ−εWrmðωÞ =

= 3ϕε
0

rmðωÞf Km

ωε0ε
0
rmðωÞ ½C

′ðωÞ−C′ð0Þ�

+ C′ðωÞ + εWrmðωÞ
ε
0
rmðωÞC

′ðωÞg
ð10Þ

δK ′ðωÞ = K ′ðωÞ−Km−ωε0ε
W
rmðωÞ =

= 3ϕKm C′ðωÞ + ωε0ε
0

rmðωÞ
Km

C′ðωÞ + ωε0ε
W
rmðωÞ

Km
C′ðωÞ

" # ð11Þ

δK ′ðωÞ = K ′ðωÞ + ωε0ε
0

rmðωÞ =

= 3ϕKm −ωε0ε
0

rm

Km
C′ðωÞ + C′ðωÞ + ωε0ε

W
rmðωÞ

Km
C′ðωÞ

" # ð12Þ

These expressions are obtained after making use of the definition
of KDC in Eq. (3) in terms of Eq. (7):

KDC = K⁎ðω = 0Þ = Km½1 + 3ϕC′ðω = 0Þ�: ð13Þ

It will be clear that themost important expressions for our analysis
will be Eqs. (9) and (10), although the conductivity approach is also
useful.

In the present sectionwe have tried to provide the basic information
required for dealing with the permittivity of colloidal dispersions. In
Section 2 we give a historical revision of the problem of calculating and
measuring the permittivity of these systems. Sections 3 and 4 get into
the physics of the problem, and Section 5 will deal with experiments.
Finally, some specific aspects are dealt with in Sections 6 and 7:
concentrated systems and recent advances. In Section 8 we will
conclude with some reflections about the future of the technique and
its theoretical knowledge.

We finally note that we did not include in this work a survey of the
dielectric properties of emulsions and microemulsions. There are two
main reasons for this omission:firstly, a relatively recent reviewdealing
with precisely these systems is available (Ref. [18]) and, secondly, an
article on recent advances on the dielectric and electrokinetic properties
of emulsions is scheduled to appear in this very issue of COCIS.

2. Historical notes

The theory of the dielectric properties of heterogeneous materials
goes all the way back to J.C. Maxwell [19], who deduced in 1873 the
basic formula for the effective DC conductivity of a material made of
conducting spheres suspended in a continuum characterized by a
different conductivity value. This formula was extended in 1914 to AC
fields by K.W.Wagner [20], who considered that both the spheres and
the suspending medium were characterized by their corresponding
conductivity and permittivity values. The obtained result, often called
the Maxwell–Wagner mixture formula is:

K⁎ = K⁎
m
ð1 + 2ϕÞK⁎

p + 2ð1−ϕÞK⁎
m

ð1−ϕÞK⁎
p + ð2 + ϕÞK⁎

m
ð14Þ

where Kp⁎ is the complex conductivity of the particles (which can be
written along the lines of Eq. (5)). According to this result, the
conductivity and permittivity of a suspension generally depend on
frequency, evenwhen its components are characterized by frequency-
independent conductivities and permittivities: this is the so-called
Maxwell–Wagner or δ dispersion.

This fundamental expressionwasfirst generalized in1924byH. Fricke,
who studied the conductivity [21] and permittivity [22] of suspensions of
spheroidal particles, with applications to biological systems such as blood.
Actually the DC and quasi DC properties, rather than the frequency
behavior, were investigated. In 1932 this same author made another
fundamental contribution in the formof thefirst theoreticalmodel for the
impedance of the electrode–electrolyte solution interface [23]. As will be
discussed below, proper handling of this so-called electrode polarization
impedance is crucial in low frequency dielectric measurements of
conducting systems.

Most of the earlier and later advances dealt with particle properties
and used the low concentration limiting form of the Maxwell–Wagner
mixture formula:

K⁎ = K⁎
m 1 + 3ϕ

K⁎
p−K⁎

m

K⁎
p + 2K⁎

m

 !
: ð15Þ

However, a different line of studies investigated thedependence of the
dielectric properties of a suspension on the concentration of suspended
particles. Among these works the 1935 contribution of D.A.G. Bruggeman
[24] stands out. A unified view of the different contributions was
presented in 1957 by J.A. Reynolds and J.M. Hough [25].

The next generalization related to suspended particle properties was
presented in 1959 byH. Pauly andH.P. Schwan [26], considering that each
suspended particle is surrounded by a shell characterized by its own
dielectric properties. This configuration permitted to model biological
cells: conducting particles surrounded by insulating membranes. The
predicted frequency dependence of the suspension is characterized by
two dispersions that are almost independent of one another when the
shells are thin as compared to the particle radius: the δ andβ dispersions.
The latter low frequency and high amplitude dispersion is mostly
determined by the membrane properties.

Another extension was presented in 1960 by C.T. O'Konski [27],
who considered suspended particles with a surface conductivity. This
concept, which corresponds to particles surrounded by a thin layer
with a higher conductivity than the suspending medium, was earlier
introduced to characterize the diffuse double layer surrounding
charged insulating particles suspended in electrolyte solutions [28].
It was shown that an insulating particle with a surface conductivity Kσ

behaved just as a conductive particle with conductivity Kp=2Kσ /a.
The presence of a surface conductivity, which is almost universal
when the suspending medium is an aqueous electrolyte solution, has
a strong bearing on both the δ and β dispersions, to the point that the
former is often referred to as the Maxwell–Wagner–O'Konski (MWO)
dispersion.

In 1962, H.P. Schwan et al. observed a new, very low frequency and
extremely high amplitude dielectric dispersion in suspensions of
charged insulating particles (latex) in aqueous electrolyte solutions
[29]. This so-called α or Low Frequency Dielectric Dispersion (LFDD),
was interpreted this same year by G. Schwarz [30] using a condensed
counterion model. It was assumed that the movement of counterions
was determined by electromigration and diffusion and could only
occur along the surface of the charged particle with no exchange with
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the bulk. While very successful during many years for the interpre-
tation of experimental data [31], this model was later abandoned in
favor of more elaborate diffuse double layer models.

The effect of ion diffusion in the electrolyte solution close to the
solid–liquid interface (the field-induced charge density has a finite
thickness so that the Poisson rather than the Laplace equation must be
solved), was first taken into account by E.M. Trukhan in 1963 [32]. A
systemmade of an insulating solid continuumwith spherical inclusions
filled with a conducting liquid was considered, which exhibits the
highest effects on the dielectric properties of the whole system. Later
studies based on this work considered an electrolyte solution with
suspended solid particles, both homogeneous [33] and surrounded by
an insulating shell [34].

The dielectric behavior of colloidal suspensions of charged spherical
particles in aqueous electrolyte solution taking into account bothdiffusion
and convection was deduced in 1969 by S.S. Dukhin and V.N. Shilov [35]
for DC fields. The corresponding extension to low frequency AC fieldswas
presented in1970by the sameauthors [36]. In1972 theypublishedabook
that included these theories and introduced, furthermore, the notion of
the surface conductivity behind the slipping plane. These contributions
published originally in Russian remained practically unknownoutside the
Soviet Union until 1974, when the abovementioned bookwas translated
into English [9]. Even so, a similar theory based on the standard
electrokinetic model was developed independently by M. Fixman in
1980 [37]. These theoretical works are applicable to arbitrary surface
potential values but require that the double layer thickness is much
smaller than the particle radius. A theory applicable to the opposite case
(arbitrary double layer thickness to particle radius ratio, but low surface
potential value), was presented in 1982 by R.W. O'Brien [38].

Major advances in later years involved purely experimental [39–42]
or numerical works. In 1978, R.W. O'Brien and L.R.White calculated the
DC electrophoretic mobility by solving numerically the whole set of
the DC electrokinetic equations [43]. Their methodwas used in 1981 by
E.H.B. DeLacey and L.R.White [10] for the calculation of the AC dielectric
properties of colloidal suspensions, with no restrictions on either the
surface potential value or the double layer thickness to particle radius
ratio. While the theoretical model included the electrophoretic particle
movement, the obtained results were limited to the low frequency
range since the inertial termswereneglected. An extension also valid for
high frequencies was presented in 1997 by C.S. Mangelsdorf and L.R.
White [12]. These works were crucial for the advancement of the
dielectric and electrokinetic studies, since they made it possible to
compare experimental dielectric and electrokinetic data with rigorous
theoretical predictions. The strong discrepancies observed [44] led to
the formulation of modifications to the standard electrokinetic model.

Although hypotheses regarding the lack of smoothness of the
surface were proposed [45] in order to explain apparently anomalous
electrokinetic data, the most widely accepted explanation relies on
the stagnant-layer conductivity. It is assumed that a suspended
particle is surrounded by a thin layer of adsorbed ions that are able to
move along its surface [9,46,47]. The first dielectric theories based on
this assumption were presented in 1986 by T.S. Simonova and V.N.
Shilov [48] and, independently, by C.F. Zukoski and D.A. Saville [49]. A
full development and numerical analysis of this hypothesis consider-
ing AC fields was presented for AC fields in 1998 by C.S. Mangelsdorf
and L.R. White [50,51]. This subject will be discussed in more detail in
Section 7.

Another extension of the particle model corresponded to suspen-
sions of “soft” particles: hard particles surrounded by a permeable
layer of charged or uncharged polymer. The strong influence of
polymer coatings on the suspension stability and the electrophoretic
mobility, recognized since the eighties [52–54], led to numerous
experimental, theoretical, and numerical works dealing with the
electrophoretic mobility. However, the dielectric properties were only
studied in 2003 by two independent groups: Hill et al. [55], and Lopez-
Garcia et al. [56]. An extension to concentrated suspensions of soft
particles was presented in 2009 by Ahualli et al. [57]. More details on
these aspects will be given in Section 7.

Finally, the recent advent of electro-acoustic and acousto-electric
devices able to measure the high frequency dynamic electrophoretic
mobility at high particle concentrations, raised the interest in high
concentration dielectric behavior. This subject will be discussed in
some detail in Section 6.

3. Main mechanisms of dielectric dispersion in colloids

The frequency dependence of the complex conductivity (or of the
permittivity, considering their relationship) of a suspension is
characterized by a series of dispersions (regions of variation with
frequency), which are determined both by the frequency dependence
of the complex conductivity of the electrolyte solution and the
frequency dependence of the dipole coefficient, Eq. (7). The origin of
these dispersions can be easily described considering the simplest
case when they are independent of one another: the conductivity and
permittivity spectra have the shape of a series of plateaus separated
by regions where the conductivity increases and the permittivity
decreases. Going from high to low frequencies, these regions are
classically called the γ, δ, and α dispersions.

3.1. Gamma dispersion

The γ dispersion is associated to the frequency dependence of the
aqueous electrolyte solution where the particles are suspended, which is
mainly determined by the polar nature of the water molecules [58]. The
dielectric behavior of electrolyte solutions is very similar to that of pure
water, which can be represented by a simple Debye-type dispersion
[59,60]:

K⁎
m = Km + iωε0 εrm∞ +

εrmð0Þ−εrm∞
1 + iωτe

� �
: ð16Þ

The parameters appearing in this expression, valid in the 0 Hz to
THz frequency range, have the following approximate values at 25 °C:

εrmð0Þ≈78:4
εrm∞≈5:3
τe≈8:3 × 10−12 s
Km≥10−5 S=m:

ð17Þ

These values weakly depend on the electrolyte concentration [61]
except for the stationary conductivity, which strongly increases with
this concentration and is usually in the 0.001bKmb1 S/m range [62].

The γ dispersion is seldom measured and often ignored in the
theoretical and numerical calculations related to the dielectric behavior
of colloidal suspensions. This is done by limiting the considered
frequency range to the region below 1 GHz, and considering that the
relative permittivity of the dispersion medium (c.f.Eq. (5)) is real and
frequency-independent. This is made explicit by denoting it as εrm
instead of εrm⁎ in what follows. However, many interesting and
important high frequency phenomena such as microwave heating
(with applications in medicine and in the food industry) or the
determination of moisture content are so overlooked.

3.2. Delta dispersion

The δ dispersion is determined by the Maxwell–Wagner–O'Konski
(MWO) relaxation phenomenon: a frequency dependence of the
dipole coefficient while the permittivity and conductivity of the
particle and of the electrolyte solution remain frequency-indepen-
dent. At frequencies above this dispersion, the dipole coefficient is
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solely determined by the relative permittivity values of the particle
(εrp) and of the electrolyte solution (εrm), both real, as mentioned:

C⁎ð∞Þ = εrp−εrm
εrp + 2εrm

: ð18Þ

This happens because below the γ dispersion the polarization is
proportional to and always in-phase with the local field (total field at
any point of the suspension). Therefore, the polarization charge density
that appears on the particle–electrolyte solution boundary does not
depend on the field frequency. While the ionic current density is also
proportional to and in-phasewith the local field, the free charge density
on the particle surface is out of phase with the field and has,
furthermore, a negligible value that is inversely proportional to the
field frequency (the time that this density has to build up is proportional
to the period of the field).

When the frequency is decreased, the ionic current density starts to
build anever increasing chargedensity on theparticle surface. Since this
density is out of phase with respect to the local field, it leads to the
appearance of an out of phase (imaginary) part of the dipole coefficient.
Therefore, the local field becomes complex, which means that an
increasing fraction of the ionic current density shifts out of phase with
the applied field and, correspondingly, part of the free charge density
shifts in-phase with the field.

At frequencies below the δ dispersion, the period of the applied field
becomes so large that the free charge density shifts in-phase with the
applied field and attains a final value that is responsible for the low
frequency dipole coefficient. Analogously, the ionic current density also
tends to shift in-phase with the applied field. However, a small out-of-
phase fraction always remains, since this fraction actually builds the in-
phase free charge density. On the contrary, the largest in-phase fraction
of the ionic current does not build an out of phase charge density. This
happens because the normal components of the ionic currents on both
sides of the particle–electrolyte solution interface converge to the same
value. Therefore, at sufficiently low frequencies, the dipole coefficient
only depends on the conductivity values of the particle (Kp) and the
electrolyte solution (Km).

C⁎ð0Þ = Kp−Km

Kp + 2Km
: ð19Þ

The shift from the high to the low frequency regimes relative to the δ
dispersion outlined above, occurs when the conduction and displace-
ment current densities throughout the systembecome comparable. The
actual expression of the relaxation time of the δ dispersion is

τδ =
ðεrp + 2εrmÞε0

Kp + 2Km
: ð20Þ

In the above expressions, Kp should be interpreted as the effective
particle conductivity: a value determined by both its bulk (Kpb) and
surface (Kσ) conductivities [27]:

Kp = Kpb +
2Kσ

a
: ð21Þ

In the most usual cases, the particle core is insulating (Kpb=0) so
that the above expression can be written as:

Kp = 2KmDu ð22Þ

where Du is the Dukhin number Du=Kσ /(aKm).
In the simplest situation, the surface conductivity is entirely due

to the net charge of the particle: solid particles immersed in an
aqueous solution acquire a surface charge (usually negative). While
this charge is fixed, so that it cannot directly contribute to the surface
conductivity, it attracts ions of the opposite sign (counterions) that
form a diffuse layer around the particle, shielding its radial electric
field (this diffuse layer together with the fixed surface charge form
what is called the “double layer”). Inside the double layer the
counterion density is higher than in the bulk electrolyte solution
while the co-ion density is lower, but the total ion density is usually
much higher than in the bulk. Therefore, when a field is applied to the
system, the double layer transports a higher current than an
equivalent volume of the bulk solution. This excess can be described
by means of a surface conductivity. However, the increased ion
density is not the only responsible for the surface conductivity value,
which is also due to fluid motion. Under the action of an electric field,
the velocity of an ion is limited by the drag exerted by the surrounding
fluid or, conversely, a moving ion exerts a drag that tends to set the
surrounding fluid in motion. In the bulk electrolyte solution, which is
electroneutral, the drag on the fluid due to the positive ions exactly
compensates the drag due to the negative ones that move in the
opposite direction. However, inside the double layer, the fluid is not
electroneutral so that it moves in the same direction as the counter-
ions move. This movement increases the counterion velocity,
measured with respect to the particle, further increasing the surface
conductivity. Still another contribution, also related to the fluid
motion but only present at very low frequencies will be discussed in
the next section.

3.3. Alpha dispersion

The α or Low Frequency Dielectric Dispersion (LFDD) is a phenom-
enon characterized by a huge increase of the permittivity of colloidal
suspensions at very low frequencies. Its origin is in the asymmetry of
these systems with respect to the ion sign: due to the fixed charge of
the suspended particles, the behavior of counterions under the action
of an applied field becomes different to that of co-ions at very low
frequencies.

As noted in the preceding section, at frequencies lower than the δ
dispersion, the normal component of the in-phase current density in
the electrolyte solution has the same value, at the particle surface, as
the normal component of the in-phase current density inside the
particle. Therefore, no out of phase surface charge density builds up,
and this behavior remains unchanged down to zero frequency.
However, for charged particles, the above description is not
complete: there is still one dispersion phenomenon at very low
frequencies.

It arises because the continuity of the normal component of the
current density applies at the outer boundary of the double layer,
since the effective conductivity of the particle is determined by the
surface conductivity of the double layer. While the current is
continuous, the flows of counterions and of co-ions are discontin-
uous: the current inside the double layer is mostly due to counter-
ions while the current outside this layer is due to both counterions
and co-ions.

Let us consider for sake of clarity a negatively charged particle
and a DC electric field pointing in the left to right direction (Fig. 1)
that is suddenly switched on. On the right hand side of the particle a
very strong flow of positive counterions arrives from the left to the
outer boundary of the double layer. However, the counterion flow
abandoning this boundary towards the right is much weaker because
there is no excess of counterions in the bulk electrolyte solution. This
means that the counterion density on the right hand side of the
particle starts to increase. As for co-ions, their flow arriving from the
right to the outer boundary of the double layer is comparable to that
of counterions in the electroneutral electrolyte solution. On the
contrary, the co-ion flow inside the double layer is much lower.
Therefore, the co-ion density on the right hand side of the particle
also increases. An increment of both the counterion and the co-ion
densities means that the electrolyte concentration at the right hand



Fig. 1. A schematics of the generation of the double layer polarization responsible for
the α-dispersion of the permittivity at low frequencies, for a negatively charged
particle. The electric field E induces surface fluxes (of counterions) jes

+ which
subsequently produce accumulation of counterions on the right hand side of the
particle and normal fluxes jen

+ towards the solution. These find incoming fluxes of co-
ions jen

− , thus provoking an increase in the concentration of neutral salt on the right.
Similar processes produce a decrease on the left. The concentration gradient of
electrolyte is the concentration polarization, producing diffusion fluxes, both normal
jdn
+ , jdn− and tangential jds+.

Fig. 2. Specific relative permittivity increment Δε′r of dilute suspensions of spherical
particles 200 nm in radius, dispersed in 1 mM KCl solutions, for different zeta
potentials. Inset: MWO dispersion region.
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side of the particle increases (it decreases at its left hand side). This
phenomenon often referred to as “counterion polarization” or
“concentration polarization” continues until huge (of the order of
the particle radius) neutral regions of increased and decreased
electrolyte concentration build up around the particle. At this stage
the system attains a stationary state and ceases to evolve in time. This
happens because the strong flow of positive counterions that arrives
from the left to the outer boundary of the double layer has now the
same value as the counterion flow abandoning this boundary towards
the right, because counterions are not only driven by the electric field
but also by their concentration gradient. Analogously, the co-ion flow
arriving from the right to the outer boundary of the double layer
becomes much weaker than before because their concentration
gradient opposes their flow towards the particle.

This qualitative description illustrates the existence of a low
frequency dispersion phenomenon, that implies the transport of ions
over distances of the order of the particle radius. Because of this, the
corresponding characteristic time is of the order of [9]:

τα≈
a2

D
ð23Þ

where D is the ion diffusion coefficient.
It must still be shown, however, how the presence of neutral

regions around the particle with increased and decreased electrolyte
concentration leads to a change of the dipole coefficient (otherwise
this phenomenonwould have no bearing on the dielectric properties).
This change occurs due to two phenomena, both related to the
modification of the thickness of the double layer, which is inversely
proportional to the square root of the electrolyte concentration (see
Eq. (28)). When this concentration increases on the right hand side of
the particle, the double layer thickness decreases on that side and,
correspondingly, increases on its left hand side. This means that the
positive counterion layer is no longer centered with respect to the
negative particle but is shifted to the left, which leads to the
appearance of a dipole moment directed towards the left, that is, in
the opposite direction to the applied field.

The second phenomenon is related to the surface potential, which
increases with the double layer thickness. Therefore, a field-induced
change of the double layer thickness leads to a corresponding change
of the surface potential: in the considered example the surface
potential becomes less negative on the right hand side of the particle
and more negative on its left hand side. This surface potential
distribution leads to the appearance of a tangential field inside the
double layer, directed from the right hand side of the particle to its left
hand side. This field, acting on the positive charge of the diffuse part of
the double layer, produces a fluid flow (the capillary osmotic flow)
and further reduces the dipole coefficient.

The importance of the phenomenon is illustrated in Fig. 2.We have
plotted there theoretical calculations (based on the model presented
in Ref. [10]) of the effect of the zeta potential on the relative permit-
tivity of dilute suspensions of spheres 200 nm in radius dispersed in a
1 mM KCl solution. The results in this figure clearly show that:

(i) At low frequencies, the permittivity of the suspension is
typically larger than that of the pure carrier solution, and the
differences between them only tend to disappear at high
frequencies, when the EDL polarization mechanisms above
described become negligible (above the alpha and MWO
relaxations). In such conditions, the permittivity is controlled
by the permittivities of the particles and medium (Eq. (18)).

(ii) The large low frequency permittivity of the suspension is very
noticeable, and strongly influenced by the zeta potential, the
increase of which leads to a systematic increase of the strength
of the concentration polarization phenomenon.

Both the alpha- and Maxwell–Wagner–O'Konski (delta−) disper-
sions are clearly observable, although the importance of the former is
much more significant, as its characteristic amplitude is one or two
orders of magnitude higher so that the latter is only observable after
re-scaling. Note also the values of the characteristic frequencies of the
two dispersions: tens of kHz and 10 MHz, respectively.

The alpha process dominates the dielectric spectra of suspensions
in almost all practical cases, with the noticeable exception of the so-
called salt-free systems, that is, suspensions where the only ions in
solution are those coming from the ionization of the charged groups
on the particles, responsible for their charge generation [63,64].

4. Numerical calculations

Most numerical methods used to calculate the permittivity of
suspensions rely on the original procedures previously described by
O'Brien and White [43], in a now classical paper dealing with the
calculation of the electrophoretic mobility of spherical particles, and
then applied by different authors to dielectric evaluations in AC fields
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[10,11,13,65]. The mathematical procedure is rather involved, but
produces excellent results for any frequency below a few MHz, and for
practically any reasonable combination of particle radius a, ionic
concentrations, valences, and zeta potentials. A completely different
approach to the problem has been widely investigated by Horno et al.
[66,67]. It is based on the so-called network method, grounded on the
fact that many physical problems have governing equations formally
identical to those describing voltages and currents in properly chosen
electrical circuits (or networks). The complications involved in the
numerical resolution of the equations is clearly the same, but one can
take advantage of the existence of numerical packages specifically
designed for solving circuits of essentially arbitrary complexity, PSPICE®

being a widely used example. More recently [68,69] it has been shown
by several authors that a very convenient and effort-saving way to the
solution of the problem is to use a mathematical suite like Matlab® for
performing the integration, although some subtleties with particularly
the equilibrium Poisson–Boltzmann equation are still unavoidable.

Fig. 3 shows a comparison of the results obtained by using the
Fortran (O'Brien and White method) and Matlab calculations. The
plots in this figure clearly show that the frequency range accessible to
different numerical routines can be different, although the results are
fully coincident in the frequency regimes where the two methods are
operational.
Fig. 3. Real (a′, b′) and imaginary (a″, b″) componentsof the relativepermittivity incrementof adilu
radius: 200 nm; KCl concentration 5mmol/L; zeta potentials as indicated. Panels (a′) and (a″) co
procedure of DeLacey andWhite [10]; panels (b′) and (b″) were produced by using Matlab® for t
5. Experimental aspects

Unfortunately, few commercial devices exist that allow to directly
measure and evaluate the permittivity of colloidal dispersions, and
hence there are almost as many methods as researchers in the field
(see, however, [8]). Information about the permittivity can be
obtained in either the frequency (the most widely used) or the time
domains. In addition, the methods available are based on impedance,
reflectance or electro-optic data. Below we give a short account of
some of them (an interesting review of existing techniques can be
found in [70]).

5.1. Low frequency: impedance determinations

The most generally used procedure starts from the measurement
of the impedance of a conductivity cell as a function of frequency, by
means of an LCR meter or an impedance analyzer. Fig. 4 is a scheme of
the typical cell: in addition to careful thermostatization, a require-
ment is the use of variable separation between the electrodes and a
control of the surface of the latter, typically platinum coated with
platinum black. The determination of the complex conductivity is, in
principle, simple: the cell is filled with the suspension, and connected
to the impedance meter. For each frequency ω the impedance Z⁎(ω)
te suspensionof spheresas a functionof the frequencyof theappliedfield. Conditions:particle
rrespond to the results obtained by numerical integration of the equations according to the
he numerical integration of the equations, as described in Ref. [68].



Fig. 4. A scheme of the measurement cell with variable electrode separation.
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is measured, and the conductivity K⁎(ω) is calculated using the cell
constant λ:

K⁎ðωÞ = λ
Z⁎ðωÞ : ð24Þ

From this, Eqs. (3) and (13)will allow the evaluation of the relative
permittivity:

ε′rðωÞ = Im½K⁎ðωÞ�
ωε0

ε″rðωÞ = Re½K⁎ðωÞ�−K⁎ðω→0Þ
ωε0

:

ð25Þ

There is, however, a serious difficulty in this evaluation, which is
associated to the fact that the metal surface of the (so-called ideally
polarizable) electrode blocks the passage of ions. This produces an
accumulation of counterions and a depletion of co-ions in its vicinity
(the electrode double layer) that has an impedance (and its
corresponding frequency dispersion) [22,71–73]. The magnitude of
this effect can be large enough to make impedance (and hence
permittivity) measurements in suspensions very difficult at low
frequencies. Without going into the details, it has been shown [74]
that the relative permittivity, εr⁎(EP), of a cell filled with a solution, in
a frequency range where the permittivity of the latter is expected to
be frequency-independent does in fact change with frequency.
Furthermore, such a frequency dispersion, which can be mistakenly
associated to the interfaces of particles in a suspension, has the
approximate expression:

ε⁎r ðEPÞ = ε′rm 1− 1
1 + iω=ωMW

1−
ffiffiffiffiffiffiffiffiffiffiffi
ωL

ωMW

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + iω=ωMW

p
 !( )

ð26Þ

which shows that two characteristic frequencies control the disper-
sion:

ωMW = κ2D

ωL =
4D
L2

ð27Þ

where κ is the reciprocal Debye length, so that κ−1 is a measure of the
electric double layer thickness. Its value is:

κ =
∑
N

α=1
103NAcαe

2z2α

εrmε0kBT

0
BBB@

1
CCCA

1=2

ð28Þ

and it depends on the molar concentrations cα, and the valences zα of
the N ionic species in solution. In Eq. (28), NA is the Avogadro number,
e is the elementary charge, kB is Boltzmann's constant and T is the
absolute temperature.
The first one of the frequencies in Eq. (27) is the Maxwell–Wagner
relaxation frequency of the electrolyte solution, and its reciprocal
gives a measure of the time required for the electrode double layer to
form; the reciprocal of the second frequency is an indication of the
time needed by the ions to diffuse back and forth from one electrode
to the other, which are separated a distance L. It can be shown from
Eqs. (26) and (27) that the low frequency asymptotic behavior of
εr⁎(EP) is given by:

ε′rðEPÞ−ε′rm∝
ω
ωc

� �−3=2

ε″rðEPÞ∝
ω

ωMW

� �−1
ð29Þ

where ωc≡ωMW
2/3 (ωL /2)1/3. Note that although the electrode contri-

bution falls rapidly with frequency, it can easily mask sample
relaxations if they occur below the characteristic frequencies ωc,
ωMW.

A number of techniques have been devised in an attempt to correct
for this undesired effect. These are mentioned below:

a) Subtraction. If it can be admitted that the impedance associated to
the electrodes is the same when particles are present as when the
cell is filled with solution, then the problem is solved by simply
subtracting the impedances measured in both cases. This has been
shown to be clearly insufficient, as the presence of the particles
changes the field lines in the cell, with respect to the particle-free
case [75].

b) Variable electrode separation. A widely used technique (see, e.g.
[76,77]), first proposed by Fricke and Curtis [78]. It is based upon
the assumption that the electrode impedance Z⁎(EP) is not
affected by electrode separation, and hence the measured
impedance Zmeas⁎ is the sum of two terms, one independent and
one dependent of the cell constant λ. The second of them involves
the sought sample conductivity K⁎:

Z⁎
meas = Z⁎ðEPÞ + λ

K⁎
ð30Þ

so that changing the distance between the electrodes, it should be
possible to extract information about K⁎. In addition to other
limitations, a clear one is that the first addend of the second term
in Eq. (30) might well mask the second, mainly considering that
the cell constant can only be varied in a limited range, if one
wishes to ensure that stray fields are negligible.

Quadrupole technique. It was proposed in Ref. [79,80], and its
basis is the consideration of the whole measuring system (the
impedance analyzer, the cell, the cables and connections, any stray
effects) as a black box, characterized by four parameters (four
complex elements of a matrix impedance) relating the inputs to the
box and its outputs. These parameters are determined by means of
three calibration measurements: short circuit, open circuit, and a
solutionwith known conductivity and permittivity values that are as



Fig. 6. Schematics of the four-electrode device used for permittivity measurements.
a: sensor electrodes; b: current electrodes; and c: sample filling openings. Taken from
Ref. [86], with permission from Elsevier.
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close aspossible to thoseestimated for the suspension.A comparison
between thismethod and that of electrode separationwith standard
calibration was described in Ref. [77], and an example is given in
Fig. 5. This plot demonstrates that thequadrupole techniquemeans a
significant improvement in the evaluation of the permittivity at low
frequencies, that is, precisely in the regionwhere themain dielectric
relaxation of the suspension is usually found.

c) The logarithmic derivative. As shown in Fig. 5, the quadrupole
technique is a significant improvement in the evaluation of the low
frequency permittivity, but the absence of a clear low frequency
plateau in the permittivity suggests that electrode polarization is
still perturbing our results. An alternative was proposed in [81],
and it has been usedwith success by different authors [82–84]. It is
based on the similarity between the frequency variation of the
imaginary component of the relative permittivity, ε″r(ω), and the
logarithmic derivative of the real part:

ε″rDðωÞ = −π
2
∂ε′rðωÞ
∂ lnω:

ð31Þ

The method is useful because, considering Eq. (29) and the
expression for ωc, the logarithmic derivative of the relative
permittivity of the electrode layer depends asymptotically on ω
and L as follows:

ε″rDðEPÞ∝ω−3=2L−1 ð32Þ

whereas ε”r(EP)decreases as 1/ω. The faster frequency decrease
given by Eq. (32) suggests that it is likely that the logarithmic
derivative will allow a more clear separation between the peaks
associated to the electrodes and to the sample; in addition, the 1/L
dependence of the former (Eq. (32)) acts also in our favor: the
electrode contribution will be reduced as the distance L is increased
(with the same distance limitations mentioned before).

d) Four-electrode cells. These are the ideal ones to be used: the two
electrodes used for injecting the AC current in the cell are different
from the pair used to sense the voltage; because the current through
the sensingelectrodes is very low, their polarization impedancewill be
equally negligible, and only the true sample impedance is measured.
The techniquehasbeenusedby someauthors,mainlybelonging to the
groups of the late Prof. Saville [85], andofWageningenUniversity [86].
However, the complexity of the electronic equipment required has
limited thenumberofdataobtainedusing it. Fig. 6 is a schemeofoneof
the experimental setups used.
Fig. 5. Relative permittivity of a dilute suspension (1% volume fraction) of polystyrene
latex particles (532 nm diameter) in a 0.5 mM KCl solution as obtained from the
standard calibration technique and from the quadrupole method.
5.2. High frequency: reflection methods

Themethods abovedescribed, nomatter their degree of sophistication
indealingwith electrode polarization, cannot beused for high frequencies
of the applied field. In all the treatments mentioned, there is implicit the
hypothesis that, at a given time, the voltage and current have the same
values at all points of the circuit (localized parameters), so that the wave
natureof theelectromagneticfield isneglected. This is correct, considering
that the wavelength in water of a 1 MHz electromagnetic wave is about
30 m. But if measurements well above the MHz (100 MHz and higher,
say) are required (this can be the case with the MWO relaxation),
wavelengths of a few cm will be typical, and this is of the order of the
typical electrode separation. In addition, the radiationof thefield increases
with frequency, and hence the systems used must ensure that the fields
are confined and well defined at any point. This can be achieved by using
waveguides,with a cylindrical external conductor, as described in [69,87].

Basically, the method involves the determination of the reflection
coefficient of the signal in a so-called cut-off cell, consisting of a coaxial
cylindrical line, inwhich the inner conductor is shorter than theouter one;
the system can thus be described as a coaxial line coupled to awaveguide.
The suspension is deposited in the line in such a way that the inner
conductor is immersed in the liquid; so that it constitutes both the di-
electric in thewaveguide and in the coaxial line. Themeasured quantity is
the reflection coefficient of the signal at the end of the coaxial line. It is
muchmore involved than the simple impedance determinations required
at low frequencies but, fortunately, inmost colloidal systems, the permit-
tivity dispersions of interest occur at frequencies where the reflection
techniques arenot strictlynecessary, and impedancemeasurements often
suffice.

5.3. Dielectric spectroscopy in the time domain

It is another broadband approach to the determination of the
dielectric dispersion in suspensions (see [18,87,88]). Measurements
are carried out along a coaxial transmission line ending with a
parallel-plate or cylindrical capacitor containing the sample, as
schematically shown in Fig. 7, taken from [88]. A steep voltage step
V0(t) is applied to the line and it is recorded together with the
reflected voltage signal Vr(t), returning from the sample and delayed
by the cable. Note that the whole dielectric spectrum is recorded at
once, eliminating errors due to signal changes during a frequency
sweep in the frequency-domainmethods. The basic equations relating
the current and voltage across the sample at any time t are [87]:

VðtÞ = V0ðtÞ + VrðtÞ

IDðtÞ =
1
Z0

½V0ðtÞ−VrðtÞ�−½V0ðtÞ + VrðtÞ�lim
t→∞

V0ðtÞ−VrðtÞ
V0ðtÞ + VrðtÞ

� � ð33Þ

where ID(t) is the displacement current and Z0 is the line impedance.
From the complex Laplace transforms of these quantities it is possible



Fig. 7. Schematic representation of the incident (V0) and reflected (Vr) pulses in a time–
domain dielectric spectrometer.
(Taken from Ref. [88]).
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to change into the frequency domain and obtain the frequency
dispersion of the permittivity.

The method also requires of corrections for electrode polarization,
again based on some model description of EP effects, and subtraction
from the raw signal either in the frequency or the time domain. Three
approaches can be mentioned [89,90]. One is called the substitution
method, which requires additional measurements to be taken on a
sample with similar ionic composition as the suspension under inves-
tigation. In the second approach, known as single-exponent method,
EP is taken into account as an exponential process that adds to those
coming from the sample, and that is analyzed directly in the time
domain. Finally, the fractal polarization correction [90] is based on
recognizing that the porosity of the electrode surface can be attributed
to fractality and that the tortuosity of the pores is characterized by a
fractal dimension. The electrode double layer impedance is thus
characterized by anωα frequency dependence that leads to a term Btα

whichmust be added to the V(t) term in Eq. (33). The key point is that
the method permits one to get rid of this term by using again a control
sample with similar ionic composition as the suspension.

6. Concentrated suspensions

6.1. Theoretical approaches

Many colloidal suspensions of interest in industrial processes are
concentrated, i.e., contain large amounts of particles. For instance, ceramic
slurries usually contain up to 50% of particles by volume; pharmaceutical
drug suspensions are typically around30% inparticle volume fraction, and
so on. It is hence of utmost importance to adequately evaluate the prop-
erties of such systems, including their electrokinetic behavior. In spite of
this, it was not until the 1970s that Levine, Neale and Epstein [91–93]
made the first rigorous approaches to solve the electrokinetic equations
and obtain the electrophoretic mobility, the electroosmotic flow or the
sedimentation potential of a concentrated suspension of solid particles.

Several authors solved previously the problem of the flow of liquid
around a collection of uncharged particles using so-called cell models, a
simple but precise enough way to take into account the interactions
[94,95]. The essential aspect of a cell model is that the problem can be
reduced to that of a single particle (spherical,with radiusa) immersed in a
concentric shell of electrolyte solution of external radius b, such that the
particle/cell volume ratio is equal to the particle volume fraction, ϕ,
throughout the whole suspension:

b =
a

ϕ1=3 : ð34Þ

The existence of a finite particle concentration is accounted for in
themodel by selecting suitable boundary conditions for the velocity of
the liquid, v, the electric potential Ψ(r), and the chemical potential of
ions (μi(r), i=1,…, N ionic species in solution) on the outer surface of
the cell, r=b. Careful discussions on the subject have been reported in
[96,97], so here we will give a necessarily brief account of the choices
that produce coherent results.

While the Levine andNeale's conditionswere used bymany authors,
Dukhin et al. [98] pointed out some inconsistencies, mainly related to
the Onsager and Smoluchowski principles as validity criteria, and
proposed an alternative set of boundary conditions, now known as
Shilov–Zharkikh−Borkovskaya cell model [97]. This has been used by
Carrique et al. [13] for the first evaluation of the permittivity of
concentrated suspensions. The set of conditions is:

a) Following Kuwabara, the liquid velocity in the radial direction is equal
to the radial component of its value at a large distance to the particle:

vrðr = bÞ = −ve cos θ = −ue〈E〉 cos θ ð35Þ

where ve is the electrophoretic velocity and ue is the electro-
phoretic mobility. The field is in the direction of the z axis, and θ is
the angle between the radius vector r and the field direction. Note
that the exp(iωt) dependence is implicit in all terms, and that this
set of conditions necessarily means that the effective field is the
cell volume average of the field.

b) The flow is vorticity-free at the cell surface:

∇×v j r=b = 0: ð36Þ

c) The cell is electroneutral:

dΨ0ðrÞ
dr

j r=b = 0 ð37Þ

where Ψ0(r) is the equilibrium potential distribution around the
particle.

d) The field-induced electric potential and ionic concentration
perturbations are also specified on the cell surface r=b (r ̂ stands
for the unit radial vector outward from the cell):

δΨðrÞ j r=b = −〈E〉⋅r̂ j r=b = − j〈E〉 jb cos θ
δniðrÞ j r=b = 0; i = 1; :::;N

ð38Þ

e) The net force acting on the cell must vanish.

Wewill not go into details concerning the calculations. Suffice it to say
that all authors, following thefirst calculations byDeLacey andWhite [10],
start by evaluating the average current density in the cell and fromthis the
complex conductivity and permittivity [13,99]. There are, however,
differences in the criteria for selecting the boundary conditions. In
addition to using or not Levine–Neale choice, recent contributions have
proposed a sort of “universal” principle associated to the evaluation of
average values over the cell volume of the quantities of interest. Briefly:

a) The average perturbation of the potential gradient is minus the
macroscopic field:

〈∇δΨðrÞ〉 = −〈E〉: ð39Þ

b) The perturbations of the ionic concentrations average to zero:

〈∇δniðrÞ〉 = 0; i = 1; :::N ð40Þ

c) The same is claimedwith respect to the pressure perturbation, and
the fluid velocity, leading in fact to conditions equivalent to
Kuwabara's

〈∇δpðrÞ〉 = 0
〈vðrÞ〉 = 0

ð41Þ

These conditions have been thoroughly tested against the results
obtained with the previous set and it was found that the differences
are small and only observable at high frequencies, well beyond the



Fig. 9. Low frequency permittivity increment as a function of volume fraction for the
systems presented in Fig. 8.
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MHz, of scarce interest for the evaluation of the permittivity, but not
so for the case of the dynamic mobility [69].

6.2. Some results

Fig. 8 gives a clear indication of the expected trends of variation of
the relative permittivity in concentrated suspensions. As observed,
the change of the permittivity with the volume fraction is not
monotonous: the low frequency increase is followed by a high
frequency decrease, the latter being a clear indication of the
progressive substitution of high-permittivity solvent by low-permit-
tivity material (the particles). The initial increase is the manifestation
of the interfacial contribution to the high values of the permittivity of
suspensions at low frequency. The rapid lack of linearity as the volume
fraction is increased is manifested in the data presented in Fig. 9: even
1% in volume fraction should be strictly considered as a concentrated
suspension, for which the particle interactions prevent using the
dilute-suspension model.

The concentration of particles has also a significant effect on the
dispersion frequency, as Fig. 10 demonstrates: the frequency of the
alpha dispersion is shifted towards higher values (that is, towards
lower characteristic times) as ϕ is increased. This might suggest that
the diffusion distance is lowered by the proximity of the neighbors, so
that ions have to move a shorter distance and this motion can
Fig. 8. Real (a) and imaginary (b) components of the relative permittivity of
suspensions of spherical particles with the volume fractions indicated (in %). Other
data: particle radius 200 nm; 1 mM KCl solution; zeta potential: 125 mV; and relative
permittivity of the particles: ε′rp=2.
withstand larger frequencies before being unable to follow the field
oscillations.

7. Recent advances

In addition to concentrated suspensions, already considered in
Section 6, recent developments in aqueous suspensions were mainly
centered on the following aspects:

1) Suspensions of polymer coated particles: “soft particles”.
2) Extensions of the standard electrokinetic model.

7.1. Soft particles

Dielectric studies of soft particle suspensions arose from the
growing interest in the use of polymer coatings for protecting the
particles against aggregation, or for conferring some specified
properties (rheological in particular) to the suspensions [100]. Most
of the research on these systems, such as the series of theoretical
works by H. Ohshima and collaborators [101–103], dealt with the
electrophoretic mobility. However, the dielectric properties were only
studied in 2003 by two independent groups [55,56,104].

These works provide numerical results for the dielectric properties
of either charged or uncharged particles coated with either a charged
or uncharged polymer layer without any restrictions on the thickness
Fig. 10. Same as Fig. 9, but for the alpha dispersion frequency.
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of this layer or the Debye screening length. They have in common the
representation of the polymer layer as an array of segments, with the
drag force calculated considering each segment as a sphere. They
differ, however, in the model used to represent the segment density
surrounding the particle: a continuous function that decreases
monotonously with the distance to the core [55,104] or a constant
value that drops to zero at a distance equal to the layer thickness [56].

The first approach has the advantage of generality (the shape of
the density function can be modified by means of an additional
parameter) and of avoiding the use of a boundary condition at the
outer layer limit (which remains actually undefined). On the contrary,
the second approach has the advantage of representing the system
with the minimum number of parameters: the segment density of the
polymer layer, its thickness, and its drag coefficient. Furthermore, it
has a crucial advantage in the study of concentrated suspensions using
the cell model, since the total charge of the polymer layer is fully
contained within the unit cell volume. Such a study that includes the
numerical determination of the LFDD in concentrated suspensions of
soft particles was recently reported [57].

7.2. Extensions of the standard electrokinetic model

It is often possible to provide an interpretation of dielectric or
electrokinetic measurements considered independently: a set of
microscopic parameters can be found which, used together with the
standard electrokineticmodel, leads to theoretical predictions that are
in good agreement with the experimental data. However, there are
many cases when even an infinitely high particle charge does not
suffice to explain themeasured LFDD amplitude or the electrophoretic
mobility value. Moreover, when dielectric and electrokinetic mea-
surements are considered simultaneously, it becomes generally
impossible to provide an interpretation to the experimental data
using the standard electrokinetic model.

In view of this situation, many attempts have been made in order
to generalize the standard model, which is based on the following
assumptions:

a) The particle is homogeneous, hard, and insulating.
b) The charge of the particle is fixed (it does neither move nor change

its local value) and is uniformly distributed on the surface.
c) The electrolyte is strong so that there are no dissociation-

recombination processes.
d) Ions in the electrolyte solution are point charges solely character-

ized by their valences and diffusion coefficients.
e) The macroscopic parameters that characterize the electrolyte

solution, namely, its permittivity and viscosity, have fixed values
that can be used down to the microscopic scale.

According to this model, the equilibrium ion densities around the
particle are determinedby theGouy–Chapmandistribution, so that the
surfaceconductivityisdefinedbyasingleparameter:thesurfacepotential
(together with a series of electrolyte solution parameters that can be
independently determined: the electrolyte concentration, the ion
valencesandtheirdiffusioncoefficients).Becauseofthisdependenceona
single parameter it is usually impossible to provide a simultaneous
interpretationtobothdielectricandelectrokineticdata.Moreover,since
forhighsurfacechargesand/orhighelectrolyteconcentrationstheGouy–
Chapmanmodel leadstounreasonable iondensitiesclosetotheparticle
surface, a considerable effort has beenmade to generalize the standard
modelinrespecttotheparticlesurfaceproperties.

The most popular approach is to consider that the fixed surface
charge of the particle is surrounded by an infinitesimally thin layer
inside which ions can move tangentially but the fluid is immobile. The
surface density of ions in this layer is determined by adsorption
isotherms. Outside this layer the standard model applies so that the
surface potential corresponds to the potential value at its outer
boundary (this interpretation relies on the assumption of an immobile
fluid inside the surface layer). The outlined approach introduces a
new independent parameter in the system: the “anomalous” surface
conductivity or stagnant-layer conductivity (SLC or conductivity
“behind the plane of shear”). Because of this, the total surface
conductivity is no longer determined solely by the surface potential,
which makes it possible to provide a simultaneous interpretation of
some dielectric and electrokinetic data that could not be interpreted
using the standard model [44,47,82,105,106], even though the
anomalous surface conductivity always decreases the predicted
electrophoretic mobility value.

Another approach consists in assuming that the particle surface is
not perfectly smooth so that the fixed charges are distributed inside a
thin volume surrounding the core [14]. This volume constitutes a thin
(but not infinitesimally thin) surface layer that is populated by fixed
charges, free ions, and the fluid that is free to move inside it. The free
ion concentration inside the surface layer is determined by the
Poisson–Boltzmann equation rather than by adsorption isotherms.
Again, this model leads to the appearance of an anomalous surface
conductivity determined by parameters such as the layer thickness
and the drag coefficient exerted by the fixed charges on the tangential
fluid flow. However, unlike the previous approach, the anomalous
surface conductivity increases now the value of the electrophoretic
mobility, providing the possibility for the interpretation of a broader
set of experimental data.

A totally different attempt, mainly oriented to the interpretation of
the extremely high LFDD amplitude values often observed, was made
taking into account the role of H+ and OH− ions, always present in
aqueous electrolyte solutions [107]. Since their concentration is
usually much smaller than those of the ions of the base electrolyte
solution, the direct contribution of the former to the dielectric and
electrokinetic properties is generally negligible. However, if the fixed
surface charge depends on the pH, as is often the case, then the field-
induced ion concentration changes close to the surface should lead to
local changes of the fixed charge density. While the approximate
analytical results appeared to be quite promising [108,109], this
model was abandoned in recent years.

Another feature of the standardmodel thatwas re-examined corre-
sponds to the assumption that the electrolyte is strong. Actually,
dissociationandrecombinationprocessesalwaysexisttoagreaterorlesser
degree, depending on the particular electrolyte used in the system. The
influenceoftheseprocessesonthedielectricandelectrophoreticproperties
was analyzed both theoretically and numerically [110–112].While the
obtainedresultsarepromising,andcertainlyessentialfortheinterpreta-
tion of systemsmadewithweak electrolytes, this line ofworkwas also
abandonedinrecentyears.

Finally, another approach under active investigation, consists in
recognizing that ions have a finite size so that they cannot be treated as
point charges [113]. This line of work differs from the other general-
izations in two important aspects: firstly it is not based on a hypothesis
thatmayormaynot be true (ions are certainly notmathematical points)
and, secondly, the finite ion size is not an adjustable parameter. Early
works on this subject, dealing with equilibrium properties [114,115],
concluded that the ion size effects were only significant for extremely
high surface charges and electrolyte concentrations. However recent
studies have shown that the influence of ion size is not negligible even in
the most usual cases, because the finite ion size not only limits the
maximum ion density but also determines the minimum distance that
ions can approach the particle surface [113]. Moreover, the obtained
results generally improve upon the predictions of the standard model
since the low frequency dielectric and conductivity increments, as well
as the electrophoretic mobility increase with the ion size.

8. Conclusion: the future

Much theoretical and numerical work is still needed regarding the
generalization of the standard model, aiming at a more accurate
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description of the phenomena that ultimately determine the dielectric
and electrokinetic properties. This might require an even more
detailed description of the particle–electrolyte solution interface as
well as a re-examination of still accepted assumptions of the standard
model such as the validity of permittivity and viscosity values at a
microscopic scale or the independence of the ion diffusion coefficient
values on the ion density. It might also require new high frequency
dielectric dispersion studies, since the parameters of this dispersion
are directly related to the surface conductivity of the suspended
particles. It is actually surprising that there is still no analytical theory
for the Maxwell–Wagner–O'Konski dispersion in the case of highly
charged particles with a thick double layer.

Active experimental work on dielectric measurements in the range
of theMaxwell–Wagner–O'Konski dispersion is needed, an aspect that
was largely disregarded in recent years. One reason is the availability
of commercial electro-acoustic and acousto-electric equipment that
make it possible to routinely determine the electrophoreticmobility in
this frequency range. However, a full particle characterization requires
the complementation of the electrokinetic data with precise dielectric
measurements that are generally unavailable. While these measure-
ments seem to be relatively straightforward, since the electrode
polarization problem decreases with frequency, the low dispersion
amplitudes involved usually lead to high data scatter and large
uncertainties in the dispersion parameter values. Also, it is still not
clear which of the main competing (reflection coefficient or imped-
ance measurement) techniques is ultimately preferable in the
frequency range of the delta dispersion.

Finally, the main development required for a widespread use of
low frequency dielectric measurements is the availability of commer-
cial equipment.While broad band impedance analyzers do exist, there
is a lack of complete measurement systems able to reliably obtain
impedance spectra for highly conducting liquids (up to 1 S/m) over a
wide frequency range (at least 1 kHz to 10 MHz) and transform the
results into precise permittivity and conductivity data. Such a device
would probably require a temperature controlled motorized variable
spacing cell, low impedance electrodes, an extremely high precision
impedance analyzer, a precise calibration protocol, and a built-in user
friendly interface. While not a simple proposal, it seems to be a
realistic one, as LFDDmeasurements of these characteristics are being
made in research laboratories around the world, using existing
instruments and locally built measurement cells.

9. Major recent advances

There are a few lines of research that appear to be frontier-opening
in the evaluation of the permittivity of colloidal suspensions. One is
related to the role of conductivity in the stagnant layer on the
permittivity of the suspension. The second is the analysis of the special
behavior observed in soft particles and in salt-free systems. Finally,
cell models suited for the investigation of concentrated suspensions,
and consideration of finite ion size also appear as promising fields.
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