Available online at www.sciencedirect.com

SCIENCE@DIREGT”

ELSEVIER Nuclear Physics B 701 (2004) 299-333

About the stability of a D4B4 systen?
Adrian R. Lugo

Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,
C.C. 67, (1900) La Plata, Argentina
Received 1 June 2004; received in revised form 5 August 2004; accepted 24 August 2004
Available online 11 September 2004

Abstract

We study a system of coincident D4- abd-branes with non-zero world-volume magnetic fields
in the weak coupling limit. We show that the conditions for absence of tachyons in the spectrum
coincide exactly with those found in [hep-th/0206041], in the low energy effective theory approach,
for the system to preserve d4lof the supersymmetries of the type IIA string theory vacuum. We
present further evidence abouethtability of the system by compugrthe lowest order interaction
amplitude from both open and closed channels, thus verifying the no force condition as well as
the supersymmetric character of the spectrum. A brief discussion of the low energy effective five-
dimensional world-volume theory is given.
0 2004 Elsevier B.V. All rights reserved.

PACS 11.25.-w; 11.30.Pb

1. Introduction

The discovery, in type Il string theories, of cylinder-like branes preserving a quarter
of the supersymmetries of the flat Minkowski space—time, the so-called “supertubes”, has
attracted muchtgention recently{4—8]. The stabilizing factor at the origin of their BPS
character, which prevents them from collapsing, is the angular momentum generated by
the non-zero gauge field that lives on the brane.
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An interesting feature of the supertube is that it presents DO and F1 charges, but no
D2 charge. In relation to this fact, Bak andich (BK) observed that, if we consider the
elliptical supertube in the limit when one of the semi-axis goes to infinity, the resulting
system should be equivalent to having two flat 2-branes with total D2 charge equal to zero.
This naturally led to conjecture the existence of SUSY D2-systems. Such a study as
well as the study of systems with arbitrary numbers of D2- B@dbranes was made in
the context of the Born—Infeld action in R¢f], where the conditions to be satisfied by
the Killing spinors were identified. Soon after that, in referefidq, higher dimensional
brane—antibrane systems were considered in the Born—Infeld contexi {§der related
work in the matrix model context). In particular, the existence of a quarter SUSDB4—
systems with D2 and Taub—NUT charges and no D4-brane charge that should represent
genuine bound states of such components was conjectured. While it is plausible that a five-
dimensional supertube-like solution exists, leading in a certain limit to the brane—antibrane
system, much as it happens with the supertube, in this paper we will focus on a detailed
study of the conformal field theory and, in fiaular, in the absence of tachyonic instabili-
ties in the system (in the supertube context such analysis was carried out ifEREZp.

2. Review of the construction of the D4D4 SUSY system

Let us start by remembering those resultfli®] which are relevant to the subject stud-
ied in this paper.

Let us consider type IIA superstring theory in the flat vacuum defined by the ten-
dimensional Minkowskian metric tensor = ny v dX™ dX", with constant dilaton and
the other fields put to zero. This background preserves maximal SUSY, whose gen-
eral Killing spinor is, in the standard local basi¥, a constant 32-dimensional Ma-
jorana spinore. Let us consider a D4 (ob4) brane, with world-volume coordinates
(", ©=0,1,2, 3,4}, the embedding defined by*(§) =&*, u=0,...,4, X' (§) =0,
i=5,...,9, and an Abelian gauge field, (&) = %FUMEV living on the brane, being
F = dA the constant field strength. Then, the introduction of such a D4 brane in space—
time will preserve the supersymmetries that satji$#j*

e = *e, (2.1)

where the “-” sign on the r.h.s. corresponds to tBé brane with thesame fields as the
D4 brane because, by definition, it has oppositentation to the D4 brane. This last
orientation is defined byg1234= +1, which is present in th&-matrix [13]?

1 1
r= d_l/z(F11+ 5 Fun ™ + 2 FuFpo rﬂ”ﬂ"rn) o

d=detd; =detd_ > 0, d4t, =8"*, + F*,. (2.2)

1 The scaleTy = (2ra’) "L is put to unity everywhere unless explicitly written.

2 We take the ten dimensionar-matrices to obey(I'™; Ny = 2yMN (M. 11 =0, with Iy =
r1...roro. For definiteness, we adopt aajérana—Weyl basis wherEM! = 5,4, "™ . In such basis, we
can takeA+ = C+, whereC+ I'M ¢4 =1 = £ "Mt — £ "M! gefines the charge conjugation matrices.
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Now, as discussed iffL0], the antisymmetric matrix of magnetic fields;; = F;;),
with i, j =1, ..., 4, can be put in the standard for(rf"j)1 gz) ® io2 by means of ai80(4)-
rotation; theSO(2) x SO(2) rotation left over by this condition can then be used to put the
electric fieldE; = F;p in the (13) plane. So we can consider, with no loss of generality

0 Eq 0 E3 0
Eq 0 By 0 0
(F“v) =0 —-B1 O 0 0|, (2.3)
E3 0 0 0 B
0 0 0 -B2 O
because any other solution will be ridd to the ones with the configurati¢® 3)by means
of successive rotations.

One of the solutions found if10] corresponds to a T-dual configuration of the Bak—
Karch D2-D2 system; we will be interested at present on another one. This novel solution,
which also preserves/4 of SUSY, is obtained by restricting the field strength in the fol-
lowing way

BZB3 — B?EZ — B5E? =1. (2.4)

This constraint clearly implies th&B;;) cannot be singular; even more, if it holds, then
the module of the four-vectgt = — B~ LE verifies

E1\?> [E3\? 1
=F (131) +(32> BfB§< (2.5)

It is possible to show that a boost with a velocity equaﬁteliminates the electric field; a
further rotation (which certainly does not affect the null electric field condition) can fix the
magnetic fields matrix in the standard form again. So we conclude that the sector of fields
obeying(2.4)is Lorentz-equivalent to a sector of the observers that do not see electric field
and have non-singular magnetic matrix of detamant equal to one. Therefore, we will
restrict our attention to a field strength 3) with

E1=E3=0, detB=B?B5=1. (2.6)
Such field strength clearly breakkeetspace—time symmetry as follows
0(1,9) — R x S0O(2) x SO(2) x SO(5). (2.7)
The I'-matrix (2.2) takes the form
I =d Y?(I'v123al 11+ B1losa+ B2lo12+ B1B2IbI),
d =2+ B2+ BZ=(1B1l + |B2)>. (2.8)

The solution we are interested in is obtained by splitting equd#dl) into the following
two conditions

—B1BoI'23% =,
d"Y?(B1Ibza+ B2l 012)€ = *e. (2.9)
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This system is consistent, and leads to the preservatiéﬁb& 8 SUSY charges; explic-
itly, with —i I'12(s) = (—)* (s), etc. (sed410] for details and notation), the 8 Killing spinors
are

3
1) = (ss1s2831) isg(Ba) (—) 1% (s5152530),

(—)* =sg(B1B2)(—)™, (2.10)
where the labels take the values 0 (spin down) or 1 (spin up). From these equations we
can see that the Killing spinoné ) corresponding to the introduction of4 brane

8 ) 515253) - .
with world-volume gauge fieldé— B1, — B) are exactly the same as the Killing spinors

;78:1253) of the D4-brane with field$B1, B2). Therefore, we are led to conjecture that the
ngllm) in (2.10)are Killing spinors (without taking ito account back-reaction effects) of

1/4 SUSY systems of D4 branes with field8;, B>) andD4 branes with the opposite ones
(—=B1, —B2), obeyingB%B2 = 1. In what follows, we will focus our attention on a D@4
configuration.

3. The “light-cone” gauge-fixing and rotational invariance

As is well known, a covariant analysis of the string spectrum is carried out by consider-
ing the BRST chargfS]

1 i Ab()
QBRSTE Z C—mLSnm) _I_ Z y_rGﬁm) + E Z:C—mLfnL: + 0 o

2
meZ rels meZ
+ Z C—mLﬁy - Z Z bn¥Vr—m¥V—r» (31)
meZ meZ rels

where (B—y) b—c are the { = 3/2 super). = 2 ghost fields and the superscrifis)”
stands for “matter”. It verifies

{ QBRST; QBRST}

(m) 8)
= %(Zm(mz_ 1)Cfmcm + Z(4r2_1)yryr> (32)

meZ rels

From (3.2), it follows that QBRST is nilpotent iff the central charge of the matter system
(whatever it is) isc™ = —¢(®) = 15, where we have usg¢@.15) Physical states are then
defined as cohomology classes of this operator. However, for the sake of clarity we will
analyze the spectrum in the light-cone gauge to be described in what follows.

Let us start with a brief review of the analogue of the light-cone gauge fixing procedure
in the presence of branes, a subject which, to our understanding, is not covered deeply
enough in the literature. Let us consider an open superstring theory that consists of a time-
like coordinatex® with NN b.c.,d + 1 coordinateX’, I = 1, ..., d +1 with homogeneous
DD b.c. (fermionic partners arensidered below) and an arbitraiy= 1 superconformal
field theory. Let us pick upx® and X4+ to define “light-cone” coordinate¥* = X0 +
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X?+1 Then, the b.c. are equivalently written as

80XO|G:0=80Xo|U:n :O} { aiXJr‘a:O:a?Xi‘
0

=0 3.3
aTXd+1|g:0= aTXd+l|g:n _ ( )

aiX+|a:n = 8$X_|0:n’

which show that, although it could seem at first sight a little bizarre to mix fields with
different b.c., there is no obstacle to doing so, and the problem on the r.{(33pfs
perfectly well-defined; the same happengift! is ND or DN. What changes radically

is the interpretation of the complete gauge fixing possible thanks to the (super) conformal

invariance of the string theory. FrofA.12), (A.14) we get for the light-cone coordinates
XE(t,0)=x* + Xi(o +) + Xi( ).

Xi _ .+t _+ - m 7””10‘

1 (O’ ) apo+i Z .
mEZ’

+/ _— I F _— l Oli —imo ™~
XR(G ):ap o —Hézze , (3.4)

meZ’

wherex® = x0 £ x§™ = x0 and p* = p® + T, 4x4+1 = p°. Now, in order to linearize

the Lo constraint, a reparameterization veryfeient from the usual one (see, for example,

[1]) must be considered. Let us try in fact, the one defined by

~ _ 1 + + — m —lmT
T(I,G)—za,er(XL(o )-I—XR( —r+—lp+ mgez/ cosmo,

~ _ 1 + + _ — — m —lm‘[

o(tr,0)= 2 (X7 (e")=Xz(07))=0+ —lp+ mEGZ/ sinmo.  (3.5)

This world-sheet diffeomorphism satisfies the crucial properties:
e itis a conformal reparameterization;

e it preserves the region of the parameteesR, 0< 6 < 7;
o it leaves the b.q3.3)invariant.

In terms of these new parameters we get

XtE,6) =X (r,0)=x" +ao'ptet + )};(5_),

X (1,6)=X (t,0)=x"+a'pT6~ +X;(c"), (3.6)
where
~ L B o ‘l o, o
Xp (@) =XR (07 ) g ory =076 i ) e
meZ’
Xp 6N =X 05 v gy =ap ot +ilE > %e""”‘”’*, (3.7)

meZ’
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define the new variabley,,} in terms of the old one¢w,,}. From (3.4) and (3.6) we
see that the reparameterization just pidt§ = 0, m # 0} (in particular,p™ = p~ = )
and lefts over a translation invarianceinas in the usual case; howevar; is not the
world-sheet time.

Analogously, for the fermionic superpartnef8 andy?*+1 we introducey* = y° +
ya+1, But, while in the usual case we can reach the gauge= 0 through a supercon-
formal transformatiorfA.5), it turns out that in our setting the gauge fixing allows to put
lﬂi =¥~ =0+« b} =0 through a superconformal transfeation defined by the para-
meters

Gi(Ui) =7 w::l}:: (3 8)
204 XE" '

It is easy to check that this gauge fixing is compatible @&!®). The super-Virasoro con-
straints are readily solved in this gauge; fr#22), (A.24)

Tit(0®)=TE (0F) —0:XT 02X =T (0F) — o/ Z ~ p—imo*

meZ

/
Gi(o%)=Gi(o%) - %wiaixi =Gi(o* lp Z —p—iro® (3.9)

rEZ

It follows that the conditiond.,,, — AS,,.0= G, =0 yield

2 2
o, = lp+(L — Adm,0). b, = —G;, (3.10)

respectively. HereA is a normal ordering constant, whilé-* stands for contributions
other than th€0, d + 1) directions, i.e., th€l, . .., d) directions and théV = 1 theory. In
particular,(L;-, Gi) generate aV = 1 superconformal algebi@.26) with ¢+ = 3d +
CN=1-

This gauge fixing obscures the initi@(d + 1) invariance of the system, leaving just
the SO(d) subgroup manifest. The tentative generatoiis } = {J;;, Ji@+1) = Ji} in the
gauge-fixed system are

0
Jij = ‘]i(j)+ ‘]i(jb) + ‘]i(jf)
1. . -
= 2 [bhibg] =i Y (ol — ol ) =i Y (b, 6] — b0,

m>0 r>0
5=0@ 4 g 40
=3 +( 0Go + Z oy Loy — L) + (8 rG%—Gf,bi)), (3.11)
m>0 r>0

wherei, j=1,...,d andJi(jo) andJl.(O) are absent in the NS sector. Itis straightforward to
show that

[Jij: Il = —i((Sﬂij +8jkJit — (I < J))’
[ijs Tl =i(Gixdj — 8k di), (3.12)
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while, as usual, the problematic commutatofds J;1, whose careful computation gives
— i 1
. 4 ¢ (0)
Ui 1 =iy o+ s <2A 12)1

1 AP
+<lp+>z(2 - (Lth )

m=>0
+3 AP (b j))). (3.13)
r>0
The anomalies
i
AV =al =241+ (1—2 - 1) (m?—-1), (3.14)

show that the complet80(d + 1) algebra closesn-shell, p* = p~ = p°, in both sectors
providede™ = 12 andA = 1/2.

4. Analysis of the spectrum and supersymmetry
In this section, we will analyze the perturbative spectrum of theM#system defined

in Section2. Therefore, we must consider open superstrings with a time-like NN coordi-
nate X°, four coordinates along the branes resumed in two complex figftls= x* +

iX? 7@ = x84+ ix* and five DD coordinateX’, i = , 9 orthogonal to the branes.
Each coordinate field is paired with fermionic partnﬁ%(Majorana) v D ¢ (Dirac’s)
andy',i =5,...,9 (Majoranas), respectively. Furthermore, we take from the start the

magnetic fields on the D4 ar4 branes to béB; = T, tanZv®), B = Ty tan(Zv @)
and(—B1, — By) respectively, with 0< [v?| < 1, but with no relation between thgs.
According to the precedent section, the theobtained after fixing the light-cone like
gauge in the(09) directions should prese@0O(5) invariance, sincel = 4 and, in fact,
¢t = 244 6 =12. This invariance reflect in the spectrum, and we will give some examples
below.
From(3.10)(with A = 1/2), (A.22), (A.27), (B.4), (B.28)and(B.29), the energy oper-
ator in any sector reads

1) =12 =212, 1
=5V(71),0C082g06)|p(1)| +4 )@ COSZ(,D(())|[7(2)| +J(NJ_+NO)»

whereNt = N + N@ 4 Y8 N is the total number operator in the eight transverse
dimensions.
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There are four “CP factors”, in the languageg22], which label the states in the spec-
trum, depending on where the ends of the (oriented) strings are fixed; we denote them by
dd,dd,dd anddd. The vacuum energyo depends on the CP label and on whether we
are in the NS sectos(= 1/2) or in R sector{ = 0). Furthermore, the spectrum must be
GSO projected, procedure which preserves the states such that

()P @@ {1 _ 41 (4.2)

14
inthe NS and R sectors, respectively. Hgrstands for the number of fermionic oscillators
andy = —4b3bhib8 is the chirality operator adpin(4), {bi; by} = 8"/ being the Clifford
algebra. The justification for this rule is given in the next section (&®).

Let us look first at the lowest levels. In thi@ sector the “massless” (null energy) spec-
trum is the well-known vector multiplet corresponding to a theory with 16 supercharges,
consisting of a five-dimension&l(1) vector field, five scalars and the corresponding fermi-
ons; idem in thedd sector. Thedd superstrings, on the other hand, break half of this
supersymmetry, but the states which survive GSO are different in the following cases:

Case b Vb > 0.

g2 signp®

N 2

signb™D
2

(W& + 2] - ).

(@=p2 =),

Pyla), «'E?=0, a=1,...,.4 (4.3)

|O)Ns, o

€ (@) J 2
Bﬂ(1)71/239(2)71/2|0>NS» a Ec=

Case bVp@ < 0.

signb@ ! 5
Bé?a)),l/z'O)NS, E2 = o (1_ |U£)| _ |U£)|),
P_|O(), O[/EZZO, (X:l,,_.74’ (44)

where the states in the last lines are in the R sefutdheing the spinor representation of
spin(4) algebraand’y = 1/2(1+ y). We see that, under the conditih6), the potential
tachyons disappear and the NS sector contributes to the massless level with two complex
fields (considering théd superstrings). These, together with the fermions, filHa4i= 8
dimensional representation of a superalgebith eight supercharges, corresponding to a
massless hypermultiplgg,20].

Let us make a further step and write down the first two massive levels (in the inter-brane
sector) indicating, in the first (second) column, the NS (R) sector states.

Case b > 0,6@ > 0.
o E2= |v<_l)| D =1-_7@
1
Aé<i>T|0)Ns,

(2 () 2 (@) t
A]j(z)le‘j(l)71/23")(2)71/2|0>N87 AD(“) P+|O{>,



AR Lugo/ Nuclear Physics B 701 (2004) 299-333 307

(A5 BI 1/2Bi5 12— Ajtn_)lONs. BT P-fe),

B 1 bliplOns, AL Ons. (4.5)
o« E2=pP =3P =1_5®

A(D%Jrlo)Ns,

A By pBio 1 pONs. A Prla),

(Af;%TBé(ll)),1/23‘5(22)),1/2 - Af;%,l) O)ns, Béila)),lP— lt),

B blplOns AL [Ons. (4.6)

Case bV <0,6@ <0.
As the precedent one, with the exchanging of IeVeiJs” < |v£2)|.

Case bV > 0,p@ < 0.

o /2= =D =7

AS B ) ,l0ns,

Al(;%TBé(ll)),l/ﬂo)NSv Al(;z)TP—W),

(A "B o~ AL T Bia_y ) IONs. By TPila),

b'1/2l0)ns. (Aéﬂ>TBé<ll)>,1/2 + A%TBé?z)Ll/Z)lO)Ns. (4.7)

e E2=?|=1-9@=1_p®

@) 2
A]j(l),]_Bf,(Z),l/2|0>N87

A% BY . Ons, AW

7@_175M_1/2 U(a)_lP*|a)a

EVRCY @ L@ @
(A5 185w 10— Ava 1B _10)I0Ns,  Bjg 1 Prle),
: D RO @ L@
bl—1/2|O>NS» (A;,(l),lB,;(l),l/z + Ag(zplBg(z),l/z)m)NS- (4.8)

Caseb™® > 0,6@ <0.

As the precedent one, with the exchanging of IeVei35)| < |v(_2)|.

In each case and level, we have arranged the spectrum in such a way that the three NS
states in the first three lines a®(5) scalars, while the five states in the last line form an
O(5) vector; in the R sector, each valueof 1, 2 labels aspin(5) Dirac spinor. These
assertions can be easily checked by applyB@1)on the states and, of course, they sig-
nal theSO(5) invariance of the spectrum. In any case, the states in each level expand a
16+ 16= 32 dimensional representation of a supgeara with eight supercharges, corre-
sponding to a massive (non-BPS) supermultif8¢20].
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5. Vacuum amplitudes and boundary states
5.1. The open string channel

Let us consider a p-brane located ak’ = yé, i=p+1,...,D—1, and another
one (or aDp-brane) atX! =y!, i =p+1,...,D — 1, in D-dimensional flat space.
By means of a straightforward generalization(Bf1), (B.2) for arbitrary constant field
strengthsFo*, = T; fo'*, and F, ", = T f;*, living on their world-volumes along the
nw=0,1,..., p directions, the b.c. for the coordinate fields of open strings suspended be-
tween them result

3o X" (7,0) — folv: X"(1,0) = 8y X" (1, ) — fr"»3: X" (z, ) = 0. (5.1)

Theone-loop interaction diagram is constructed by imposing conditions of periodicity (P),
n+ = +1, or antiperiodicity (AP);y+ = —1, in the Euclidean time variablef = it ~
T+ T

XMz,0)~ XM —iT, o), v (t,0) ~ ey (z —iT, o). (5.2)

This is carried out by taking the traces in the Hitbspace, remembering that, in the case of
fermions and ghost system with P b.c., we must insert the spinor number operator (written
for convenience in pairs of indices, s@26))

5
O =% (5.3)
a=1

The A = 2 ghost fieldsb— and A = 3/2 superghost fieldg—y follow the b.c. of the
(bosonic) reparameterization and (fermiort) GRA transformations parameters respec-
tively. The insertion of the spinor number operators

L L O e e L (5.4)

’

must be carried out when P (AP) b.c. apply, due to the fermionic (bosonic) character of the
ghost (superghost) system; the definition of thecharges is given i{C.8).

The connected part of the one-loop amplitude is guessed from the Coleman—Weinberg
formula

1
AY100P — |y Z1-loop —Etr(—)':ln Gt (5.5)
whereG—1 = p? + M2 = o’ ~1L is the inverse (free) propagatdt,is the space-time

fermion number and the traces are on the lflilbert space. Regulating as usual the loga-
rithm, we define

o0
1 Gl 1 Gt dt
Aopenz—EtTNsln T +§trR|n T Z/Z(Aﬁgen(it)—l—Agpen(it)),
0

popen

L Fll/ Fbc
NS’R(T)ZtrNS,Rq o(—) +

geizre = AP D AGHEHT)INSR: (5.6)
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In what follows, we focus on our system. The bosonic contribution is

9
AL (in=2" 0 [[2" ©z?" 027" 1) 2" )
i=5
166Dp@  ,—T:45%

1 _;D_;®@
=iV el]‘[(l v vy
5 (87'[201’)5/2 tl/zn(it)4

_op . _25@ . -1
(z7 2 (inzy 27 (in)

(5.7)

where we have used the formulae giver§in3).3

In the fermionic sector, we must impose the GSO condition which in the presence of
non trivial b.c., becomes a little bit subtle. It is equivalent to inserting in the traces the
projection operator

PGSOE%( — (I Py (5.8)

The logic for this definition relies in two facts,

° Pésoz Pssomust hold in the Hilbert space of the (perturbative) theory;
e on physical grounds it should reduce to the well-known operator

Peso=5(1— (—)FW’LFW) (5.9)

5
if we turn off adiabatically the gauge fields (note that the definition is in term&’of
not of 1@, see(B.4); note also the sign flipped w.r.t. ay>Dp system[22]).

Carrying out the computations we get

:GSO, . ;GSO
ASher(it) = AShen (n)!NS + AShen

GSO w)_ v @ g By_
Alhen (n)!NS_trNs]'[qL 24y FY 4 X0 g Lo 11/24( ol paggy

a=1
(l) 2
452 . —2v7 .
T+ ( Zin%z, " (inzy " (i)
@, @ _ (1) ) 2
+e—”’(” ) z8i1)2Z, 2 (i)Zy  ~ (iD)),

):GSO w )7 '4 (a) By _
T R

a=1
PR | @
:em<v(l)+v(2))2( Z1(in) Zi 2 @i t)Zi 2 (it)
W2 _
_e*lﬂ(\)(, +U*))Zé(lt)2Zé — (l[)Zé 21)7 ([[)) (510)

3 In Z%¢ the zero mode sector must be projected[@iit
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From(5.6), (5.7), (5.10), we obtain the final resuit

o]

AoPeN_ _j v, 325" by /ﬂ e HAY% (Zl—zuﬁl)(l.t)Zl—ZVf)(l.t))—l
~ 8252 | 2 12 (it Y L

0
1 oW @
x 5(28n%2, 2= inz] P i

@

. ) _2,® _2,®
e TSI 70027, iz, (i)

-2 1-2?
—Z1n?zy 7 nzy 7 (i)

@ 1-20® 1-2®@ )

. 2
_emim +V(*))Zé(l'l)zzo T nZy T (i) (5.112)

5.2. The closed string channel

The open string channel description of the interaction between branes just given has
a dual closed string channel picture as exchangaaskd strings between the so-called
“boundary states” (b.sJ))B), that represent each brane as a sort of condensate of closed
strings (sedq15] for a review in the covariant formalism, which we will adopt; for a
light-cone approach, s¢&6]). They are completely determined, up to normalization, by
conditions that can be guessed by considering the conformal map

N LT ~ .\ A LA ~ LT
w=t°+ioc=icT — u):—z?wzre—}—m:mJ’{:)Ui::Fz?ai.
(5.12)
Clearly, the coordinaté = —7t° ~ 6 + 7 becomes the (periodic) spatial coordinate of

the closed string, whilé® = Fo < [0, T =72/ T]. This draws theree level cylinder in-
teraction diagram between a b.sfat 0 and a b.s. af = 7', dual to the one-loop open

string diagram just computed.
Under this conformal map genevatensors transform as

N
1Pdret =iPdr6* =i = (:F%> s (5.13)
This relation is crucial in order to get the right b.s. definition. While, indheoordinate,

the P (or AP) conditions just give the usual closed string expanSitims conditions on

7¢ (coming from theo conditions in the open string picture) are interpreted as operator
equations to be satisfied by the H.B). The amplitude between two branes is then given

4 The bosonic and fermionic amplituslare separately invariant undei”) — —vf’); it follows that the
contribution from exchanging the ends of the stringsketeinto account just with the introduction of a factor of
two, as was made i(5.11)

5 We follow the conventions of Refl].
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by a closed superstring matrix element

dzz _F
— (B'|zozk0|B)

/
A= (B'|G8(Lo — Lo)|B) = 7— /
T

lz]<1
[
0

whereLg and Lg are the total zero mode Virasoro generators in the left and right sectors

andG = (p? + M?) 1 = % (Lo + Lo) L is the closed superstring propagator. Moreover
from the factorization of the b.s.

a’tAClosed(it), (5.14)

I\J|Q.

ACosedi ) — AX (7, 7)AP (7, 5)AY (2, 5) APV (2, Z)|

ent

b f)
= Alnsed i Adosedit)- (5.15)

We remark that the “bra” b.s. must befubed in such a way that for any “ket{), (B|v) =
(IB); |y)) for a hermitian scalar product |v)* = (|€) which respects the hermiticity
conditions of the fields under consideration.

We resume below the b.s. at= 0 (we throw away the subindex “@®)as well as the
amplitudesA(z, z)’s for each field.

5.2.1. Scalar sector boundary state
The b.c.(5.1)for the scalar periodic field¥ " become, in the closed channel,

(95+X"(0,6) + $*,8;-X"(0,6))|B¥)=0, w,v=0,1,...,p
X'(0,6)|BX)=y§|BY), i=p+1l....,p+dL, (5.16)

whereS = (d~)"1d*,d* =14+ f andd, = D — 1 — p. Equivalently, in terms of modes,
these conditions translate to

p![B¥)=0.  x'|B¥)=y|BY)
(e + MM yaN,)|BX)=0, m#0, (5.17)

whereM = (56 7%). The solution for the b.s. defined ((§.16)is

|BX> = Np ﬁ e—l/ma@,,,MMN&ﬁ’mwX)O’
m=1
|BX)y=|p" =0:x" = y5) ©10), (5.18)
where we have attached to it the normalization conskégnt The amplitude is computed
by using the usual pairing defined by the hermiticity conditieffs = o™ , "™ =aM

6 It is evident, from(5.14) and the fact that the evolution operatorHs= Lo + Lo, that the amplitude is
independent of the value eofat which we compute it.
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for the left and right oscillators an@®|0) = 1, (p’|p) = 8 (p — p’) in the oscillator and
zero mode sectors, respectively. We get

AX(7,%) = (B |10 10124715 ~10/24) X

rrTsAyz
T, \%/2¢ toga T X _
_ Ak $ _{a2mys—La L
=MV ) e T detao = P,
m=1

(5.19)
whereAy = /(3, — yo)? is the separation betweerenes (to be taken to zero).

5.2.2. b—c ghost boundary state

Itis straightforward to see, with the help(@&f.13) that the open string b.¢C.2)of ai =
2 anticommuting, periodib— system translate, in the closed channel, into the following
conditions for the b.g.B%¢)

(6(0.6) — 5(0.5))|B*) = 0 <> (b — b_)|B*) =0,
(8(0,6) + &(0,6))|B") = 0 «— (& + é—m)| B") =0, (5.20)
for anym € Z. The b.s. that solve(®.20)is’

o0
|Bbc> — 1_[ ecfmbfmfbfmﬁfm |BbL>O,
m=1
1
V2
The hermiticity conditionsh,™ = b_, et = c_m, b’ =b_m, én' = ¢_,n, impose that
the only non-zero pairings are

|BY)y = —=(14+=) — |[—+)). (5.24)

(+=l=+) = —(—+|+-) =i. (5.25)

In particular,o(B”|B*)o = 3(—i + i) = 0; however, the amplitude is

7 The zero mode ghost sector is realized by defining the four states

[s8)=s)®|5), s,§=+,—, (5.21)

on which the zero mode operators act as

co=04+ ® 1y, bp=0-® 1y, co=03Q 04, 50:03@0'7, (5.22)

whereo4 = o1 + ioo ando; are the Pauli matrices. As usual, for the other operators

b |$5) = by |55) = c_m|s5) =¢_pm|s5) =0, m=1,2,.... (5.23)
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Abc (Z, Z) — (Bbc | (bO + 50) (CO _ EO)ZL8(+26/242L8(+26/24| Bbc>

—z|z|1/6]_[ — 12122, (5.26)

where the zero mode insertions coming from the measure (taken into accgom)jrare
translated according {®.13) (C.4) [2].

5.2.3. Fermionic boundary state
We will heavily rely on superconformal invariance to carry out the analysis. Given
10 Majorana fermions, the open string boundary téAnT)

t—fdrnMM sy — sy My Ny |7Z0, (5.27)
cancels when the following b.c. hold

yM©0,0) =AM Ny (0,0),  YyM(m,0) =AM Nyl (7, 0), (5.28)
whereAg and A, are arbitraryO (1, 9) matrices. However, once we embed this theory into
a superstring one by addiny= 10 bosonic partners with b.(5.1), compatibility with the
superconformal transformatio(&.5) fix them almost uniquely to be

Ao = noMo, Ag =ng My, 77(% = 77]21 =1, (5.29)

together with the periodicity of the SUSY parameter

€t (1) = —noe” (v) =nonze™ (v +21)
€ (07)]o_on =107 (7 )|yo.x (5.30)
It is worth to note that the matricel®p , (as defined below5.17) belong, in fact, to
O(1, p) C O(1,9), as it can be readily checked.

Around the loop, the fermions can be P or AP, accordin(bt@), from (5.13) (with
A =1/2) they become, in the closed channel,

W@ e +m=ny@.6), ni=1, (5.31)
giving rise to the well-known four sectors of the closed string; R-R.i= n_ = +1, NS—
NS if ny =n- = -1, NS-R ifp, = —n_ =+1, and R-NS ify;. = —n_ = —1. Then,

from (5.13) (5.28)and(5.29)(with no = n), we get the defining relations for the fermionic
b.s.

(¥M©0.6) —inM™ vy (0,6))|BY; n) =0. (5.32)

Itis easy to see that such a b.s. only exists in the NS—NS and R—-R sectors; in what follows,
we will label them bys = 1/2 ands§ = 0, respectively. Furthermore, at first sight there are
two states in each one of the two sectors labelled by+1; however, the GSO projection

to be considered below will allow for a linear combination of them to survive. In terms of
modes(5.32)is equivalent to

(me—inMMleymﬂBw;n):O, Ym e Zs. (5.33)
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The solution i8

o0 ~
[BY:n)= T &t

meZ;

0) §=13
BV ={" o 2 5.36
IB%:1)0=1 vy = N34y, 5=0, (5.36)

where, from(5.33)with m = 0, it follows that the matrixV must satisfy

TN =inM™yr NIV (5.37)
The solution is unique up to normalization; if

ATMAT =M — A= A =T,

UtrMy =s ™MyrV — u =s(s71), (5.38)
we can take it to be

N=Ur"ry A7t = N*Iy,
_ 1+inl1

= =y I} 5.39
s Txin y+l11, (5.39)

whereS(S~1) is the spinor representation of the elemsnt e SO(1, p). Explicitly for
the system under consideration,

1 0 0 0
. (1
0 ¢™or?2 0 0 x D @
S(Sox) =S ¢ 0 — Bt U (5.40)
’ O 0 eanO,nGZ 0
0 0 0 I

The hermiticity conditionsy /™ = yM M1 — M for anym € Z fix, almost com-
pletely (up to normalization), the scalar product to be

1
0|0)=1 ==
(010) =1, >
(AA|R282) =g1028 ;5. §=0, (5.41)

8 The statg0) is the usual vacuum in the NS—NS sector, defined by

M0y =6M10)=0, me zj/z, (5.34)

m

while |AA) = |A4) ® | A) is the R—R vacuum obeying

PMIAAY =bM|AAy=0, mezZT,

m

.1 . - -1 < .
bMIAAY = —TM Q2 4124, BMIAAY = —TI12 ,TM2 L 120). 5.35
0 N A 0 N i (5.35)
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where, in the R-R sector, the= 0 conditionsys’ " =y, §'" =y, impose

gFMg_lZ FMT

i, — _ ot
gl1==+I11g :{‘f_ lC’L,_FOF}:_g ’ (5.42)
gFMgflz:tI"MT §=C_=ilo=g".
With these definitions we get
AV (2 30y = (Bu/f; n/|ng—5/24ZZg—5/24|Bxp; n)
o
— |Z|5/6(lf38) 1_[ det(110+ 7771/|Z|2(m78)MM/71)Ag,
m=1
1, §=13
v 1 / ’ 2’
Ag = o\By; 0| By n), = (5.43)
0 | v | )O —327cosrv? cos:rv(,z)sm/,l, §=0.

5.2.4. B—y super-ghost boundary state
According to(C.2)the open string b.c. of a= 3/2 commuting 8—y system are

B(t,0)=nof(r,0),  B(z,7)=n:p(z,7),
Bt —iT,0) ~niB(r,0),  B(r—iT,0)~n_p(t,0), (5.44)

and analogously foy, y. The phasesg = n, n, andn,., n— must be identified with those
introduced in(5.2) and(5.29)respectively, because they follow the superconformal trans-
formation parameter modding. With the help(6f13)the b.c(5.44)translate, in the closed
channel, into the following defining conditions for the BB ; n)

(B0,6)+ inp(o, 8)|BP i n)=0<«— (Bn + iné-m)|Bﬁy; n)=0,
(7(0.6) +iny(0,6))|BF ;) =0« (Pu +iny_,)| B :n) =0, (5.45)

for any m € Zs. We will restrict ourselves targ = 1 — g, the “soaking up” anomaly
condition, in which casé5.45)is solved by

|Bﬁy;n)no,fro= H ol Y=mPBm l_[ e~ imBmim|) o (5.46)

mZ=mo mZ>=mo

where|0),, 7, is defined at left and right as i(C.6). However, there is a very impor-

tant difference with the anticommuting ghosts; in that case, in vie{Cat2) we took,

with no loss of generalitypo = po = 0. But, due to the commuting character of the
B—y system, there exists no such identification, i.e., each @air7o) defines a differ-

ent representation of the superghost algebra, the so-called “pictures”, denoted commonly
as(—1/2—mo, —1/2 — 710). Therefore, the vacuum, as well as the physical (BRST invari-
ant) operators, must be referred to a particular picture, the different pictures being related
by the “picture changing operation” of FM$7]. We will not dwell into details about these

facts, but just restrict ourselves to consider the tools necessary to define and compute the
amplitudes. The hermiticity properties

IBmT =—B_m, VmT =V-m; /§mT = —B,m, ?mT = )77m7 (547)
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determine the scalar product, to be defined just by imposing

(5.48)

.74 (010) 75,700 = 8t 170875 120
We get for the amplitude in the-1/2 — g, —3/2 4 7g) picture

APY (2,2 m, 1)

(Bﬁy; n/|ZL§V—11/24ZigV —11/24| BBV -

= 17710,710 ) )7>7TO~, 17710

0 n—1
—1.11/6(35—1) o2m-sn-2 ) A+mmH 78
= Il [T @+ 1222 {(nn’)ﬂo—lﬂ, 5

— —25,. -1
= ()"0 Y2 (255, 2 D) gz o memmt) (5.49)

Now, we are ready to construct the amplitude in the closed channel. Accordid )
the bosonic sector gives

m=1

b . o be -
Adpsedin) = AX (2, A (2, )|
4sinrv® sing @ ¢~ TAY?/1
(2m2a’)5/2 152 (ir)4
. -1
0072 i) -

In the fermionic sector, we must sum both contributions from the NS-NS and R—R sectors,
this last one with a “minus” sign coming from the charge of the anti D-brane. Furthermore,
we must project GSO in each one, i.e., we must insert the opg8itor

z=z=e"T!

= iNg,NBV5

1_|_(_)F 1+(_)(p+l)(l—26)(_)l}
Pgso= , (5.51)
2 2
in the computation of the traces, whefe= F¥ + FFY andF = F¥ + FF? are the left

and right spinor number operators ands even (odd) in the type IIA (11B) theory. Thén

) ;GSO, . 1;GSO, .
Afﬁlfo)sec(”) = AF\]@—NS (it) — A(RQR @i1),

):GSO, ; : N : 3
AULZINir) = AV, z: , ) APYCSOz Z: )])—ye1

1 0..2,0 1,0 . 0/: 1250 0 .
= —(Zo(lt) ZZU(}) (lt)ZZU(f) (it) — Z{(it) Zl+2u£1)(lt)zl+2u£2) (lt)),

2
;GSO, . . - . _
AR = AVOSO, 25 n, ) APY S0, )|,y
1 .. . .
- _ézcl,(n)zzév(l) (”)Z;v@) (it). (5.53)

9 The definition of such amplitudes is equivalent to considering the GSO-projectgtidh.s.

(1B +) + (o)l t1+pA=20) g, ). (5.52)

NI =

|B)gso= PcsdlB: +) =
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It follows that, if we normalize the b.s. according to

(5.54)

1+ 5D (14 pP2\1/2
Np = ,
i ( 167a’ )

from (5.7), (5.10), (5.50) (5.53)and using the modular properti€d.2), the following
identities hold

AL it™Y) = sign(b®b@)wa 1AL fiD).
ASherit ™) = sign(b®@bp@) A (ir). (5.55)
It is then straightforward to prove théi.14)coincides exactly witi{5.11)

5.3. No force conditions and supersymmetry

To write the amplitud€5.11)just obtained from both channels in a convenient way, we
can use theecond addition theoremfor theta function$21] which states that the following
quartic identity

4 4
ai L —idrays mi+s1 |, .
Hﬁ[l,ﬂ("i’f)—g Z e lnal?znﬁ[n;{-sz}(ﬂ’r) (5.56)
i=1 Sl,S2=0,% i=1
holds, where
v 1 1 1 1 €1
A1 1 -1 -1 .
)72l -1 1 -1 o
V4 1 -1 -1 1 €4
al mi
AR ]
/1 1 -1 -1
: =511 -1 1 -1 ® 1 : . (5.57)
asa 1 -1 -1 1 ma
b4 na
The famous “abstruse” identity is a spaictase of it. By choosing the argumeants= 0
and the spin structures; = — (l) yn1=1,mp=— (2) and the other zero, we get
0@ L0, @
E( B = eln(v bD_,@y (Zl v - (lt)Z B (lt)) (5.58)

By virtue of the identityZ}(ir) = 0, this equation shows that the D@4 amplitude is
identically zero iff

| (1)| + |1)(2)| 1< |b(l)b<2)| =1, (5.59)

which is exactly the conditiof2.6)founded for SUSY to hold!
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6. Conclusions and perspectives

In this paper we have studied a 024 system with non-zero magnetic fields in the
world-volumes of the branes in the weak coupling regime, and we have shown that it
becomes stable and supersymmetric for valiethe gauge fields that coincide with those
conjectured from the weak coupling, low energy approach defined by the Dirac—Born—
Infeld world-volume effective field theory on a brane. We think these results provide further
evidence about the existence of the system. In particular, a solutidn-6f10 SUGRA
IIA describing the long distance fields such brane—antibrane system supports should exist,
maybe as a certain limit of a more general solution, a kind of “four-dimensional supertube”,
much as it happens with the D22 and the supertube. Finding such solution is certainly a
very interesting open problem.

Moreover, it is natural to ask for the effective five-dimensional world-volume field the-
ory of the system. AU (1) gauge fieldA (A) and five scalars live on the brane (antibrane),
that together with the eight fermionic degrees of freedom fill a vector multiplet of the
D =5,3USY; algebra (remember that the system preserves 8 supercharges). Furthermore,
the two “ex-tachyons” ir(4.3), (4.4) are charged undet~ = A — A [23]; then, the spec-
trum analysis of Sectiofireveals the existence of a hypermultiplet of such algebra, coming
from the inter-branes excitations and charged untderFinally, the commutators among
the coordinate fields along the longitudinal directions of the brane—antibrane system (see
Appendix B0

[29,0); ZOT(z,0")]

(a); (a) (@)2
9@ (o) = o b0 br_ 1-bg _
=25" { O ) =m0 =0 =0T (6.2)
0, otherwise
signal, in the context of the paper, the non-commutative character of the effective field

theory under consideratiq@4]. More precisely, the obvious reIatiobg) = +p@ = p@
yields the well defined non-commutative parameters

@ _ o 1-— b(u)2)2
T2 b1+ p@2)

Therefore, we are led to conjecture that the effective field theory is a five-dimensional non-

commutativel/ (1) x U (1) gauge theory, coupled to one matter hypermultiplet charged un-

der one of thé/ (1)s, with non-zero non-commutative parameters in the spatial pla2gs
and(34), defined in(6.3)for « = 1 anda = 2, respectively. However, when SUSY holds,

o (6.3)

10 1 its evaluation the following identities valid for¢ Z are required (see p. 46 [85])

sinmTv

0, 0=m2n,

n+v
neZ
Z cosnf coq(2m + 1w —0O)v
=7 s

n+v sinzv
neZ

Z:sinné' _{nw, m2m <0 < (m +1)2m,

m2w <6 < (m+1)27. (6.1)
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we havebPp@ = 41 and, then®® = +©@ follows. For the special cagg@| =1 (or

what is the samegp®| = 1/2) there is a naive enhancement of the space—time symmetry
from SO(2) x SO(2) to U(2), as can be checked from the spectrum and, moreover, the
non-commutative parameters are null. Does this mean that the effective gauge field theory
becomes a commutative one? In any case, thd &f SUSY gauge theory that emerges
merits further investigation, maybe along the lines of the boundary string field theory ap-
proach[26].

As a last comment, it is possible that more general configurations of gauge fields give
rise to tachyon-free brane—antibrane systenesgrving some supersymmetries. In partic-
ular, we could consider gauge fields in the brane and antibrane which were not necessary
parallel as it was recently pursued in referefg for p = 2. A general analysis fgs > 2,
even though it becomes harder, is also a subject for future work.

Appendix A. Conventions

We review shortly free field theories on the stip= {c1 =0 €[0,7],06° =1 € R}

with superconformal symmetry. We adopt the following conventions. The Minkowskian
metric in two dimensions is

n=nuwdo"do"’ = —d*t +d%0 = —dotdo,

ct=t+o0, 201 = 0; £ 0o, (A1)
while the two-dimensional gamma matrices in a Majorana—\Weyl basis are

yoz—ioz, yl:al, y2=iy0=62,

ya=iyly?=—03.  {yu:n}= 2. (A.2)

being%ym = %03 the standard Lorentz generator in this spinor representation. We write a
generic (Dirac) spinor as

r=(v)= ()= () =

where we used = o1, Ay*A~1 = 4y to low (andA~! to raise) spinor indices. As
usualy = ¢'C =i(y5 — ¥*) with C = 02, Cy*C~1 = —y*T the charge conjugation
matrix, while the conjugate spinor is defined #§ = Dy* where D=1y *D = y#*, In
the representation chosen, where ths are real, we can tak = 1 and then a Majo-
rana spinor which, by definition, verifies the reality constraifit= v, is just a real one
Vi = ¥1. We will be using the scaleg ™ = 2ra’ = 712 and the notatioZ, =Z + v =
{m+v,meZ},Z, =2, — {0} withv €[0,1).

To begin with, we consider the actigh X, ] = Sé‘[X] + SY[y] with X, ¥ real and

T,
sEIx1= _EA f d%o "9, X0,X = 2nfdzo 34 Xo_X,
X X

s'ti=-5 [doiyran =it [do @i vt va. a4

) )
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Formally, the action is invariant under conformal SUSY transformations with real Grasm-
man parameterst = e (o T)

SeX =&y =—i(eTyy —e y),
—20_Xe~
— "o —
eV =0, Xy e= ( 29, Xe+ )
The equations of motion derived frofA.4) are solved by
I+ X = Fi (o), Ve = fr(o™), (A.6)
for arbitrary functionsf’., f+, and the cancellation of the boundary terms

(A.5)

858 |pe = —Tsfdfaxagmgzg,

Ty -
55’”|m‘=i§fdr @Yy — Y- ¥ )I5 55, (A7)

in the variation of the action imposes the bourydzonditions (b.c.) on the fields as well as
the form of the surviving supersymmetry. It is clear that fermions must in general satisfy
the following b.c.

Y_|o=0=80¥+|s=0, Y lo=n =6z¥1lo=r- (A8)
For Majoranas the phases are simply sigés,= |5, | = 1; the general solution is
_ 1 l 71‘7’0':& _ 07 87'[80 = +1?
Y (ox) = SO}EZZ: bre R E A (A.9)

from which we obtain

T

1 ‘ o
by = o Of do (e Yy (o) + 80e™ Y (o). (A.10)

By definition in Ramond (R) sectors bosongdarmions have equal modding while, in
Neveu—Schwarz (NS) sectors, the modding differs by a half-integer. So, they will differ
according to the four possible choices for the boson b.c. to be considered.

A.1. NN boundary conditions

Neumann b.c. are considered at both ends,
ac7X|<7:0= 30X|o:n =0. (All)
In this case, the general solution for the boson field is

X(t,0)=x —}—lzpr +il Z a—me*imr cosmo,
m

meZ’

i .
0+ X(1,0) = 5 Z ameﬂm”i, ap=Ip (A.12)

meZ



AR Lugo/ Nuclear Physics B 701 (2004) 299-333 321

while, for the fermions, compatibility with the superconformal symmétnp) yields the
phases$y =1 ands,; = +1 in the /NS sectors.

A.2. DD boundary conditions

Dirichlet b.c. are considered at both ends,
0 X|o=0=0:X|o=r =0. (A.13)
In this case, the general solution for the boson field\is & x,; — xg)
A : .
X(t,0)=x0+ —xo +1 Z oé—me_’"” sinmo,
T

meZ’

[ P Ax
BiX(t,a)zzi:EZame imo= w=—=lIp, (A.14)

meZ

while, for the fermions, compatibility with SUSY transformations yields the phéses
—1ands; =+1inthe NIR sectors.

A.3. ND boundary conditions

In this case, Neumman b.c. are taken at one end and Dirichlet b.c. at the other one,
96 X|o=0=0r X|o= = 0. (A.15)

The general solution for the boson field is

o
X(t,0) =x5 +il E Le7 T cosro,
r
rEZ]_/z

l .
X (r.0)= 3 3 e, (A.16)

rEZl/z

while, for the fermions, compatibility with SUSY transformations yields the phéses
+1 ands, = £1 in the NgR sectors.

A.4. DN boundary conditions

This case is the same as the ND one, with the ends interchanged,
9 X|o=0 = 05 X|o=r =0. (A.17)
The general solution for the boson field is

o .
X(t,0)=x0+1 E —Le T sinro,
r
reZl/z

l .
0+ X (1,0) Zié Z are_”gi, (A.18)

reZl/z
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while, for the fermions, compatibility with SUSY transformations yields the phéses
—1ands,; = +1 in the /NS sectors.
In all the four cases, the SUSY parameters are characterized by the conditions

€T (1) =—€ (1) =€(1), €(t + 2n) = +e(r) R/NS sector (A.19)

In particular, the surviving global SUSY charge (that certainly lives in the R sector) is the
combinationQ + Q_ ~ Go (see(A.24)).

A.5. Quantization and N = 1 superconformal algebra

From the actiorfA.4) we read the canonical (anti) commutation relations

[X(1,0);0:X(z,0")] = ;—5(0 —0") < [otm; Ayl = M8yin 0,
s

1
{V+(r,0);¥x(r.0)} = T80 - 0') «— {by; by} = 8,45,0. (A.20)

Reallity conditions translate inte_,, " = «,,,, b_,T = b,. Quantum-mechanically, a normal
ordering prescription is needed to define quantum operators; this is done from the usual
representation of the canonical commutation relat{gng0)'*

0):  ,|0)=0,,]0=0, m=>0 (A.21)

by putting at right (left) the destruction (creation) operators. The (traceless) energy—
momentum tensor is defined by, = —%81‘%@:”; its non-zero components for bosons
and fermions are, respectively,

T:i(j:(ai) =0:X0:X=d Z Lze—imai’

meZ

1
LE= 23 e e + Ao [Lsen] = naen
n

Tl (o%) = ’Ewiawi =o' Y Lbeimo",

meZ
1 m m
LY = > Z(r —~ E):bmrbr: + A S0, [LLib]= —<r + E)bmH.
(A.22)
11 For periodic (P) fermions, if we identifi0) = |—). Then,bg|+) = %\:F)-



AR Lugo/ Nuclear Physics B 701 (2004) 299-333 323

The Virasoro generatofd. .\ } and{L%} obey the algebra ifA.26) with ¢ = 1 andc¥ =
1/2, respectively, provided that the conformal dimensions of the vacuum statés are

v |-%4+32=0  NN,DD,
40 = +A+4=2L NDDN
48 T 24~ 16 s PN
1
ws+w=0 AP
AY { T_ 1 (A.23)
tuta=1 P
Similarly, the fermionic supercurrent defined I}, = —2—%5‘3)(—5“)(:0, where x* is the
gravitino field, has the components
0, R
+ _ , ,
Gi(oF) = YadeX = — ZGe’”’, 5:{%’ NS
r625
Gr= Zambr—m, {Gr; bs} = oy 4, [Gr; am] = —mby . (A.24)
m

In the NN or DD (withxg = x;) cases, the NS vacuum defined/21) is the unique
Osp(1, 2) (SUSY extension 08L(2, R)) invariant one,

Lu|O)Ns=G/[Ons=0, m > -1, r>-—-. (A.25)

This is not so with NDDN b.c. (or DD with Ax # 0) becausd._1 does not annihilate it;
for example LX,|0)ns = 50 1 5|O)ns(2Fa—1|0)s).

As we saw, the combined system in each case present two sectors, the NS sector with
opposite modding and the R sector with equal modding. The standard form &fthé&
superconformal algebra

C
[Ln; Lp]l = (m —n)Lmin + 1_2m(m2 - 1)8m+n,0,
m
[Lm; Grl= (E - r)Gerr»
C
{G); Gy} =2L,4y + 1—2(4r2 — 1)8r45,0, (A.26)

wherec = 3/2 is the central charge of the system, follows, with

® 1 ~ns _ [0, NN, DD,
AO = 1—6, AO = { %, ND, DN (A27)

12 Alternatively they can be computdsy using the Hurwitz zeta-functiof(s, x) = Z,‘(’io(k + x)™Y (partic-

ularly useful cases arg(—1, x) = —le(l—i- 6x2 — 6x) and&(—2,x) = —%x(l — x)(1 — 2x)) to regulate the
infinite sums and then adding the Casimir enarg®4, seq?2].
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Appendix B. A system with mixed boundary conditions

Let us take a complex scalar fielti= X1 + i X2, together with a Dirac fermiow =
Yl +iy?with X7, ¢ real, and consider the actigh= S + S¥ + SZ, where

Ty
S§ = —E“fdza 9,29, Z = S§ + 5§
)

T -
s¥ = —Zé[dzo (Fy" 9, +hh) =5V 457,
z
T, . . . .
SbZ = é/dr €} (an’ (7, m)0: X’ (t,7m) — boX' (1,000, X/ (7, O)). (B.1)
The boundary terns;, can be interpreted as the coupling, with unit charge, of the ends of
the string to a gauge field of strengthF = dA = Tyb(c)d Xt A dX?, whereb(0) = bo,

b(x) = b, and zero otherwise.
The bosonic sector. The boundary conditions that follow fro(B.1) are

(0o +ib0d:) Z(T,0)|6=0= (05 + bz 0:)Z(T,0)|6=r =0. (BZ)

It will be convenient to introduce the following notation

: b
1+ibg=./1+b2e'%, ="y,
+1ibo +ope Po= 50
14 iby = J1+ b2 el%r, (pﬂzgvﬂ, (B.3)

wherevg(v;) varies from—1 to +1 asbo(b,) goes from—oo to +oco. We also introduce

1 _ v, O0<v. <1,
viZE(Un:I:vo), v:{v_+1’ 1—yp_ -0 (B.4)
The general solution with the boundary conditigBs2) can be written
A
Z(t,0) =z +V21Aopo(r.0) +iv21 Y L (v, 0),
reZ; g
/ PP
0+ Z(1,0) = 7 > AT, (B.5)

VGZQ

where we have introduced the functions
¢o(t,0) = COSpoT — i SiNgQo,
b (t,0) =e " codro +¢g), € Z; (B.6)

and it is understood thatg = 0 unlessy = 0.
Let us introduce, at fixed time, the pairing

17 by b
(¢1:02) = > f do ($10:¢2 = 0:91¢2) + - di¢2|,_ — 7°¢>1‘¢z|0=o. (B.7)
0
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It is easy to prove that, fap1, ¢ of the type(B.5), it does not depend on. In particular,
the following orhogonality relations hold

—5r, r#0,

2
bo, r=0,

(¢r;¢s)::8ns

T

1 ¢,) = % Secpodr, 0,
1

sinTv_

1
1:1) = = Z(by — bo). B.8
@D COST V4 + COSTV_ 2( o) (B8)

From them, it follows that
(L 2) = (L 1)z — V2I(¢o; 1) Ao,
(¢0: Z) = (¢0; 1)z + ~/21(¢o; ¢0) Ao,
(¢r; 2) = reZs. (B.9)

ml
A,
V2i!
Then, the bulk commutation relations implied (B/.1)

Z(t,0);0: Z(t,0))| = iES(o —0o) (B.10)
T,

yield, from (B.9), the non-trivial commutation relatioh®
[Z; ZT] =20 < [xi; xj] = i@éij, z Ex1~|—ix2,
[Ar; AT =r8ns, [z Ad'] =iv/2i cospo, (B.11)

where the non-commutative parameiés given by

-1 -
—(2h(LY) T =F52, V#£O, (B.12)

0= Sinnvo_i bo 5=0
o, L VT

The fermionic sector. From the action for the Dirac spinor (8.1) with the boundary
conditions as ir{A.8), but now withsg = ¢/%0 ands, = /¢~ arbitrary phases, the general
solution is given by

. . P . .
Wi(op) =1 B OFHE 585 = el @90 = pi2m, (B.13)

rez,

However, consistency witlV = 1 superconformal symmetry transformatiéths
$eZ =¥ =—i(et¥y —e W),

—28Ze>

29, Ze+ (B.14)

8W =0,ZyMe = (

13 An useful relation is the following one; if; = (¢;; Z2),i =1, 2, then[ f1; sz] = _T_lr(d)l; $2).
14 Equivalently, it is possible to derive the bfoom a fermionic boundary ten added to the actio(B.1), see,
for example[19].
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where the parameteris Majorana, fixes the phases to be

imvg

So=e™0, Sy =eeTVT, 8,85 =€, (B.15)
with € an arbitrary sign, as well as the form of the SUSY parameté(s*)
€T (1) =—€ (1) =€(1), e(t +2m) =€e(1). (B.16)

Itis easy to see that we can identify the sector with —1 as the NS sector and that with
€ = +1 with the R one, just by realizing, froifB.13) and(B.15), that, in the last case,
the fermionic modding coincides with the bosonic one<(v) while, in the first one, the
modding differs by a half-integep(= v & 3 if 0 < ¥ < 3/3 < ¥ < 1); furthermore, from
(B.16)the right periodicity for the SUSY parameter follows.

Now, by using
1 w
B, = 57 do (ei(r“++"’°)!1/+ (6T) +e 7 0w (57)), (B.17)
0

the canonical anti-commutation relations read

(¥(r,0); (e, o)} = Tga(a —o') «— {B; BST} =85 (B.18)

N

A reference state, w.r.t. the normal orhgrwill be understood, is defined by the conditions

O)rg: ArlO)yo =0, 7
)i Brl0)y=0. r

0.  AT0),=0 r<0

=
> ro, BrT|O)r0 =0, r<ro, (B.19)

forsomerge Z,.
B.1. Conserved currentsand N = 2 superconformal algebra

Two conserved currents associated witis gystem can be defined. The first one is just
the momentum associated to the translatidns Z + ¢, ¢ € ¢, and it is defined by

Pl'(r,0) = ~T;(3" Xi(1,0) — €;j€" 0, (b(0) X (v,0)), €0 =€"" =+1,

b -
. . e V#O,
pz5p1+lpz=/do P (t,o0)=1 5 _ (B.20)
o WAO7 v=0.

They are, as they should, the canonical conjugate variables to the center of mass coordi-
nates,

[xi;xj]:iéeij, [xi;pj]ziéz-, [pi; pj1=0. (B.21)

15 The reader notes that fong| = 1(|bg| — o0) or |vz| = 1(|bz | — o0) it does not exist, in agreement with
the fact thaiB.2) becomes Dirichlet boundary conditions in at least one end.
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We can get a representation of this zero mode algebra (fer 0) in momentum space by
defining the action of the operators as

A N ) .
pPi — Di, X' —i— —0€p; (B.22)
api
or, in a more standard way, we can introduce canonical variables defined by
qlzcxl—spz, k1=cx2+sp1,
g% =sx*+cpo, ko= —sx2+cp1, (B.23)

wherec =1/,/1+ 62, s =602/,/1+ 62,6012 =/1+62/4+0/2 > 0. They verify
[¢'; /) =Tki;kj1=0,  [¢';k;]=i6:",
dx Adx? Adpy Adpr =dg* Adg? Adki A dko. (B.24)

In view of the relatior9102 = 1, the phase space volume remains invariant, an important
fact in computing the zero mode contribution to the partition function. On the other hand,
whenb # 0 we have just the-variables, introducing a factor 276)~1 in such compu-
tation.

The second conserved currefjt= JZ + J leads to the conserved char@e= 0% +

QY that generates thi (1) rotationsZ — ¢~ Z, & — e¢~“¥, and it is defined by
T, N
J#Z(r, o)=T, Im(Z*(r, )3, Z(x, 0)) + Eeuvav(b(a)z*(r, 0)Z(t, U))

_ y2pH 1lpu
= x2p}' — x'Pj,

. T 32
(AFA 5=, v_7#0
Z= Zt _ rair 0 )
0 _/dO'J (r,a)_Z—r —l—{ )
0

reZ(}f _%ﬁ _x1p2+-x2p17 v =07
T, -
7Y (r,0) Ei%@l/ylﬂl,
T g
T,
oY E/dO’ IV (1,0) = E‘deo (wlw, +wlw )= > BB (B.25)
0 0 FEZV

While the bosonic part of th& (1) current suggested us to introduce the pai(Bg), the
fermionic part can be extended to a holomorphic current,

. T - T T 1 s + t
Ji(oi)zlillfyiwz—éwiq/iz—gZlme imo= I =
meZ
Jn=Y B Buiri+qodmo.  [Jw: Brl=—Buir. (B.26)
rez,
whose zero componentis essentially the global charge defined algeve??¥ + go, where

go=ro—1/2istheU (1) charge 010),,. This currentis just th& (1) current of theV = 2
superconformal algebra the system realizes, the fermion number current. In fact, we can
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introduce thecomplex fermionic currents

1 / . 0, R
Gilo¥)=zwioz=—=) GPe ™. 5= { 1 NS
29 "

rGZg

G£+) = Z ASBA.Lr’ [G£+); A;T] = SBA.LV’ {G£+); Bs} =Arqs. (B.27)

sEZg

The modes of the Hermitian conjugafe (=)' are introduced in the same way, with
the resuItGﬁ_) = G(:;)T. Furthermore, the modes of the bosonic and fermionic energy—
momentum tensors

T/ =0:2%0:Z =o'y Lie ™",
meZ
LE= :AlA i+ AfSmo.  [LE: A =—rAnir,
VGZQ
TV =i(wTa W+ wpoeWl) =o' Y LY —imo*
4+ = g P 0EPE +0x¥y) = m€ )
meZ

m
Ly=>y" <r + E):B,TB,,W: + A .05

[LZ; Br] = _<r + %)Berra (B.28)

verify the standard Virasoro algebra(A.26) with ¢Z = 2, ¢¥ = 1, respectively, and the
constants

1 1 1\?2 1 1\?
AZ:___ p— — s Alp:— —_— . B.29
0= 3 2(” 2) 0 2(’0 2) (8.29)

Thus, the modes of the mixed systef, = LZ + LY obey the Virasoro algebra with
¢ = 3 and a conformal dimension of the vacuum given by

1 1
A=A§+Ag’=§+§(ro—a)(ro+a—1). (B.30)

This energy—momentum tensor, together with the cur(@gs), (B.27), generate the/ =
2 superconformal algebra which completes the Virasoro one with

r—s c
Jr+s+_

{G£+);G§7)}=Lr+3+7 24

(47‘2 - 1)8r+s,0»
Ui Jn] = 5mb40,0.

[Lm; Jn] = —nJm+tn,

61 (3 )t

[Jn; GP] =G (B.31)

m+r*
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It is easy to check that the curre@t. + GL with modesG, = GSH + Gﬁf), closes in
the N = 1 superconformal algebr@.26), which is an important fact because it is this
Hermitian current that enters in the super-Virasoro constraints.

All this is true for any choice ofp € Z,, in (B.19). The choice

o= 48 (B.32)

defines states with minimal conformal dimension, i.e., vacuums, except in the NS sector,
when /2 < v < 1, where such a state 8;_1/2|0);41/2 = [0);_1/2. In any case, due to
the identifications

Bryn - Brofl|0)ro’ neZ,
0 = B.33
| )ro+n { B:0+nfl L B:o|0)ro» ne Z+, ( )

all the stateg|0),,+,.,n € Z} are in the representation defined [BY,,; so, with no loss of
generality, we will take forg the valug(B.32). It is worth to noting that any of these vacua

is Osp(1, 2) invariant unles$ = 0, in which case it belongs to the NS sector. This follows,
for example, fromLZ|0) = A;A‘;_1|O), andLY,10),, = (ro — 1/2)B;FOB,0_1|O),0. The
superconformal invariant vacuum can be written in the bosonized form of the theory; we
do not dwell in such details hef8].

Appendix C. Ghost systems

Ghost systems are generically defined aotfes of fields that obey commutation re-
lation (statistics) opposite to the usual ones assigned according to their behaviour under
Lorentz transformations (spin) by the CPT theorem, i.e., spin integer fields are anti-
commuting, while half-integer spin fields are commuting. They naturally appear as a
Fadeev—Popov representation of determiadahat come from fixing gauge symmetries.

In superstring theories, two-dimensional reparameterization invariance gives rise to the
anticommutingh. = 2 b— system, while the gauge fixing of the local world-sheet SUSY
gives rise to the commuting = 3/2 B—y system. Furthermore, an anticommuting: 1

n—€ system is needed in the process of bosonization of the last ones.

C.1. Anticommuting b—c systems

Let us consider a pair of anticommuting,napletely symmetric, and traceless ten-
Sorsc € réfl andb e rf with A € Z; in the conformal gauge they have components
(c=ct "t é=c")and(b=b,..., b=b_.._), respectively, with action

SPe =T, / d%o (cd-b +¢d1b). (C.1)

z
The equations of motion and boundary conditions to be considered

db=03_c=0,b=08,¢=0,

b|(r=0,n B elyo’”b|0=0,n’ E|U=0,7T B eilyo'”c|0=0,n’ (C2)
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yield theeg = % modded expansions

P Vo) _ VO
O’+)=l E c_pe'?? 7 c —l E c,e

PELe PEZey
—ipot—i 20 T o=\ _ —ipo—+i
_l bpe z, b(o )_l bpe 2, (C.3)
PEZ PEZey

while, with the help of

/ 71V707ip0+c(o,+) +eiy707ip(’75(0‘7)),

0
1 T
by = Z—/da 240 (o) 4 e BT (7)), (C.4)
0

the canonical anticommutation relations read
2
{b(z,0);c(r,0)} = Tﬁ(a —0') < {c_pibg) =8, 4. (C.5)
s

We remark that the casg = 0 is the one relevant to string theory, because this is the
modding of the reparameterization parameters.
A ghost reference state (loosely callvacuum”) is defined by the conditions

bp|0)p, =0, P = po, ¢c—pl0)p, =0, P < po, (C.6)

where pg € Z,. With respect to it, we define the components of the energy—momentum
tensor (we omit the right moving expressions)

T(o")= 1 )L8+bc ~% bijc:=a ZL]’C —imo™
meZ
L= 3" (o= Dm — p)ibmspe—p: + 5m 0 AL
P€Ze
[ bp] = (= Dm = p)bmip. [Lifsep] = (hm+pem—yp.  (CT)

Moreover, the symmetry under ¢*c, b — ¢~*b gives rise to a conserved ghost number
current

U(o+) = _:bc: =12 Z Umefi"“ﬁ, = — Z bt pC—pi + 10bm,0,
meZ peZ60

[Um;bp]:_bm+pa [Um;cfp]:‘}‘cmfp- (C8)
The operatord.’c, U,,, satisfy the standard algebra (with= +1)

(L0 L] = n = m) L7y, + %m(mz = 1)dnino.

: 0
(L3 Un] = =nUnin + S mOm + Diin 0.
[Un; Upl = Emam—&—n,()y (Cg)
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where the central chargéi) and background charge are
cO)=—-2+12(1-1)=1-30% Q=1-2x, (C.10)

while the vacuum conformal dimension and ghost charge are determined to be

e 1 1
Ay =z(po—M)(po+Ar—1) = zuo(uo+ Q),
2 2
up=po+ir—1 (C.11)

We remark that the minimal conforal dimension state (“vacuum”) i®).,; only when

€0 = 0 the statd+) = ¢p|0)p = |0)1 is degenerate with—) = |0)o, both with dimension
Ab¢ = %(1—1). However, theSL(2, R) invariant vacuuml) = |0)1_, does not coincide
(except when. = 1) with any of them. In any case, as it happens with the fermions, the
identifications

|0) = {bﬁo+m o bpo-1|0)py, meZ,

= C.12
pottm C—po—m+l"'c—po|0)po» meZt, ( )

allow us to takepg = €g with no loss of generality.
C.2. Commuting B—y systems

Similarly to what we have just considered, we can take now a pair of spinorial but
commuting fields(8, y) where, this timej is half-integer. With the replacemends, c)
by (B,v), (bp,c—p) by (Bp, y—p), etc, things go similarly, so we just point out the main
differences. In the first pladde commutation relation

lv—p: Bgl=6pq» P.q €Ze, (C.13)

holds. The cases of interest in superstring theoryegre 0 andeg = 1/2, which follow
the modding of the world-sheet SUGRA transformation parameters in the R and NS sec-
tors respectively. A reference std®,, is defined as ir{C.6) but, since relations such as
(C.12)do not exist, each one of them defines different representatians-erl — A — g
“pictures”[18]. For. = 3/2, for example, we havey = —1/2 — mp; the vacuum states are
the states withrg = 1/2 andzp = 0 in the NS and R sectors respectively, the commonly
used “-1" and “—1/2" pictures. It is worth noting that, due to the bosonic character of the
operators, the R vacuum sta@® is infinitely degenerated (instead of doubly) with the set
of stateg"0|0)g with mg =0, 1, 2, .... On the other hand, th&_(2, R) invariant state is
instead identified with the NS stai@);_, , the reference state of the “0” picture.

The parameters and constants of the conformal-ghost alg@&gwith ¢ = —1) are

cO)=2—-12(1-2)=-1+30% Q=2r-1,

pr _ 1 =
Ap :E(ﬂo—)»)(l—k—no)z—éuo(MO‘}‘ Q),
wo=1— %10, (C.14)
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Of particular interest is the combined system af & 2 b— andx = 3/2 f—y, presentin
the superstring. In this case we have

8 =—-26+11=-15, Ag:—l—i— {

NI oolw

-2, ifR,
= _ (C.15)

Appendix D. Partition functions

Here we list the relevant partition functions of the various systems considered in prece-
dence. We introduce the variablgs= ¢/2"* = ¢=2" andz = ¢'?"?, V,, stands for the
R"-volume, the prime in a trace symbol means omitting the zero mode sector and the
modular functions)(r), 6.4 (v, T) are as in Chapter 7 ¢2] (see, i.e.[21] for more),

n(@) =q"*[](1-q").

m=1
91510 7)  924.2(0; )
2a _ b — )
“0="""0 pres)
o0
= 20q @Y (L4 2" Y2 (14 22"~ Y29), (D.1)

m=1

They satisfy the modular properties
(@) = (=) V(- ) =e Ry + 1),

D [Z} (v; 7) = (—iT) Y2eim@ab=1"h2)y [ b ] (—r 7t -7

—da

_ ima(a+1) a .
=e¢ ﬁ[b_a_%}(v,r—l—l),

. . 1
Z%Z(r) _ elznabZEbza(—r_l) _ eln(a2+a+ﬁ)zngza71(f +1). (D.2)
We get
Vi@~ Y2n(x)7t, NN,
ZX (1) =trqho V24— § o Taxty ()= DD,
(29x)) 2, ND/DN,

, ¥

zV (1) = trem,BFqLo —1/48 _ (Zg(‘l,'))l/z,

o 0, NS, g 0, AP,

11 R I

I L e )

L —c(h)/24_y U =3+1 — Z3,(1)

— 2
trl/mq = 2c03rb|b=l/2_’7(7") , Po€Z,
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12y g
ZP7 (1) = (m0,b) ¢Z x Z,

tr, qL0’ <124 = 2singh (2L, (r))” |: — ()2, moeZ,
Yo oim(1/2-9) (7320 )) 50,

V2 -2 5
8720’ COR wot 7)("7) ) V= 07

2% (1) =tr, gl Y2470 = 7220 (r), (D.3)

Lgy—c(A)/24ZU63y+A—l/2=( 1- §;’°(r))

Z%(t)=try ng*l/lz =

References

[1] M. Green, J. Schwarz, E. Witten, Superstring @hevol. 1, Cambridge Univ. Press, Cambridge, UK, 1987.
[2] J. Polchinski, String Theory, vol.,Tambridge Univ. Press, Cambridge, UK, 1998.
[3] J. Polchinski, String Theory, vol.,Zambridge Univ. Press, Cambridge, UK, 1998.
[4] D. Mateos, P. Townsen&upertubes, hep-th/0103030.
[5] R. Emparan, D. Mateos, P. Townsei®ljpergravity supertubes, hep-th/0106012.
[6] J. Cho, P. Oh, Super D-helix, hep-th/0105095.
[7] D. Mateos, S. Ng, P. Townsend, Tachyons, suf®s and brane—antibrane systems, hep-th/0112054.
[8] Y. Hyakutake, N. Ohta, Supertubes asupercurves from M-ribbons, hep-th/0204161.
[9] D. Bak, A. Karch, Supersymmetric brarantibrane configurations, hep-th/0110039.
[10] A. Lugo, On supersymmetric B-Dp brane solutions, Phys. Lett. B 539 (2002) 143, hep-th/0206040.
[11] D. Bak, N. Ohta, M. Sheikh-JabbaSupersymetric brar@ntibrane systems: matrix model description,
stability and decoupling limits, hep-th/0205265.
[12] D. Bak, N. Ohta, SupersymmetrD2 anti-D2 strings, hep-th/0112034.
[13] E. Bergshoeff, P. Townsel, Super-D-branes, hep-th/9611173.
[14] E. Bergshoeff, R. Kallosh, T. Ortin, G. Papadopoulosymmetry, supersymmetry and intersecting branes,
hep-th/9705040.
[15] P. Di Vecchia, A. Liccardo, D branes in string theory |, hep-th/9912161;
P. Di Vecchia, A. Liccardo, D branes in string trg Il, hep-th/9912275, and references therein.
[16] M. Green, M. Gutperle, Light-conaipersymmetry and D-branes, hep-th/9604091.
[17] D. Friedan, E. Martinec, S. Shenker, Conformal imsace, supersymmetry and string theory, Nucl. Phys.
B 271 (1986) 93.
[18] S. Yost, Bosonized superstring boundaryestaind partition functions, Nucl. Phys. B 321 (1989) 629.
[19] C. Bachas, M. Porrati, Pair creation of operirgs in an electric field, Phys. Lett. B 296 (1992) 77-84,
hep-th/9209032.
[20] S. Weinberg, The Quantum Theory of Fielgs]. 3, Cambridge Univ. fess, Cambridge, UK, 2000.
[21] J. Fay, Theta functions on Riemann surfaces.
[22] A. Sen, Non-BPS states andabes in string theory, hep-th/9904207.
[23] J. Schwarz, TASI lectures on non-BPS D-brane systems, hep-th/9908144.
[24] N. Seiberg, E. Witten, JHEP 9909 (1999) 32, hep-th/9908142.
[25] I.S. Gradshteyn, I.M. Ryzhik, Tables of IntetgaSeries, and Products, Academic Press, San Diego, 2000.
[26] K. Hori, Linear models of supersymmetric D-branes, hep-th/0012179;
P. Kraus, F. Larsen, Boundary string fieleetiy of the D—anti-D system, hep-th/0012198;
T. Takayanagi, S. Terashima, T. Uesugi, Brané&bamne action from boundary string field theory, hep-
th/0012210.
[27] J.-H. Cho, P. Oh, C. Park, J. Shin, Lineal trails of D2-superstrings, hep-th/0312094.



	About the stability of a D4-D4 system
	Introduction
	Review of the construction of the D4-D4 SUSY system
	The ``light-cone'' gauge-fixing and rotational invariance
	Analysis of the spectrum and supersymmetry
	Vacuum amplitudes and boundary states
	 The open string channel
	 The closed string channel
	Scalar sector boundary state
	b-c ghost boundary state
	Fermionic boundary state
	beta-gamma super-ghost boundary state

	No force conditions and supersymmetry

	Conclusions and perspectives
	Conventions
	NN boundary conditions
	DD boundary conditions
	ND boundary conditions
	DN boundary conditions
	Quantization and N=1 superconformal algebra

	A system with mixed boundary conditions
	Conserved currents and N=2 superconformal algebra

	Ghost systems
	Anticommuting b-c systems
	Commuting beta-gamma systems

	Partition functions
	References


