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Abstract

We study a system of coincident D4- andD̄4-branes with non-zero world-volume magnetic fie
in the weak coupling limit. We show that the conditions for absence of tachyons in the spe
coincide exactly with those found in [hep-th/0206041], in the low energy effective theory appr
for the system to preserve a 1/4 of the supersymmetries of the type IIA string theory vacuum.
present further evidence about the stability of the system by computing the lowest order interactio
amplitude from both open and closed channels, thus verifying the no force condition as w
the supersymmetric character of the spectrum. A brief discussion of the low energy effectiv
dimensional world-volume theory is given.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The discovery, in type II string theories, of cylinder-like branes preserving a qu
of the supersymmetries of the flat Minkowski space–time, the so-called “supertubes
attracted much attention recently[4–8]. The stabilizing factor at the origin of their BP
character, which prevents them from collapsing, is the angular momentum genera
the non-zero gauge field that lives on the brane.
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An interesting feature of the supertube is that it presents D0 and F1 charges,
D2 charge. In relation to this fact, Bak and Karch (BK) observed that, if we consider t
elliptical supertube in the limit when one of the semi-axis goes to infinity, the resu
system should be equivalent to having two flat 2-branes with total D2 charge equal to
This naturally led to conjecture the existence of SUSY D2–D̄2 systems. Such a study
well as the study of systems with arbitrary numbers of D2- andD̄2-branes was made i
the context of the Born–Infeld action in Ref.[9], where the conditions to be satisfied
the Killing spinors were identified. Soon after that, in reference[10], higher dimensiona
brane–antibrane systems were considered in the Born–Infeld context (see[11] for related
work in the matrix model context). In particular, the existence of a quarter SUSY D4D̄4
systems with D2 and Taub–NUT charges and no D4-brane charge that should re
genuine bound states of such components was conjectured. While it is plausible tha
dimensional supertube-like solution exists, leading in a certain limit to the brane–ant
system, much as it happens with the supertube, in this paper we will focus on a d
study of the conformal field theory and, in particular, in the absence of tachyonic instab
ties in the system (in the supertube context such analysis was carried out in Refs.[5,12]).

2. Review of the construction of the D4–̄D4 SUSY system

Let us start by remembering those results in[10] which are relevant to the subject stu
ied in this paper.

Let us consider type IIA superstring theory in the flat vacuum defined by the
dimensional Minkowskian metric tensorG = ηMN dXM dXN , with constant dilaton an
the other fields put to zero. This background preserves maximal SUSY, whose
eral Killing spinor is, in the standard local basisdXM , a constant 32-dimensional M
jorana spinorε. Let us consider a D4 (or̄D4) brane, with world-volume coordinate
{ξµ, µ = 0,1,2,3,4}, the embedding defined byXµ(ξ) = ξµ, µ = 0, . . . ,4, Xi(ξ) = 0,
i = 5, . . . ,9, and an Abelian gauge fieldAµ(ξ) = 1

2Fνµξν living on the brane, being
F = dA the constant field strength. Then, the introduction of such a D4 brane in s
time will preserve the supersymmetries that satisfy[14]1

(2.1)Γ ε = ±ε,

where the “−” sign on the r.h.s. corresponds to theD̄4 brane with thesame fields as the
D4 brane because, by definition, it has oppositeorientation to the D4 brane. This la
orientation is defined byε01234= +1, which is present in theΓ -matrix [13]2

Γ ≡ d−1/2
(

Γ11 + 1

2
FµνΓ

µν + 1

8
FµνFρσ Γ µνρσ Γ11

)
Γ 01234,

(2.2)d ≡ detd+ = detd− > 0, d±µ
ν = δµ

ν + Fµ
ν.

1 The scaleTs = (2πα′)−1 is put to unity everywhere unless explicitly written.
2 We take the ten dimensionalΓ -matrices to obey{Γ M ;Γ N } = 2ηMN , {Γ M ;Γ11} = 0, with Γ11 ≡
Γ 1 · · ·Γ 9Γ 0. For definiteness, we adopt a Majorana–Weyl basis whereΓ Mt = ηMMΓ M . In such basis, we
can takeA± = C±, whereC±Γ MC±−1 = ±Γ M† = ±Γ Mt defines the charge conjugation matrices.
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Now, as discussed in[10], the antisymmetric matrix of magnetic fields(Bij = Fij ),
with i, j = 1, . . . ,4, can be put in the standard form( B1 0

0 B2
) ⊗ iσ2 by means of anSO(4)-

rotation; theSO(2) × SO(2) rotation left over by this condition can then be used to put
electric fieldEi ≡ Fi0 in the(13) plane. So we can consider, with no loss of generality

(2.3)
(
Fµ

ν

)=




0 E1 0 E3 0
E1 0 B1 0 0
0 −B1 0 0 0
E3 0 0 0 B2
0 0 0 −B2 0


 ,

because any other solution will be related to the ones with the configuration(2.3)by means
of successive rotations.

One of the solutions found in[10] corresponds to a T-dual configuration of the Ba
Karch D2–̄D2 system; we will be interested at present on another one. This novel sol
which also preserves 1/4 of SUSY, is obtained by restricting the field strength in the
lowing way

(2.4)B2
1B2

2 − B2
1E2

3 − B2
2E2

1 = 1.

This constraint clearly implies that(Bij ) cannot be singular; even more, if it holds, th
the module of the four-vector�β = −B−1 �E verifies

(2.5)0 < β2 =
(

E1

B1

)2

+
(

E3

B2

)2

= 1− 1

B2
1B2

2

< 1.

It is possible to show that a boost with a velocity equal to�β eliminates the electric field;
further rotation (which certainly does not affect the null electric field condition) can fix
magnetic fields matrix in the standard form again. So we conclude that the sector o
obeying(2.4)is Lorentz-equivalent to a sector of the observers that do not see electri
and have non-singular magnetic matrix of determinant equal to one. Therefore, we w
restrict our attention to a field strength(2.3)with

(2.6)E1 = E3 = 0, detB = B2
1B2

2 = 1.

Such field strength clearly breaks the space–time symmetry as follows

(2.7)SO(1,9) −→ R × SO(2) × SO(2) × SO(5).

TheΓ -matrix (2.2)takes the form

Γ = d−1/2(Γ01234Γ11 + B1Γ034+ B2Γ012+ B1B2Γ0Γ11),

(2.8)d = 2+ B2
1 + B2

2 = (|B1| + |B2|
)2

.

The solution we are interested in is obtained by splitting equation(2.1) into the following
two conditions

−B1B2Γ1234ε = ε,
(2.9)d−1/2(B1Γ034+ B2Γ012)ε = ±ε.
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This system is consistent, and leads to the preservation of1
432= 8 SUSY charges; explic

itly, with −iΓ12(s) = (−)s(s), etc. (see[10] for details and notation), the 8 Killing spino
are

η
(±)
(s1s2s3)

= (ss1s2s31) ± isg(B2)(−)
∑3

k=1 sk (ss1s2s30),

(2.10)(−)s = sg(B1B2)(−)s1,

where the labelss take the values 0 (spin down) or 1 (spin up). From these equation
can see that the Killing spinorsη(−)

(s1s2s3)
corresponding to the introduction of āD4 brane

with world-volume gauge fields(−B1,−B2) are exactly the same as the Killing spino
η

(+)
(s1s2s3)

of the D4-brane with fields(B1,B2). Therefore, we are led to conjecture that

η
(+)
(s1s2s3)

in (2.10)are Killing spinors (without taking into account back-reaction effects)

1/4 SUSY systems of D4 branes with fields(B1,B2) andD̄4 branes with the opposite on
(−B1,−B2), obeyingB2

1B2
2 = 1. In what follows, we will focus our attention on a D4–D̄4

configuration.

3. The “light-cone” gauge-fixing and rotational invariance

As is well known, a covariant analysis of the string spectrum is carried out by con
ing the BRST charge[3]

QBRST ≡
∑
m∈Z

c−mL(m)
m +

∑
r∈Zδ

γ−rG
(m)
r + 1

2

∑
m∈Z

:c−mLbc
m : + ∆bc

0

2
c0

(3.1)+
∑
m∈Z

c−mL
βγ
m −

∑
m∈Z

∑
r∈Zδ

bmγr−mγ−r ,

where (β–γ ) b–c are the (λ = 3/2 super)λ = 2 ghost fields and the superscript “(m)”
stands for “matter”. It verifies{

QBRST;QBRST}
(3.2)= c(m) + c(g)

12

(∑
m∈Z

m
(
m2 − 1

)
c−mcm +

∑
r∈Zδ

(
4r2 − 1

)
γ−rγr

)
.

From (3.2), it follows thatQBRST is nilpotent iff the central charge of the matter syst
(whatever it is) isc(m) = −c(g) = 15, where we have used(C.15). Physical states are the
defined as cohomology classes of this operator. However, for the sake of clarity w
analyze the spectrum in the light-cone gauge to be described in what follows.

Let us start with a brief review of the analogue of the light-cone gauge fixing proce
in the presence of branes, a subject which, to our understanding, is not covered
enough in the literature. Let us consider an open superstring theory that consists of
like coordinateX0 with NN b.c.,d+1 coordinatesXI , I = 1, . . . , d +1 with homogeneou

DD b.c. (fermionic partners are considered below) and an arbitraryN = 1 superconformal
field theory. Let us pick upX0 andXd+1 to define “light-cone” coordinatesX± ≡ X0 ±
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Xd+1. Then, the b.c. are equivalently written as

(3.3)
∂σ X0

∣∣
σ=0 = ∂σ X0

∣∣
σ=π

= 0

∂τX
d+1
∣∣
σ=0 = ∂τX

d+1
∣∣
σ=π

= 0

}
←→

{
∂±X+∣∣

σ=0 = ∂∓X−∣∣
σ=0,

∂±X+∣∣
σ=π

= ∂∓X−∣∣
σ=π

,

which show that, although it could seem at first sight a little bizarre to mix fields
different b.c., there is no obstacle to doing so, and the problem on the r.h.s. of(3.3) is
perfectly well-defined; the same happens ifXd+1 is ND or DN. What changes radical
is the interpretation of the complete gauge fixing possible thanks to the (super) con
invariance of the string theory. From(A.12), (A.14) we get for the light-cone coordinate

X±(τ, σ ) = x± + X±
L

(
σ+)+ X±

R

(
σ−),

X±
L

(
σ+)= α′p±σ+ + i

l

2

∑
m∈Z′

α±
m

m
e−imσ+

,

(3.4)X±
R

(
σ−)= α′p∓σ− + i

l

2

∑
m∈Z′

α∓
m

m
e−imσ−

,

wherex± ≡ x0 ± xd+1
0 = x0 andp± ≡ p0 ± Ts∆xd+1 = p0. Now, in order to linearize

theL0 constraint, a reparameterization very different from the usual one (see, for examp
[1]) must be considered. Let us try in fact, the one defined by

τ̃ (τ, σ ) = 1

2α′p+
(
X+

L

(
σ+)+ X−

R

(
σ−))= τ + i

lp+
∑
m∈Z′

α+
m

m
e−imτ cosmσ,

(3.5)σ̃ (τ, σ ) = 1

2α′p+
(
X+

L

(
σ+)− X−

R

(
σ−))= σ + 1

lp+
∑
m∈Z′

α+
m

m
e−imτ sinmσ.

This world-sheet diffeomorphism satisfies the crucial properties:

• it is a conformal reparameterization;
• it preserves the region of the parametersτ̃ ∈ R, 0� σ̃ � π ;
• it leaves the b.c.(3.3) invariant.

In terms of these new parameters we get

X̃+(τ̃ , σ̃ ) ≡ X+(τ, σ ) = x+ + α′p+σ̃+ + X̃+
R

(
σ̃−),

(3.6)X̃−(τ̃ , σ̃ ) ≡ X−(τ, σ ) = x− + α′p+σ̃− + X̃−
L

(
σ̃+),

where

X̃+
R

(
σ̃−)≡ X+

R

(
σ−)∣∣

σ−(σ̃−)
= α′p̃−σ̃− + i

l

2

∑
m∈Z′

α̃−
m

m
e−imσ̃−

,

−( +) −( +)∣∣ ′ − + l ∑ α̃−
m −imσ̃+
(3.7)X̃L σ̃ ≡ XL σ
σ+(σ̃+)

= α p̃ σ̃ + i
2

m∈Z′ m
e ,
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define the new variables{α̃−
m} in terms of the old ones{α−

m}. From (3.4) and (3.6) we
see that the reparameterization just puts{α̃+

m = 0, m 	= 0} (in particular,p̃− = p− = p0)
and lefts over a translation invariance inτ̃ , as in the usual case; however,X̃+ is not the
world-sheet time.

Analogously, for the fermionic superpartnersψ0 andψd+1 we introduceψ± = ψ0 ±
ψd+1. But, while in the usual case we can reach the gaugeψ+ = 0 through a supercon
formal transformation(A.5), it turns out that in our setting the gauge fixing allows to
ψ++ = ψ−− = 0 ↔ b+

r = 0 through a superconformal transformation defined by the para
meters

(3.8)ε±(σ±)= ∓ ψ±±
2∂±X± .

It is easy to check that this gauge fixing is compatible with(3.6). The super-Virasoro con
straints are readily solved in this gauge; from(A.22), (A.24)

T±±
(
σ±)= T ⊥±±

(
σ±)− ∂±X+∂±X− = T ⊥±±

(
σ±)− α′ lp+

2

∑
m∈Z

α−
me−imσ±

,

(3.9)G±
(
σ±)= G⊥±

(
σ±)− 1

2
ψ∓± ∂±X± = G⊥±

(
σ±)− α′lp+

2
√

2

∑
r∈Zε

b−
r e−irσ±

.

It follows that the conditionsLm − Aδm,0 = Gr = 0 yield

(3.10)α−
m = 2

lp+
(
L⊥

m − Aδm,0
)
, b−

r = 2

lp+ G⊥
r ,

respectively. Here,A is a normal ordering constant, while “⊥” stands for contributions
other than the(0, d + 1) directions, i.e., the(1, . . . , d) directions and theN = 1 theory. In
particular,(L⊥

m,G⊥
r ) generate anN = 1 superconformal algebra(A.26) with c⊥ = 3

2d +
cN=1.

This gauge fixing obscures the initialSO(d + 1) invariance of the system, leaving ju
the SO(d) subgroup manifest. The tentative generators{JIJ } = {Jij , Ji(d+1) ≡ Ji} in the
gauge-fixed system are

Jij ≡ J
(0)
ij + J

(b)
ij + J

(f )
ij

= 1

2i

[
bi

0;b
j

0

]− i
∑
m>0

1

m

(
αi−mα

j
m − α

j
−mαi

m

)− i
∑
r>0

(
bi−rb

j
r − b

j
−rb

i
r

)
,

Ji ≡ J
(0)
i + J

(b)
i + J

(f )

i

(3.11)= i

lp+

(
bi

0G
⊥
0 +

∑
m>0

1

m

(
αi−mL⊥

m − L⊥−mαi
m

)+∑
r>0

(
bi−rG

⊥
r − G⊥−rb

i
r

))
,

wherei, j = 1, . . . , d andJ
(0)
ij andJ

(0)
i are absent in the NS sector. It is straightforward

show that ( )
[Jij ;Jkl] = −i δilJjk + δjkJil − (i ↔ j) ,

(3.12)[Jij ;Jk] = i(δikJj − δjkJi),
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while, as usual, the problematic commutator is[Ji;Jj ], whose careful computation give

[Ji;Jj ] = iJij
p−

p+ + i

(lp+)2

(
2A − c⊥

12

)
J

(0)
ij

+ 1

(lp+)2

(∑
m>0

∆
(b)
m

m

(
αi−mα

j
m − (i ↔ j)

)

(3.13)+
∑
r>0

∆
(f)
r

(
bi−rb

j
r − (i ↔ j)

))
.

The anomalies

(3.14)∆(b)
m = ∆

(f )

m/2 = 2A − 1+
(

c⊥

12
− 1

)(
m2 − 1

)
,

show that the completeSO(d + 1) algebra closeson-shell, p+ = p− = p0, in both sectors
providedc⊥ = 12 andA = 1/2.

4. Analysis of the spectrum and supersymmetry

In this section, we will analyze the perturbative spectrum of the D4–D̄4 system defined
in Section2. Therefore, we must consider open superstrings with a time-like NN co
nateX0, four coordinates along the branes resumed in two complex fieldsZ(1) ≡ X1 +
iX2,Z(2) ≡ X3 + iX4, and five DD coordinatesXi , i = 5, . . . ,9 orthogonal to the brane
Each coordinate field is paired with fermionic partnersψ0 (Majorana),Ψ (1),Ψ (2) (Dirac’s)
and ψi, i = 5, . . . ,9 (Majoranas), respectively. Furthermore, we take from the star
magnetic fields on the D4 and̄D4 branes to be(B1 = Ts tan(π

2 ν(1)),B2 = Ts tan(π
2 ν(2)))

and(−B1,−B2) respectively, with 0< |ν(i)| < 1, but with no relation between theBis.
According to the precedent section, the theory obtained after fixing the light-cone lik

gauge in the(09) directions should presentSO(5) invariance, sinced = 4 and, in fact,
c⊥ = 3

24+6= 12. This invariance reflect in the spectrum, and we will give some exam
below.

From(3.10)(with A = 1/2), (A.22), (A.27), (B.4), (B.28)and(B.29), the energy oper
ator in any sector reads

E2 ≡ (p0)2 = 1

α′

(
L⊥

0 − 1

2

)

= δ
ν

(1)
− ,0

cos2 ϕ
(1)
0

∣∣ �p(1)
∣∣2 + δ

ν
(2)
− ,0

cos2 ϕ
(2)
0

∣∣ �p(2)
∣∣2 + 1

α′
(
N⊥ + N0

)
,

(4.1)N0 = ∆
(1)
0 + ∆

(2)
0 +

8∑
i=5

∆i
0 − 1

2
= δ
(
ν̄(1) + ν̄(2) − 1

)
,

∑8
whereN⊥ = N(1) + N(2) + i=5 Ni is the total number operator in the eight transverse
dimensions.
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There are four “CP factors”, in the language of[22], which label the states in the spe
trum, depending on where the ends of the (oriented) strings are fixed; we denote th
dd, d̄d̄, dd̄ and d̄d . The vacuum energyN0 depends on the CP label and on whether
are in the NS sector (δ = 1/2) or in R sector (δ = 0). Furthermore, the spectrum must
GSO projected, procedure which preserves the states such that

(4.2)(−)�+ν
(1)
− −ν̄(1)+ν

(2)
− −ν̄(2)

{
1
γ

= +1

in the NS and R sectors, respectively. Here,� stands for the number of fermionic oscillato
andγ ≡ −4b5

0b
6
0b

7
0b

8
0 is the chirality operator ofspin(4), {bi

0;b
j

0} = δij being the Clifford
algebra. The justification for this rule is given in the next section, Eq.(5.8).

Let us look first at the lowest levels. In thedd sector the “massless” (null energy) spe
trum is the well-known vector multiplet corresponding to a theory with 16 supercha
consisting of a five-dimensionalU(1) vector field, five scalars and the corresponding fer
ons; idem in thed̄ d̄ sector. Thedd̄ superstrings, on the other hand, break half of
supersymmetry, but the states which survive GSO are different in the following case

Case b(1)b(2) > 0.

|0〉NS, α′E2 = signb(1)

2

(∣∣ν(1)
−
∣∣+ ∣∣ν(2)

−
∣∣− 1

)
,

B
(1)

ν̄(1)−1/2
B

(2)

ν̄(2)−1/2
|0〉NS, α′E2 = signb(1)

2

(
1− ∣∣ν(1)

−
∣∣− ∣∣ν(2)

−
∣∣),

(4.3)P+|α〉, α′E2 = 0, α = 1, . . . ,4.

Case b(1)b(2) < 0.

B
(a)

ν̄(a)−1/2
|0〉NS, E2 = signb(a)

2α′
(
1− ∣∣ν(1)

−
∣∣− ∣∣ν(2)

−
∣∣),

(4.4)P−|α〉, α′E2 = 0, α = 1, . . . ,4,

where the states in the last lines are in the R sector,|α〉 being the spinor representation
spin(4) algebra andP± ≡ 1/2(1± γ ). We see that, under the condition(2.6), the potential
tachyons disappear and the NS sector contributes to the massless level with two c
fields (considering thēdd superstrings). These, together with the fermions, fill a 4+ 4 = 8
dimensional representation of a superalgebra with eight supercharges, corresponding t
massless hypermultiplet[3,20].

Let us make a further step and write down the first two massive levels (in the inter-
sector) indicating, in the first (second) column, the NS (R) sector states.

Case b(1) > 0, b(2) > 0.

• α′E2 = |ν(1)
− | = ν̄(1) = 1− ν̄(2)

A
(1)

ν̄(1)
†|0〉NS,
A
(2)

ν̄(2)−1
B

(1)

ν̄(1)−1/2
B

(2)

ν̄(2)−1/2
|0〉NS, A

(a)

ν̄(a)
†P+|α〉,
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(
A

(1)

ν̄(1)
†B

(1)

ν̄(1)−1/2
B

(2)

ν̄(2)−1/2
− A

(2)

ν̄(2)−1

)|0〉NS, B
(a)

ν̄(a)
†P−|α〉,

(4.5)B
(2)

ν̄(2)−1/2
bi
−1/2|0〉NS, A

(2)

ν̄(2)−1
|0〉NS.

• α′E2 = |ν(2)
− | = ν̄(2) = 1− ν̄(1)

A
(2)

ν̄(2)
†|0〉NS,

A
(1)

ν̄(1)−1
B

(1)

ν̄(1)−1/2
B

(2)

ν̄(2)−1/2
|0〉NS, A

(a)

ν̄(a)−1
P+|α〉,(

A
(2)

ν̄(2)
†B

(1)

ν̄(1)−1/2
B

(2)

ν̄(2)−1/2
− A

(1)

ν̄(1)−1

)|0〉NS, B
(a)

ν̄(a)−1
P−|α〉,

(4.6)B
(1)

ν̄(1)−1/2
bi
−1/2|0〉NS, A

(1)

ν̄(1)−1
|0〉NS.

Case b(1) < 0, b(2) < 0.
As the precedent one, with the exchanging of levels|ν(1)

− | ↔ |ν(2)
− |.

Case b(1) > 0, b(2) < 0.

• α′E2 = |ν(1)
− | = ν̄(1) = ν̄(2)

A
(1)

ν̄(1)
†B

(2)

ν̄(2)−1/2
|0〉NS,

A
(2)

ν̄(2)
†B

(1)

ν̄(1)−1/2
|0〉NS, A

(a)

ν̄(a)
†P−|α〉,(

A
(1)

ν̄(1)
†B

(1)

ν̄(1)−1/2
− A

(2)

ν̄(2)
†B

(2)

ν̄(2)−1/2

)|0〉NS, B
(a)

ν̄(a)
†P+|α〉,

(4.7)bi
−1/2|0〉NS,

(
A

(1)

ν̄(1)
†B

(1)

ν̄(1)−1/2
+ A

(2)

ν̄(2)
†B

(2)

ν̄(2)−1/2

)|0〉NS.

• α′E2 = |ν(2)
− | = 1− ν̄(2) = 1− ν̄(1)

A
(1)

ν̄(1)−1
B

(2)

ν̄(2)−1/2
|0〉NS,

A
(2)

ν̄(2)−1
B

(1)

ν̄(1)−1/2
|0〉NS, A

(a)

ν̄(a)−1
P−|α〉,(

A
(1)

ν̄(1)−1
B

(1)

ν̄(1)−1/2
− A

(2)

ν̄(2)−1
B

(2)

ν̄(2)−1/2

)|0〉NS, B
(a)

ν̄(a)−1
P+|α〉,

(4.8)bi
−1/2|0〉NS,

(
A

(1)

ν̄(1)−1
B

(1)

ν̄(1)−1/2
+ A

(2)

ν̄(2)−1
B

(2)

ν̄(2)−1/2

)|0〉NS.

Case b(1) > 0, b(2) < 0.
As the precedent one, with the exchanging of levels|ν(1)

− | ↔ |ν(2)
− |.

In each case and level, we have arranged the spectrum in such a way that the th
states in the first three lines areSO(5) scalars, while the five states in the last line form
SO(5) vector; in the R sector, each value ofa = 1,2 labels aspin(5) Dirac spinor. These
assertions can be easily checked by applying(3.11)on the states and, of course, they s
nal theSO(5) invariance of the spectrum. In any case, the states in each level exp

16+ 16= 32 dimensional representation of a superalgebra with eight supercharges, corre-
sponding to a massive (non-BPS) supermultiplet[3,20].
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5. Vacuum amplitudes and boundary states

5.1. The open string channel

Let us consider a Dp-brane located atXi = yi
0, i = p + 1, . . . ,D − 1, and anothe

one (or aD̄p-brane) atXi = yi
π , i = p + 1, . . . ,D − 1, in D-dimensional flat space

By means of a straightforward generalization of(B.1), (B.2) for arbitrary constant field
strengthsF0

µ
ν = Tsf0

µ
ν andFπ

µ
ν = Tsfπ

µ
ν living on their world-volumes along th

µ = 0,1, . . . , p directions, the b.c. for the coordinate fields of open strings suspende
tween them result

(5.1)∂σ Xµ(τ,0) − f0
µ

ν∂τ Xν(τ,0) = ∂σ Xµ(τ,π) − fπ
µ

ν∂τ Xν(τ,π) = 0.

Theone-loop interaction diagram is constructed by imposing conditions of periodicity
η± = +1, or antiperiodicity (AP),η± = −1, in the Euclidean time variableτ e ≡ iτ ∼
τ e + T

(5.2)XM(τ,σ ) ∼ XM(τ − iT , σ ), ψM± (τ, σ ) ∼ η±ψM± (τ − iT , σ ).

This is carried out by taking the traces in the Hilbert space, remembering that, in the cas
fermions and ghost system with P b.c., we must insert the spinor number operator (
for convenience in pairs of indices, see(B.26))

(5.3)(−)F
Ψ =

5∏
a=1

(−)−JΨ (a)

0 .

The λ = 2 ghost fieldsb–c and λ = 3/2 superghost fieldsβ–γ follow the b.c. of the
(bosonic) reparameterization and (fermionic)SUGRA transformations parameters resp
tively. The insertion of the spinor number operators

(5.4)(−)F
bc = (−)U

bc
0 , (−)F

βγ = (−)U
βγ
0 ,

must be carried out when P (AP) b.c. apply, due to the fermionic (bosonic) character
ghost (superghost) system; the definition of theU0 charges is given in(C.8).

The connected part of the one-loop amplitude is guessed from the Coleman–We
formula

(5.5)A1-loop ≡ lnZ1-loop ∼ −1

2
tr(−)F lnG−1,

whereG−1 = p2 + M2 = α′−1L0 is the inverse (free) propagator,F is the space–time
fermion number and the traces are on the fullHilbert space. Regulating as usual the lo
rithm, we define

Aopen= −1

2
trNSln

G−1

Ts

+ 1

2
trR ln

G−1

Ts

=
∞∫

0

dt

2t

(
A

open
NS (it) + A

open
R (it)

)
,

(5.6)A
open
NS,R(τ ) = trNS,R qL0(−)F

Ψ +Fbc ∣∣
q=ei2πτ = A(b)

open(τ )A
(f )
open(τ )|NS,R.
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In what follows, we focus on our system. The bosonic contribution is

A(b)
open(it) ≡ ZX0

(τ )

9∏
i=5

ZXi

(τ )ZZ(1)

(τ )ZZ(2)

(τ )Zbc(τ )

(5.7)

= iV5e
iπ(1−ν̄(1)−ν̄(2)) 16b(1)b(2)

(8π2α′)5/2

e−Ts∆�y2t

t1/2η(it)4

(
Z1−2ν̄(1)

1 (it)Z1−2ν̄(2)

1 (it)
)−1

,

where we have used the formulae given in(D.3).3

In the fermionic sector, we must impose the GSO condition which in the presen
non trivial b.c., becomes a little bit subtle. It is equivalent to inserting in the trace
projection operator

(5.8)PGSO≡ 1

2

(
1− (−)ν

(1)
− +ν

(2)
− (−)F

Ψ +Fβγ )
.

The logic for this definition relies in two facts,

• P 2
GSO= PGSO must hold in the Hilbert space of the (perturbative) theory;

• on physical grounds it should reduce to the well-known operator

(5.9)PGSO≡ 1

2

(
1− (−)F

Ψ +Fβγ )
if we turn off adiabatically the gauge fields (note that the definition is in terms ofν

(a)
− ,

not of ν̄(a), see(B.4); note also the sign flipped w.r.t. a Dp–Dp system[22]).

Carrying out the computations we get

A
(f )
open(it) = A

(f );GSO
open (it)

∣∣
NS + A

(f );GSO
open (it)

∣∣
R,

A
(f );GSO
open (it)

∣∣
NS ≡ trNS

5∏
a=1

qLΨ(a)

0 −1/24(−)F
Ψ +∑5

a=1 q
(a)
0 qL

βγ
0 −11/24(−)[π0]PGSO

= eiπ(ν̄(1)+ν̄(2)) 1

2

(
Z0

1(it)2Z
−2ν

(1)
−

1 (it)Z
−2ν

(2)
−

1 (it)

+ e−iπ(ν
(1)
− +ν

(2)
− )Z0

0(it)
2Z

−2ν
(1)
−

0 (it)Z
−2ν

(2)
−

0 (it)
)
,

A
(f );GSO
open (it)

∣∣
R ≡ trR

5∏
a=1

qLΨ(a)

0 −1/24(−)F
Ψ +∑5

a=1 q
(a)
0 qL

βγ

0 −11/24(−)[π0]PGSO

= eiπ(ν̄(1)+ν̄(2)) 1

2

(−Z1
1(it)

2Z
1−2ν

(1)
−

1 (it)Z
1−2ν

(2)
−

1 (it)

(5.10)− e−iπ(ν
(1)
− +ν

(2)
− )Z1

0(it)2Z
1−2ν

(1)
−

0 (it)Z
1−2ν

(2)
−

0 (it)
)
.

3 In Zbc the zero mode sector must be projected out[2].
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From(5.6), (5.7), (5.10), we obtain the final result4

Aopen= −iV5
32b(1)

0 b
(2)
0

(8π2α′)5/2

∞∫
0

dt

2t

e−Ts∆�y2t

t1/2η(it)4

(
Z

1−2ν
(1)
−

1 (it)Z
1−2ν

(2)
−

1 (it)
)−1

× 1

2

(
Z0

1(it)2Z
−2ν

(1)
−

1 (it)Z
−2ν

(2)
−

1 (it)

+ e−iπ(ν
(1)
− +ν

(2)
− )Z0

0(it)2Z
−2ν

(1)
−

0 (it)Z
−2ν

(2)
−

0 (it)

− Z1
1(it)

2Z
1−2ν

(1)
−

1 (it)Z
1−2ν

(2)
−

1 (it)

(5.11)− e−iπ(ν
(1)
− +ν

(2)
− )Z1

0(it)2Z
1−2ν

(1)
−

0 (it)Z
1−2ν

(2)
−

0 (it)
)
.

5.2. The closed string channel

The open string channel description of the interaction between branes just give
a dual closed string channel picture as exchange ofclosed strings between the so-calle
“boundary states” (b.s.)|B〉, that represent each brane as a sort of condensate of c
strings (see[15] for a review in the covariant formalism, which we will adopt; for
light-cone approach, see[16]). They are completely determined, up to normalization
conditions that can be guessed by considering the conformal map

(5.12)

w ≡ τ e + iσ = iσ+ −→ ŵ = −i
π

T
w = τ̂ e + iσ̂ = iσ̂+ ⇐⇒ σ̂± = ∓i

π

T
σ±.

Clearly, the coordinatêσ = −π
T

τ e ∼ σ̂ + π becomes the (periodic) spatial coordinate

the closed string, whilêτ e = π
T

σ ∈ [0, T̂ = π2/T ]. This draws thetree level cylinder in-

teraction diagram between a b.s. atτ̂ = 0 and a b.s. at̂τ = T̂ , dual to the one-loop ope
string diagram just computed.

Under this conformal map generalλ-tensors transform as

(5.13)t
(λ)
± dλσ± = t̂

(λ)
± dλσ̂± ⇐⇒ t̂

(λ)
± =

(
∓ iπ

T

)−λ

t
(λ)
± .

This relation is crucial in order to get the right b.s. definition. While, in theσ̂ - coordinate,
the P (or AP) conditions just give the usual closed string expansions,5 the conditions on
τ̂ e (coming from theσ conditions in the open string picture) are interpreted as ope
equations to be satisfied by the b.s.|B〉. The amplitude between two branes is then gi

4 The bosonic and fermionic amplitudes are separately invariant underν
(a)
− → −ν

(a)
− ; it follows that the

contribution from exchanging the ends of the strings is taken into account just with the introduction of a factor

two, as was made in(5.11).

5 We follow the conventions of Ref.[1].
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by a closed superstring matrix element

Aclosed≡ 〈B ′|Gδ(L0 − L̃0)|B〉 = α′

4π

∫
|z|<1

d2z

zz̄
〈B ′|zL0z̄L̃0|B〉

(5.14)=
∞∫

0

dt

2t
πα′tAclosed(it),

whereL0 andL̃0 are the total zero mode Virasoro generators in the left and right se
andG ≡ (p2 + M2)−1 = α′

2 (L0 + L̃0)
−1 is the closed superstring propagator. Moreo

from the factorization of the b.s.

Aclosed(it) = AX(z, z̃)Abc(z, z̃)Aψ(z, z̃)Aβγ (z, z̃)
∣∣
z=z̄=e−πt

(5.15)= A
(b)
closed(it)A

(f )

closed(it).

We remark that the “bra” b.s. must be defined in such a way that for any “ket”|ψ〉, 〈B|ψ〉 ≡
(|B〉; |ψ〉) for a hermitian scalar product〈ξ |ψ〉∗ = 〈ψ|ξ〉 which respects the hermiticit
conditions of the fields under consideration.

We resume below the b.s. atτ = 0 (we throw away the subindex “0”)6 as well as the
amplitudesA(z, z̃)′s for each field.

5.2.1. Scalar sector boundary state
The b.c.(5.1)for the scalar periodic fieldsXM become, in the closed channel,(

∂σ̂+X̂µ(0, σ̂ ) + Sµ
ν∂σ̂−X̂ν(0, σ̂ )

)∣∣BX
〉= 0, µ, ν = 0,1, . . . , p,

(5.16)X̂i (0, σ̂ )
∣∣BX

〉= yi
0

∣∣BX
〉
, i = p + 1, . . . , p + d⊥,

whereS ≡ (d−)−1d+, d± = 1± f andd⊥ = D − 1− p. Equivalently, in terms of modes
these conditions translate to

pµ
∣∣BX

〉= 0, xi
∣∣BX

〉= yi
0

∣∣BX
〉
,

(5.17)
(
αM

m + MM
Nα̃N−m

)∣∣BX
〉= 0, m 	= 0,

whereM ≡ ( S−1 0
0 −1d⊥

). The solution for the b.s. defined by(5.16)is

∣∣BX
〉= NB

∞∏
m=1

e−1/mαM−mMMN α̃N−m
∣∣BX

〉
0,

(5.18)
∣∣BX

〉
0 = ∣∣pµ = 0;xi = yi

0

〉⊗ |0〉,
where we have attached to it the normalization constantNB . The amplitude is compute
by using the usual pairing defined by the hermiticity conditionsαM

m
† = αM−m, α̃M

m
† = α̃M−m
6 It is evident, from(5.14) and the fact that the evolution operator isH = L0 + L̃0, that the amplitude is
independent of the value ofτ at which we compute it.
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for the left and right oscillators and〈0|0〉 ≡ 1, 〈p′|p〉 ≡ δD(p − p′) in the oscillator and
zero mode sectors, respectively. We get

AX(z, z̃) ≡ 〈B ′X∣∣zLX
0 −10/24z̄L̃X

0 −10/24
∣∣BX

〉

(5.19)

= N ′ ∗
B NBVp+1

(
Ts

log|z|−1

)d⊥/2
e
− πTs�y2

log|z|−1

|z|5/6

∞∏
m=1

det
(
1D − |z|2mM−1M ′)−1

,

where�y =
√

(�y ′
0 − �y0)2 is the separation between branes (to be taken to zero).

5.2.2. b–c ghost boundary state
It is straightforward to see, with the help of(5.13), that the open string b.c.(C.2)of aλ =

2 anticommuting, periodicb–c system translate, in the closed channel, into the follow
conditions for the b.s.|Bbc〉

(
b̂(0, σ̂ ) − ˆ̃

b(0, σ̂ )
)∣∣Bbc

〉= 0 ←→ (b̂m − ˆ̃
b−m)

∣∣Bbc
〉= 0,

(5.20)
(
ĉ(0, σ̂ ) + ˆ̃c(0, σ̂ )

)∣∣Bbc
〉= 0 ←→ (ĉm + ˆ̃c−m)

∣∣Bbc
〉= 0,

for anym ∈ Z. The b.s. that solves(5.20)is7

∣∣Bbc
〉= ∞∏

m=1

ec−mb̃−m−b−mc̃−m |Bbc〉0,

(5.24)
∣∣Bbc

〉
0 = 1√

2
(|+−〉 − |−+〉).

The hermiticity conditions,bm
† = b−m, cm

† = c−m, b̃m
† = b̃−m, c̃m

† = c̃−m, impose that
the only non-zero pairings are

(5.25)〈+−|−+〉 = −〈−+|+−〉 = i.

In particular,0〈Bbc|Bbc〉0 = 1
2(−i + i) = 0; however, the amplitude is

7 The zero mode ghost sector is realized by defining the four states

(5.21)|ss̃〉 ≡ |s〉 ⊗ |s̃〉, s, s̃ = +,−,

on which the zero mode operators act as

(5.22)c0 = σ+ ⊗ 12, b0 = σ− ⊗ 12, c̃0 = σ3 ⊗ σ+, b̃0 = σ3 ⊗ σ−,

whereσ± = σ1 ± iσ2 andσi are the Pauli matrices. As usual, for the other operators

(5.23)b |ss̃〉 = b̃ |ss̃〉 = c |ss̃〉 = c̃ |ss̃〉 = 0, m = 1,2, . . . .
m m −m −m
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Abc(z, z̄) ≡ 〈Bbc|(b0 + b̃0)(c0 − c̃0)z
Lbc

0 +26/24z̄L̃bc
0 +26/24|Bbc〉

(5.26)= i|z|1/6
∞∏

m=1

(
1− |z|2m

)2
,

where the zero mode insertions coming from the measure (taken into account in(5.7)) are
translated according to(5.13), (C.4) [2].

5.2.3. Fermionic boundary state
We will heavily rely on superconformal invariance to carry out the analysis. GivenD =

10 Majorana fermions, the open string boundary term(A.7)

(5.27)i
Ts

2

∫
dτ ηMM

(
δψM+ ψN+ − δψM− ψN−

)∣∣σ=π

σ=0 ,

cancels when the following b.c. hold

(5.28)ψM− (0, σ ) = Λ0
M

NψN+ (0, σ ), ψM− (π,σ ) = Λπ
M

NψN+ (π,σ ),

whereΛ0 andΛπ are arbitraryO(1,9) matrices. However, once we embed this theory i
a superstring one by addingD = 10 bosonic partners with b.c.(5.1), compatibility with the
superconformal transformations(A.5) fix them almost uniquely to be

(5.29)Λ0 = η0M0, Λπ = ηπMπ, η2
0 = η2

π = 1,

together with the periodicity of the SUSY parameter

ε+(τ ) = −η0ε
−(τ ) = η0ηπε+(τ + 2π)

(5.30)←→ ε+(σ+)∣∣
σ=0,π

= −η0,π ε−(σ−)∣∣
σ=0,π

.

It is worth to note that the matricesM0,π (as defined below(5.17)) belong, in fact, to
SO(1,p) ⊂ O(1,9), as it can be readily checked.

Around the loop, the fermions can be P or AP, according to(5.2); from (5.13) (with
λ = 1/2) they become, in the closed channel,

(5.31)ψ̂M± (τ̂ , σ̂ + π) = η±ψ̂M± (τ̂ , σ̂ ), η2± = 1,

giving rise to the well-known four sectors of the closed string; R–R ifη+ = η− = +1, NS–
NS if η+ = η− = −1, NS–R ifη+ = −η− = +1, and R–NS ifη+ = −η− = −1. Then,
from (5.13), (5.28)and(5.29)(with η0 ≡ η), we get the defining relations for the fermion
b.s.

(5.32)
(
ψ̂M− (0, σ̂ ) − iηMM

Nψ̂N+ (0, σ̂ )
)∣∣Bψ ;η

〉= 0.

It is easy to see that such a b.s. only exists in the NS–NS and R–R sectors; in what f
we will label them byδ = 1/2 andδ = 0, respectively. Furthermore, at first sight there
two states in each one of the two sectors labelled byη = ±1; however, the GSO projectio
to be considered below will allow for a linear combination of them to survive. In term
modes,(5.32)is equivalent to
(5.33)
(
bM
m − iηMM

Nb̃N−m

)∣∣Bψ ;η
〉= 0, ∀m ∈ Zδ.
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The solution is8

∣∣Bψ ;η
〉= ∞∏

m∈Z+
δ

eiηbM−mMMN b̃N−m
∣∣Bψ ;η

〉
0,

(5.36)
∣∣Bψ ;η

〉
0 =

{ |0〉, δ = 1
2,

|N〉 = NΛΛ̄|ΛΛ̃〉, δ = 0,

where, from(5.33)with m = 0, it follows that the matrixN must satisfy

(5.37)Γ MN = iηMM
NΓ 11NΓ Nt .

The solution is unique up to normalization; if

A±Γ MA−1± = ±Γ Mt �⇒ A− = A+Γ11 = iΓ0,

(5.38)U−1Γ MU = S−1M
NΓ N �⇒ U = S

(
S−1),

we can take it to be

N = UΓ 01...pγ±A−1± = N∗Γ11,

(5.39)γ± ≡ 1± iηΓ11

1± iη
= γ∓Γ11,

whereS(S−1) is the spinor representation of the elementS−1 ∈ SO(1,p). Explicitly for
the system under consideration,

(5.40)S(S0,π ) = S






1 0 0 0

0 e
iπν

(1)
0,π σ2 0 0

0 0 e
iπν

(2)
0,π σ2 0

0 0 0 15




= e

π
2 ν

(1)
0,πΓ12+ π

2 ν
(2)
0,π Γ34.

The hermiticity conditionsψM†
m = ψM−m, ψ̃

M†
m = ψ̃M−m, for any m ∈ Z fix, almost com-

pletely (up to normalization), the scalar product to be

〈0|0〉 = 1, δ = 1

2
,

(5.41)〈ΛΛ̃|ΩΩ̃〉 = gΛΩg̃Λ̃Ω̃ , δ = 0,

8 The state|0〉 is the usual vacuum in the NS–NS sector, defined by

(5.34)bM
m |0〉 = b̃M

m |0〉 = 0, m ∈ Z+
1/2,

while |ΛΛ̃〉 ≡ |Λ〉 ⊗ |Λ̃〉 is the R–R vacuum obeying

bM
m |ΛΛ̃〉 = b̃M

m |ΛΛ̃〉 = 0, m ∈ Z+,

(5.35)bM |ΛΛ̃〉 = 1√ Γ MΩ |ΩΛ̃〉, b̃M |ΛΛ̃〉 = 1√ Γ Ω Γ MΩ̃ |ΩΩ̃〉.
0 2
Λ 0 2

11 Λ Λ̃
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where, in the R–R sector, them = 0 conditionsψM†
0 = ψM

0 , ψ̃
M†
0 = ψ̃M

0 , impose

(5.42)
gΓ Mg−1 = Γ M†

gΓ11 = ±Γ11g

g̃Γ Mg̃−1 = ±Γ M†


�⇒

{
g = −iC+ = Γ0Γ11 = g†,

g̃ = C− = iΓ0 = g̃†.

With these definitions we get

Aψ(z, z̃;η,η′) ≡ 〈B ′ψ ;η′∣∣zL
ψ
0 −5/24z̄L̃

ψ
0 −5/24

∣∣Bψ ;η
〉

= |z|5/6(1−3δ)
∞∏

m=1

det
(
110 + ηη′|z|2(m−δ)MM ′−1)Aψ

0 ,

(5.43)A
ψ

0 ≡ 0
〈
B ′

ψ ;η′∣∣Bψ ;η
〉
0
=
{

1, δ = 1
2,

−32η cosπν
(1)
− cosπν

(2)
− δηη′,1, δ = 0.

5.2.4. β–γ super-ghost boundary state
According to(C.2) the open string b.c. of aλ = 3/2 commuting,β–γ system are

β̃(τ,0) = η0β(τ,0), β̃(τ,π) = ηπβ(τ,π),

(5.44)β(τ − iT , σ ) ∼ η+β(τ, σ ), β̃(τ − iT , σ ) ∼ η−β̃(τ, σ ),

and analogously forγ, γ̃ . The phasesη0 ≡ η,ηπ andη+, η− must be identified with thos
introduced in(5.2)and(5.29)respectively, because they follow the superconformal tr
formation parameter modding. With the help of(5.13)the b.c.(5.44)translate, in the close
channel, into the following defining conditions for the b.s.|Bβγ ;η〉(

β̂(0, σ̂ ) + iη
ˆ̃
β(0, σ̂ )

)∣∣Bβγ ;η
〉= 0 ←→ (

β̂m + iη
ˆ̃
β−m

)∣∣Bβγ ;η
〉= 0,

(5.45)
(
γ̂ (0, σ̂ ) + iη ˆ̃γ (0, σ̂ )

)∣∣Bβγ ;η
〉= 0 ←→ (

γ̂m + iη ˆ̃γ −m

)∣∣Bβγ ;η
〉= 0,

for any m ∈ Zδ . We will restrict ourselves tõπ0 = 1 − π0, the “soaking up” anomaly
condition, in which case(5.45)is solved by

(5.46)
∣∣Bβγ ;η

〉
π0,π̃0

=
∏

m�π0

eiηγ−mβ̃−m
∏

m�π̃0

e−iηβ−mγ̃−m |0〉π0,π̃0,

where |0〉π0,π̃0 is defined at left and right as in(C.6). However, there is a very impo
tant difference with the anticommuting ghosts; in that case, in view of(C.12), we took,
with no loss of generalityp0 = p̃0 = 0. But, due to the commuting character of t
β–γ system, there exists no such identification, i.e., each pair(π0, π̃0) defines a differ-
ent representation of the superghost algebra, the so-called “pictures”, denoted com
as(−1/2− π0,−1/2− π̃0). Therefore, the vacuum, as well as the physical (BRST inv
ant) operators, must be referred to a particular picture, the different pictures being r
by the “picture changing operation” of FMS[17]. We will not dwell into details about thes
facts, but just restrict ourselves to consider the tools necessary to define and comp
amplitudes. The hermiticity properties
(5.47)βm
† = −β−m, γm

† = γ−m, β̃m
† = −β̃−m, γ̃m

† = γ̃−m,
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determine the scalar product, to be defined just by imposing

(5.48)π ′
0,π̃

′
0
〈0|0〉π0,π̃0 ≡ δπ ′

0,1−π0
δπ̃ ′

0,1−π̃0
.

We get for the amplitude in the(−1/2− π0,−3/2+ π0) picture

Aβγ (z, z̃;η,η′)

≡ 1−π0,π0

〈
Bβγ ;η′∣∣zL

βγ

0 −11/24z̄L̃
βγ

0 −11/24
∣∣Bβγ ;η

〉
π0,1−π0

= |z|1/6(3δ−1)
∞∏

m=1

(
1+ ηη′|z|2(m−δ)

)−2

{
(1+ ηη′)−1, δ = 0

(ηη′)π0−1/2, δ = 1
2

(5.49)= (ηη′)π0−1/2(Z1−2δ
2b (it)|ei2πb=ηη′,|z|=e−πt

)−1
.

Now, we are ready to construct the amplitude in the closed channel. According to(5.15),
the bosonic sector gives

A
(b)
closed(it) ≡ AX(z, z̃)Abc(z, z̃)

∣∣
z=z̄=e−πt

= iN∗
B ′NBV5

4 sinπν̄(1) sinπν̄(2)

(2π2α′)5/2

e−Ts∆y2/t

t5/2η(it)4

(5.50)× (Z1
1+2ν̄(1)(it)Z

1
1+2ν̄(2)(it)

)−1
.

In the fermionic sector, we must sum both contributions from the NS–NS and R–R se
this last one with a “minus” sign coming from the charge of the anti D-brane. Furtherm
we must project GSO in each one, i.e., we must insert the operator[3]

(5.51)PGSO≡ 1+ (−)F

2

1+ (−)(p+1)(1−2δ)(−)F̃

2
,

in the computation of the traces, whereF = FΨ + Fβγ andF̃ = F̃ Ψ + F̃ βγ are the left
and right spinor number operators andp is even (odd) in the type IIA (IIB) theory. Then9

A
(f )

closed(it) ≡ A
(f);GSO
NS–NS (it) − A

(f);GSO
R–R (it),

A
(f );GSO
NS–NS (it) ≡ Aψ;GSO(z, z̃;η,η′)Aβγ ;GSO(z, z̃;η,η′)

∣∣
η=η′=1

= 1

2

(
Z0

0(it)
2Z0

2ν
(1)
−

(it)Z0
2ν

(2)
−

(it) − Z0
1(it)2Z0

1+2ν
(1)
−

(it)Z0
1+2ν

(2)
−

(it)
)
,

A
(f );GSO
R–R (it) ≡ Aψ;GSO(z, z̃;η,η′)Aβγ ;GSO(z, z̃;η,η′)

∣∣
η=η′=1

(5.53)= −1

2
Z1

0(it)
2Z1

2ν
(1)
−

(it)Z1
2ν

(2)
−

(it).

9 The definition of such amplitudes is equivalent to considering the GSO-projected b.s.[18]

(5.52)|B〉 ≡ P |B;+〉 = 1(|B;+〉 + (−)[π0]+1+p(1−2δ)|B;−〉).
GSO GSO 2
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It follows that, if we normalize the b.s. according to

(5.54)NB ≡
(

(1+ b(1)2)(1+ b(2)2

16πα′

)1/2

,

from (5.7), (5.10), (5.50), (5.53) and using the modular properties(D.2), the following
identities hold

A(b)
open

(
it−1)= sign

(
b(1)b(2)

)
πα′tA(b)

closed(it),

(5.55)A
(f )
open
(
it−1)= sign

(
b(1)b(2)

)
A

(f )

closed(it).

It is then straightforward to prove that(5.14)coincides exactly with(5.11).

5.3. No force conditions and supersymmetry

To write the amplitude(5.11)just obtained from both channels in a convenient way,
can use thesecond addition theorem for theta functions[21] which states that the followin
quartic identity

(5.56)
4∏

i=1

ϑ

[
ai

bi

]
(νi; τ ) = 1

2

∑
s1,s2=0, 1

2

e−i4πa1s2

4∏
i=1

ϑ

[
mi + s1
ni + s2

]
(εi; τ )

holds, where


ν1

...

ν4


= 1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




 ε1

...

ε4


 ,

(5.57)




[
a1
b1

]
...[
a4
b4

]


= 1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


⊗ 12




[
m1
n1

]
...[

m4
n4

]


 .

The famous “abstruse” identity is a special case of it. By choosing the argumentsεi = 0
and the spin structuresm1 = −ν

(1)
− , n1 = 1, m2 = −ν

(2)
− and the other zero, we get

(5.58)
1

2
(· · ·)(5.11) = eiπ(ν

(1)
− −ν

(2)
− )
(
Z

−ν
(1)
− −ν

(2)
−

1 (it)Z
−ν

(1)
− +ν

(2)
−

1 (it)
)2

.

By virtue of the identityZ1
1(it) ≡ 0, this equation shows that the D4–D̄4 amplitude is

identically zero iff

(5.59)
∣∣ν(1)

−
∣∣+ ∣∣ν(2)

−
∣∣= 1 ←→ ∣∣b(1)b(2)

∣∣= 1,
which is exactly the condition(2.6)founded for SUSY to hold!
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6. Conclusions and perspectives

In this paper we have studied a D4–D̄4 system with non-zero magnetic fields in t
world-volumes of the branes in the weak coupling regime, and we have shown
becomes stable and supersymmetric for values of the gauge fields that coincide with tho
conjectured from the weak coupling, low energy approach defined by the Dirac–B
Infeld world-volume effective field theory on a brane. We think these results provide fu
evidence about the existence of the system. In particular, a solution ofD = 10 SUGRA
IIA describing the long distance fields such brane–antibrane system supports shoul
maybe as a certain limit of a more general solution, a kind of “four-dimensional super
much as it happens with the D2–D̄2 and the supertube. Finding such solution is certain
very interesting open problem.

Moreover, it is natural to ask for the effective five-dimensional world-volume field
ory of the system. AU(1) gauge fieldA (Ā) and five scalars live on the brane (antibran
that together with the eight fermionic degrees of freedom fill a vector multiplet o
D = 5, SUSY1 algebra (remember that the system preserves 8 supercharges). Furthe
the two “ex-tachyons” in(4.3), (4.4)are charged underA− ≡ A − Ā [23]; then, the spec
trum analysis of Section4 reveals the existence of a hypermultiplet of such algebra, com
from the inter-branes excitations and charged underA−. Finally, the commutators amon
the coordinate fields along the longitudinal directions of the brane–antibrane syste
Appendix B)10

[
Z(a)(τ, σ );Z(b)†(τ, σ ′)

]
(6.2)= 2δab

{
Θ(a)(σ ) = πα′ 1+b

(a)
0 b

(a)
π

b
(a)
π −b

(a)
0

1−b
(a)2
σ

1+b
(a)2
σ

, σ = σ ′ = 0,π,

0, otherwise,

signal, in the context of the paper, the non-commutative character of the effective
theory under consideration[24]. More precisely, the obvious relationsb

(a)
0 = ±b

(a)
π ≡ b(a)

yields the well defined non-commutative parameters

(6.3)Θ(a) = πα′

2

(1− b(a)2)2

b(a)(1+ b(a)2)
.

Therefore, we are led to conjecture that the effective field theory is a five-dimensiona
commutativeU(1)×U(1) gauge theory, coupled to one matter hypermultiplet charged
der one of theU(1)s, with non-zero non-commutative parameters in the spatial planes(12)
and(34), defined in(6.3) for a = 1 anda = 2, respectively. However, when SUSY hold

10 In its evaluation the following identities valid forν /∈ Z are required (see p. 46 in[25])

∑
n∈Z

sinnθ

n + ν
=
{

π
sin((2m+1)π−θ)ν

sinπν
, m2π < θ < (m + 1)2π,

0, θ = m2π,

(6.1)
∑ cosnθ = π

cos((2m + 1)π − θ)ν
, m2π � θ � (m + 1)2π.
n∈Z
n + ν sinπν
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we haveb(1)b(2) = ±1 and, then,Θ(1) = ±Θ(2) follows. For the special case|b(a)| = 1 (or
what is the same,|ν(a)| = 1/2) there is a naive enhancement of the space–time symm
from SO(2) × SO(2) to U(2), as can be checked from the spectrum and, moreove
non-commutative parameters are null. Does this mean that the effective gauge field
becomes a commutative one? In any case, the kind of SUSY gauge theory that emerg
merits further investigation, maybe along the lines of the boundary string field theo
proach[26].

As a last comment, it is possible that more general configurations of gauge field
rise to tachyon-free brane–antibrane systems preserving some supersymmetries. In par
ular, we could consider gauge fields in the brane and antibrane which were not nec
parallel as it was recently pursued in reference[27] for p = 2. A general analysis forp � 2,
even though it becomes harder, is also a subject for future work.

Appendix A. Conventions

We review shortly free field theories on the stripΣ = {σ 1 ≡ σ ∈ [0,π], σ 0 ≡ τ ∈ R}
with superconformal symmetry. We adopt the following conventions. The Minkows
metric in two dimensions is

η = ηµν dσµ dσν = −d2τ + d2σ = −dσ+ dσ−,

(A.1)σ± = τ ± σ, 2∂± = ∂τ ± ∂σ ,

while the two-dimensional gamma matrices in a Majorana–Weyl basis are

γ 0 = −iσ2, γ 1 = σ1, γ 2 = iγ 0 = σ2,

(A.2)γ3 = iγ 1γ 2 = −σ3, {γµ;γν} = 2ηµν,

being 1
2γ01 = 1

2σ3 the standard Lorentz generator in this spinor representation. We w
generic (Dirac) spinor as

(A.3)ψ ≡
(

ψ+
ψ−
)

= A−1
(

ψ+
ψ−

)
=
(

ψ−
ψ+

)
,

where we useA = σ1,Aγ µA−1 = +γ µt , to low (andA−1 to raise) spinor indices. A
usualψ̄ ≡ ψ†C = i(ψ∗+ − ψ∗−) with C = σ2, Cγ µC−1 = −γ µ† the charge conjugatio
matrix, while the conjugate spinor is defined byψc ≡ Dψ∗ whereD−1γ µD = γ µ∗. In
the representation chosen, where theγ µs are real, we can takeD = 1 and then a Majo
rana spinor which, by definition, verifies the reality constraintψc = ψ , is just a real one
ψ∗± = ψ±. We will be using the scalesT −1

s = 2πα′ = πl2 and the notationZν ≡ Z + ν =
{m + ν,m ∈ Z}, Z′

ν = Zν − {0} with ν ∈ [0,1).
To begin with, we consider the actionS[X,ψ] = SX

0 [X] + Sψ [ψ] with X,ψ real and

SX
0 [X] = −Ts

2

∫
Σ

d2σ ηµν∂µX∂νX = 2Ts

∫
Σ

d2σ ∂+X∂−X,

T
∫ ∫
(A.4)Sψ [ψ] = − s

2
Σ

d2σ ψ̄γ µ∂µψ = iTs

Σ

d2σ (ψ+∂−ψ+ + ψ−∂+ψ−).
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Formally, the action is invariant under conformal SUSY transformations with real Gr
man parametersε± = ε±(σ±)

δεX = ε̄ψ = −i
(
ε+ψ+ − ε−ψ−

)
,

(A.5)δεψ = ∂µXγ µε =
(−2∂−Xε−

2∂+Xε+
)

.

The equations of motion derived from(A.4) are solved by

(A.6)∂±X = F±
(
σ±), ψ± = f±

(
σ±),

for arbitrary functionsF±, f±, and the cancellation of the boundary terms

δSX
0

∣∣
b.t. = −Ts

∫
dτ δX∂σ X|σ=π

σ=0 ,

(A.7)δSψ
∣∣
b.t. = i

Ts

2

∫
dτ (δψ+ψ+ − δψ−ψ−)|σ=π

σ=0 ,

in the variation of the action imposes the boundary conditions (b.c.) on the fields as well
the form of the surviving supersymmetry. It is clear that fermions must in general s
the following b.c.

(A.8)ψ−|σ=0 = δ0ψ+|σ=0, ψ−|σ=π = δπψ+|σ=π .

For Majoranas the phases are simply signs,|δ0| = |δπ | = 1; the general solution is

(A.9)ψ±(σ±) = 1
δ0

}
l√
2

∑
r∈Zν

bre
−irσ±

, ν =
{

0, δπδ0 = +1,
1
2, δπδ0 = −1,

from which we obtain

(A.10)br = 1√
2πl

π∫
0

dσ
(
eirσ+

ψ+(σ+) + δ0e
irσ−

ψ−(σ−)
)
.

By definition in Ramond (R) sectors bosons and fermions have equal modding while,
Neveu–Schwarz (NS) sectors, the modding differs by a half-integer. So, they will
according to the four possible choices for the boson b.c. to be considered.

A.1. NN boundary conditions

Neumann b.c. are considered at both ends,

(A.11)∂σ X|σ=0 = ∂σ X|σ=π = 0.

In this case, the general solution for the boson field is

X(τ,σ ) = x + l2pτ + il
∑
m∈Z′

αm

m
e−imτ cosmσ,

∑

(A.12)∂±X(τ,σ ) = l

2
m∈Z

αme−imσ±
, α0 ≡ lp
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while, for the fermions, compatibility with the superconformal symmetry(A.5) yields the
phasesδ0 = 1 andδπ = ±1 in the R/NS sectors.

A.2. DD boundary conditions

Dirichlet b.c. are considered at both ends,

(A.13)∂τX|σ=0 = ∂τX|σ=π = 0.

In this case, the general solution for the boson field is (�x ≡ xπ − x0)

X(τ,σ ) = x0 + �x

π
σ + l

∑
m∈Z′

αm

m
e−imτ sinmσ,

(A.14)∂±X(τ,σ ) = ± l

2

∑
m∈Z

αme−imσ±
, α0 ≡ �x

πl
≡ lp,

while, for the fermions, compatibility with SUSY transformations yields the phasesδ0 =
−1 andδπ = ±1 in the NS/R sectors.

A.3. ND boundary conditions

In this case, Neumman b.c. are taken at one end and Dirichlet b.c. at the other on

(A.15)∂σ X|σ=0 = ∂τX|σ=π = 0.

The general solution for the boson field is

X(τ,σ ) = xπ + il
∑

r∈Z1/2

αr

r
e−irτ cosrσ,

(A.16)∂±X(τ,σ ) = l

2

∑
r∈Z1/2

αre
−irσ±

,

while, for the fermions, compatibility with SUSY transformations yields the phasesδ0 =
+1 andδπ = ±1 in the NS/R sectors.

A.4. DN boundary conditions

This case is the same as the ND one, with the ends interchanged,

(A.17)∂τX|σ=0 = ∂σ X|σ=π = 0.

The general solution for the boson field is

X(τ,σ ) = x0 + l
∑

r∈Z1/2

αr

r
e−irτ sinrσ,

l ∑ ±

(A.18)∂±X(τ,σ ) = ±

2
r∈Z1/2

αre
−irσ ,
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while, for the fermions, compatibility with SUSY transformations yields the phasesδ0 =
−1 andδπ = ±1 in the R/NS sectors.

In all the four cases, the SUSY parameters are characterized by the conditions

(A.19)ε+(τ ) = −ε−(τ ) ≡ ε(τ ), ε(τ + 2π) = ±ε(τ ) R/NS sector.

In particular, the surviving global SUSY charge (that certainly lives in the R sector) i
combinationQ+ + Q− ∼ G0 (see(A.24)).

A.5. Quantization and N = 1 superconformal algebra

From the action(A.4) we read the canonical (anti) commutation relations

[
X(τ,σ ); ∂τX(τ,σ ′)

]= i

Ts

δ(σ − σ ′) ←→ [αm;αn] = mδm+n,0,

(A.20)
{
ψ±(τ, σ );ψ±(τ, σ ′)

}= 1

Ts

δ(σ − σ ′) ←→ {br;bs} = δr+s,0.

Reality conditions translate intoα−m
† = αm, b−r

† = br . Quantum-mechanically, a norm
ordering prescription is needed to define quantum operators; this is done from the
representation of the canonical commutation relations(A.20)11

(A.21)|0〉: αm|0〉 = bm|0〉 = 0, m > 0

by putting at right (left) the destruction (creation) operators. The (traceless) en
momentum tensor is defined byTµν ≡ − 2

Ts

δS
δgµν |g=η; its non-zero components for boso

and fermions are, respectively,

T X±±
(
σ±)= ∂±X∂±X ≡ α′ ∑

m∈Z

LX
me−imσ±

,

LX
m = 1

2

∑
n

:αm−nαn: + ∆X
0 δm,0,

[
LX

m;αn

]= −nαm+n,

T
ψ
±±
(
σ±)= i

2
ψ±∂±ψ± ≡ α′ ∑

m∈Z

Lψ
me−imσ±

,

(A.22)

Lψ
m = 1

2

∑
r

(
r − m

2

)
:bm−rbr : + ∆

ψ
0 δm,0,

[
Lψ

m;br

]= −
(

r + m

2

)
bm+r .
11 For periodic (P) fermions, if we identify|0〉 ≡ |−〉. Then,b0|±〉 = 1√
2
|∓〉.
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The Virasoro generators{LX
m} and{Lψ

m} obey the algebra in(A.26) with cX = 1 andcψ =
1/2, respectively, provided that the conformal dimensions of the vacuum states are12

∆X
0 =

{
− 1

24 + 1
24 = 0, NN, DD,

+ 1
48 + 1

24 = 1
16, ND, DN,

(A.23)∆
ψ

0 =
{

− 1
48 + 1

48 = 0, AP,

+ 1
24 + 1

48 = 1
16, P.

Similarly, the fermionic supercurrent defined byGµ ≡ − 1
2Ts

δS
δχµ |χ=0, whereχµ is the

gravitino field, has the components

G±
(
σ±)= ψ±∂±X ≡ α′

√
2

∑
r∈Zδ

Gre
−irσ±

, δ =
{

0, R,
1
2, NS,

(A.24)Gr =
∑
m

αmbr−m, {Gr;bs} = αr+s , [Gr;αm] = −mbr+m.

In the NN or DD (withx0 = xπ ) cases, the NS vacuum defined in(A.21) is the unique
Osp(1,2) (SUSY extension ofSL(2,R)) invariant one,

(A.25)Lm|0〉NS = Gr |0〉NS = 0, m � −1, r � −1

2
.

This is not so with ND/DN b.c. (or DD with�x 	= 0) becauseL−1 does not annihilate it
for example,LX−1|0〉NS = 1

2α2−1/2|0〉NS(
�x
πl

α−1|0〉NS).
As we saw, the combined system in each case present two sectors, the NS sec

opposite modding and the R sector with equal modding. The standard form of theN = 1
superconformal algebra

[Lm;Ln] = (m − n)Lm+n + c

12
m
(
m2 − 1

)
δm+n,0,

[Lm;Gr] =
(

m

2
− r

)
Gm+r ,

(A.26){Gr ;Gs} = 2Lr+s + c

12

(
4r2 − 1

)
δr+s,0,

wherec = 3/2 is the central charge of the system, follows, with

(A.27)∆
(R)
0 = 1

16
, ∆

(NS)
0 =

{
0, NN, DD,
1
8, ND, DN.

12 Alternatively they can be computedby using the Hurwitz zeta-functionξ(s, x) ≡∑∞
k=0(k + x)−s (partic-
ularly useful cases areξ(−1, x) = − 1
12(1 + 6x2 − 6x) and ξ(−2, x) = − 1

6x(1 − x)(1 − 2x)) to regulate the
infinite sums and then adding the Casimir energyc/24, see[2].
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Appendix B. A system with mixed boundary conditions

Let us take a complex scalar fieldZ = X1 + iX2, together with a Dirac fermionΨ =
ψ1 + iψ2 with Xi,ψi real, and consider the actionS = SZ

0 + SΨ + SZ
b , where

SZ
0 = −Ts

2

∫
Σ

d2σ ηµν∂µZ∗∂νZ = SX1

0 + SX2

0 ,

SΨ = −Ts

4

∫
Σ

d2σ
(
Ψ̄ γ µ∂µΨ + h.h.

)= Sψ1 + Sψ2
,

(B.1)SZ
b = Ts

2

∫
dτ εij

(
bπXi(τ,π)∂τ Xj (τ,π) − b0X

i(τ,0)∂τX
j (τ,0)

)
.

The boundary termSb can be interpreted as the coupling, with unit charge, of the en
the string to a gauge fieldA of strengthF ≡ dA = Tsb̃(σ )dX1 ∧ dX2, whereb̃(0) = b0,
b̃(π) = bπ and zero otherwise.

The bosonic sector. The boundary conditions that follow from(B.1) are

(B.2)(∂σ + ib0∂τ )Z(τ, σ )|σ=0 = (∂σ + ibπ∂τ )Z(τ, σ )|σ=π = 0.

It will be convenient to introduce the following notation

1+ ib0 ≡
√

1+ b2
0 eiϕ0, ϕ0 ≡ π

2
ν0,

(B.3)1+ ibπ ≡
√

1+ b2
π eiϕπ , ϕπ ≡ π

2
νπ ,

whereν0(νπ ) varies from−1 to+1 asb0(bπ) goes from−∞ to +∞. We also introduce

(B.4)ν± ≡ 1

2
(νπ ± ν0), ν̄ =

{
ν−, 0 � ν− < 1,

ν− + 1, −1< ν− < 0.

The general solution with the boundary conditions(B.2) can be written

Z(τ,σ ) = z + √
2lA0φ0(τ, σ ) + i

√
2l
∑
r∈Z ′̄

ν

Ar

r
φr(τ, σ ),

(B.5)∂±Z(τ,σ ) = l√
2

∑
r∈Zν̄

Are
−irσ±∓iϕ0,

where we have introduced the functions

φ0(τ, σ ) = cosϕ0τ − i sinϕ0σ,

(B.6)φr(τ, σ ) = e−irτ cos(rσ + ϕ0), r ∈ Z ′̄
ν

and it is understood thatA0 ≡ 0 unless̄ν = 0.
Let us introduce, at fixed time, the pairing

1
π∫ ( ) bπ ∣ b0 ∣
(B.7)(φ1;φ2) ≡
2i

0

dσ φ∗
1∂τφ2 − ∂τφ

∗
1φ2 +

2
φ∗

1φ2∣σ=π
−

2
φ∗

1φ2∣σ=0.
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It is easy to prove that, forφ1, φ2 of the type(B.5), it does not depend onτ . In particular,
the following orthogonality relations hold

(φr ;φs) = δr,s

{−π
2 r, r 	= 0,

π2

2 b0, r = 0,

(1;φr) = π

2i
secϕ0δr,0,

(B.8)(1;1) = sinπν−
cosπν+ + cosπν−

= 1

2
(bπ − b0).

From them, it follows that

(1;Z) = (1;1)z − √
2l(φ0;1)A0,

(φ0;Z) = (φ0;1)z + √
2l(φ0;φ0)A0,

(B.9)(φr ;Z) = πl√
2i

Ar, r ∈ Z ′̄
ν .

Then, the bulk commutation relations implied by(B.1)

(B.10)
[
Z(τ,σ ); ∂τZ(τ, σ ′)

]= i
2

Ts

δ(σ − σ ′)

yield, from(B.9), the non-trivial commutation relations13[
z; z†]= 2θ ←→ [

xi;xj
]= iθεij , z ≡ x1 + ix2,

(B.11)
[
Ar;As

†]= rδr,s,
[
z;A0

†]= i
√

2 l cosϕ0,

where the non-commutative parameterθ is given by

(B.12)θ =



−(2Ts(1;1)
)−1 = 1

Ts

1
b0−bπ

, ν̄ 	= 0,
sinπν0

2Ts
= 1

Ts

b0
1+b2

0
, ν̄ = 0.

The fermionic sector. From the action for the Dirac spinor in(B.1) with the boundary
conditions as in(A.8), but now withδ0 ≡ eiφ0 andδπ ≡ eiφπ arbitrary phases, the gener
solution is given by

(B.13)Ψ±(σ±) = l
∑
r∈Zν

Bre
−irσ±∓i

φ0
2 , δπδ∗

0 = ei(φπ−φ0) ≡ ei2πν.

However, consistency withN = 1 superconformal symmetry transformations14

δεZ = ε̄Ψ = −i
(
ε+Ψ+ − ε−Ψ−

)
,

(B.14)δεΨ = ∂µZγ µε =
(−2∂−Zε−

2∂+Zε+
)

,

13 An useful relation is the following one; iffi = (φi ;Z), i = 1,2, then[f1;f2
†] = − 1

Ts
(φ1;φ2).
14 Equivalently, it is possible to derive the b.c.from a fermionic boundary term added to the action(B.1), see,
for example,[19].
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where the parameterε is Majorana, fixes the phases to be

(B.15)δ0 = eiπν0, δπ = εeiπνπ , δπδ∗
0 = εei2πν−,

with ε an arbitrary sign, as well as the form of the SUSY parametersε±(σ±)

(B.16)ε+(τ ) = −ε−(τ ) ≡ ε(τ ), ε(τ + 2π) = εε(τ ).

It is easy to see that we can identify the sector withε = −1 as the NS sector and that wi
ε = +1 with the R one, just by realizing, from(B.13) and(B.15), that, in the last case
the fermionic modding coincides with the bosonic one (ν = ν̄) while, in the first one, the
modding differs by a half-integer (ν = ν̄ ± 1

2 if 0 � ν̄ < 1
2/1

2 � ν̄ < 1); furthermore, from
(B.16)the right periodicity for the SUSY parameter follows.

Now, by using

(B.17)Br = 1

2πl

π∫
0

dσ
(
ei(rσ++ϕ0)Ψ+

(
σ+)+ ei(rσ−−ϕ0)Ψ−

(
σ−)),

the canonical anti-commutation relations read

(B.18)
{
Ψ (τ,σ );Ψ †(τ, σ ′)

}= 2

Ts

δ(σ − σ ′) ←→ {
Br ;Bs

†}= δr,s .

A reference state, w.r.t. the normal ordering will be understood, is defined by the conditio

|0〉r0: Ar |0〉r0 = 0, r � 0, Ar
†|0〉r0 = 0, r � 0,

(B.19)|0〉r0: Br |0〉r0 = 0, r � r0, Br
†|0〉r0 = 0, r < r0,

for somer0 ∈ Zν .

B.1. Conserved currents and N = 2 superconformal algebra

Two conserved currents associated with this system can be defined. The first one is j
the momentum associated to the translationsZ → Z + c, c ∈ /C , and it is defined by15

P
µ
i (τ, σ ) ≡ −Ts(∂

µXi(τ, σ ) − εij εµν∂ν

(
b̃(σ )Xj (τ, σ )

)
, ετσ = εστ ≡ +1,

(B.20)pz ≡ p1 + ip2 =
π∫

0

dσ P τ
z (τ, σ ) =

{ 1
iθ

z, ν̄ 	= 0,
√

2
l cosϕ0

A0, ν̄ = 0.

They are, as they should, the canonical conjugate variables to the center of mass
nates,

(B.21)
[
xi;xj

]= iθεij ,
[
xi;pj

]= iδi
j , [pi;pj ] = 0.
15 The reader notes that for|ν0| = 1(|b0| → ∞) or |νπ | = 1(|bπ | → ∞) it does not exist, in agreement with
the fact that(B.2) becomes Dirichlet boundary conditions in at least one end.
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We can get a representation of this zero mode algebra (forν− = 0) in momentum space b
defining the action of the operators as

(B.22)p̂i −→ pi, x̂i −→ i
∂

∂pi

− θεij pj

or, in a more standard way, we can introduce canonical variables defined by

q1 = cx1 − sp2, k1 = cx2 + sp1,

(B.23)q2 = sx1 + cp2, k2 = −sx2 + cp1,

wherec ≡ 1/

√
1+ θ2

2 , s ≡ θ2/

√
1+ θ2

2 , θ1/2 ≡√1+ θ2/4± θ/2 > 0. They verify

[
qi;qj

]= [ki; kj ] = 0,
[
qi; kj

]= iθiδ
i
j ,

(B.24)dx1 ∧ dx2 ∧ dp1 ∧ dp2 = dq1 ∧ dq2 ∧ dk1 ∧ dk2.

In view of the relationθ1θ2 = 1, the phase space volume remains invariant, an impo
fact in computing the zero mode contribution to the partition function. On the other
whenν̄ 	= 0 we have just thex-variables, introducing a factor of(2πθ)−1 in such compu-
tation.

The second conserved currentJµ ≡ JZ
µ + JΨ

µ leads to the conserved chargeQ = QZ +
QΨ that generates theU(1) rotationsZ → e−iεZ, Ψ → e−iεΨ , and it is defined by

JZ
µ (τ, σ ) ≡ Ts Im

(
Z∗(τ, σ )∂µZ(τ,σ )

)+ Ts

2
εµν∂

ν
(
b̃(σ )Z∗(τ, σ )Z(τ, σ )

)
= X2P

µ
1 − X1P

µ
2 ,

QZ ≡
π∫

0

dσ JZτ (τ, σ ) =
∑

r∈Z′
ν−

:A†
rAr :
r

+
{ �x2

2θ
, ν− 	= 0,

− θ
2 �p2 − x1p2 + x2p1, ν− = 0,

J Ψ
µ (τ, σ ) ≡ i

Ts

2
Ψ̄ γµΨ,

(B.25)QΨ ≡
π∫

0

dσ JΨ τ (τ, σ ) = Ts

2

π∫
0

dσ
(
Ψ

†
+Ψ+ + Ψ

†
−Ψ−

)= ∑
r∈Zν

:B†
r Br :.

While the bosonic part of theU(1) current suggested us to introduce the pairing(B.7), the
fermionic part can be extended to a holomorphic current,

J±(σ±) ≡ i
Ts

2
Ψ̄ γ±Ψ = −Ts

2
Ψ

†
±Ψ± ≡ − 1

2π

∑
m∈Z

Jme−imσ±
, J

†
−m = Jm,

(B.26)Jm =
∑
r∈Zν

:B†
r Bm+r : + q0δm,0, [Jm;Br ] = −Bm+r ,

whose zero component is essentially the global charge defined above,J0 = QΨ +q0, where

q0 ≡ r0 −1/2 is theU(1) charge of|0〉r0. This current is just theU(1) current of theN = 2
superconformal algebra the system realizes, the fermion number current. In fact, we can
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introduce thecomplex fermionic currents

G±
(
σ±)≡ 1

2
Ψ ∗±∂±Z ≡ α′

√
2

∑
r∈Zδ

G(+)
r e−irσ±

, δ =
{

0, R
1
2, NS,

(B.27)G(+)
r ≡

∑
s∈Zν̄

AsB
†
s−r ,

[
G(+)

r ;A†
s

]= sB
†
s−r ,

{
G(+)

r ;Bs

}= Ar+s .

The modes of the Hermitian conjugateJ±(σ±)† are introduced in the same way, wi
the resultG(−)

r = G
(+)
−r

†. Furthermore, the modes of the bosonic and fermionic ene
momentum tensors

T Z±± ≡ ∂±Z†∂±Z ≡ α′ ∑
m∈Z

LZ
me−imσ±

,

LZ
m =

∑
r∈Zν̄

:A†
rAr+m: + ∆Z

0 δm,0,
[
LZ

m;Ar

]= −rAm+r ,

T Ψ±± ≡ i

4

(
Ψ

†
±∂±Ψ± + Ψ±∂±Ψ

†
±
)≡ α′ ∑

m∈Z

LΨ
me−imσ±

,

LΨ
m =

∑
r∈Zν

(
r + m

2

)
:B†

r Bm+r : + ∆Ψ
0 δm,0,

(B.28)
[
LΨ

m;Br

]= −
(

r + m

2

)
Bm+r ,

verify the standard Virasoro algebra in(A.26) with cZ = 2, cΨ = 1, respectively, and th
constants

(B.29)∆Z
0 = 1

8
− 1

2

(
ν̄ − 1

2

)2

, ∆Ψ
0 = 1

2

(
r0 − 1

2

)2

.

Thus, the modes of the mixed system,Lm = LZ
m + LΨ

m obey the Virasoro algebra wit
c = 3 and a conformal dimension of the vacuum given by

(B.30)∆ = ∆Z
0 + ∆Ψ

0 = 1

8
+ 1

2
(r0 − ν̄)(r0 + ν̄ − 1).

This energy–momentumtensor, together with the currents(B.26), (B.27), generate theN =
2 superconformal algebra which completes the Virasoro one with{

G(+)
r ;G(−)

s

}= Lr+s + r − s

2
Jr+s + c

24

(
4r2 − 1

)
δr+s,0,

[Jm;Jn] = c

3
mδm+n,0,[

Lm;Jn

]= −nJm+n,[
Lm;G(±)

r

]= (m

2
− r

)
G

(±)
m+r ,
(B.31)
[
Jm;G(±)

r

]= ±G
(±)
m+r .
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It is easy to check that the currentG± + G
†
±, with modesGr = G

(+)
r + G

(−)
r , closes in

the N = 1 superconformal algebra(A.26), which is an important fact because it is th
Hermitian current that enters in the super-Virasoro constraints.

All this is true for any choice ofr0 ∈ Zν in (B.19). The choice

(B.32)r0 = ν̄ + δ

defines states with minimal conformal dimension, i.e., vacuums, except in the NS s
when 1/2 � ν̄ < 1, where such a state isBν̄−1/2|0〉ν̄+1/2 = |0〉ν̄−1/2. In any case, due t
the identifications

(B.33)|0〉r0+n ≡
{

Br0+n · · ·Br0−1|0〉r0, n ∈ Z−,

B
†
r0+n−1 · · ·B†

r0|0〉r0, n ∈ Z+,

all the states{|0〉r0+n, n ∈ Z} are in the representation defined by|0〉r0; so, with no loss of
generality, we will take forr0 the value(B.32). It is worth to noting that any of these vac
is Osp(1,2) invariant unless̄ν = 0, in which case it belongs to the NS sector. This follo
for example, fromLZ−1|0〉 = A

†
ν̄Aν̄−1|0〉, andLΨ−1|0〉r0 = (r0 − 1/2)B

†
r0Br0−1|0〉r0. The

superconformal invariant vacuum can be written in the bosonized form of the theor
do not dwell in such details here[3].

Appendix C. Ghost systems

Ghost systems are generically defined as theories of fields that obey commutation r
lation (statistics) opposite to the usual ones assigned according to their behaviou
Lorentz transformations (spin) by the CPT theorem, i.e., spin integer fields are
commuting, while half-integer spin fields are commuting. They naturally appear
Fadeev–Popov representation of determinants that come from fixing gauge symmetrie
In superstring theories, two-dimensional reparameterization invariance gives rise
anticommutingλ = 2 b–c system, while the gauge fixing of the local world-sheet SU
gives rise to the commutingλ = 3/2 β–γ system. Furthermore, an anticommutingλ = 1
η–ξ system is needed in the process of bosonization of the last ones.

C.1. Anticommuting b–c systems

Let us consider a pair of anticommuting, completely symmetric, and traceless te
sors c ∈ τλ−1

0 and b ∈ τ0
λ with λ ∈ Z; in the conformal gauge they have compone

(c ≡ c+···+, c̃ ≡ c−···−) and(b ≡ b+···+, b̃ ≡ b−···−), respectively, with action

(C.1)Sbc = iTs

∫
Σ

d2σ
(
c∂−b + c̃∂+b̃

)
.

The equations of motion and boundary conditions to be considered

∂−b = ∂−c = ∂+b̃ = ∂+c̃ = 0,
(C.2)b̃|σ=0,π = eiγ0,π b|σ=0,π , c̃|σ=0,π = e−iγ0,π c|σ=0,π ,
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yield theε0 ≡ γπ−γ0
2π

modded expansions

c
(
σ+)= l

∑
p∈Zε0

c−peipσ++i
γ0
2 , c̃

(
σ−)= l

∑
p∈Zε0

c−peipσ−−i
γ0
2 ,

(C.3)b
(
σ+)= l

∑
p∈Zε0

bpe−ipσ+−i
γ0
2 , b̃

(
σ−)= l

∑
p∈Zε0

bpe−ipσ−+i
γ0
2 ,

while, with the help of

c−p = 1

2πl

π∫
0

dσ
(
e−i

γ0
2 −ipσ+

c
(
σ+)+ ei

γ0
2 −ipσ−

c̃
(
σ−)),

(C.4)bp = 1

2πl

π∫
0

dσ
(
ei

γ0
2 +ipσ+

b
(
σ+)+ e−i

γ0
2 +ipσ−

b̃
(
σ−)),

the canonical anticommutation relations read

(C.5)
{
b(τ, σ ); c(τ, σ ′)

}= 2

Ts

δ(σ − σ ′) ←→ {c−p;bq} = δp,q.

We remark that the caseε0 = 0 is the one relevant to string theory, because this is
modding of the reparameterization parameters.

A ghost reference state (loosely called “vacuum”) is defined by the conditions

(C.6)bp|0〉p0 = 0, p � p0, c−p|0〉p0 = 0, p < p0,

wherep0 ∈ Zε0. With respect to it, we define the components of the energy–mome
tensor (we omit the right moving expressions)

T
(
σ+)= 1− λ

2i
∂+bc:− λ

2i
b∂+c: ≡ α′ ∑

m∈Z

Lbc
m e−imσ+

,

Lbc
m =

∑
p∈Zε0

(
(λ − 1)m − p

):bm+pc−p: + δm,0∆
bc
0 ,

(C.7)
[
Lbc

m ;bp

]= ((λ − 1)m − p
)
bm+p,

[
Lbc

m ; c−p

]= (−λm + p)cm−p.

Moreover, the symmetry underc → eλc, b → e−λb gives rise to a conserved ghost numb
current

U
(
σ+)≡ −:bc: = l2

∑
m∈Z

Ume−imσ+
, Um ≡ −

∑
p∈Zε0

:bm+pc−p: + u0δm,0,

(C.8)[Um;bp] = −bm+p, [Um; c−p] = +cm−p.

The operatorsLbc
m ,Um, satisfy the standard algebra (withε = +1)[

Lbc
m ;Lbc

n

]= (m − n)Lbc
m+n + c(λ)

12
m
(
m2 − 1

)
δm+n,0,

[
Lbc;Un

]= −nUm+n + Q
m(m + 1)δm+n,0,
m 2

(C.9)[Um;Un] = εmδm+n,0,



, the

l but

in

S sec-
s

e
nly

f the
set
A.R. Lugo / Nuclear Physics B 701 (2004) 299–333 331

where the central chargec(λ) and background chargeQ are

(C.10)c(λ) = −2+ 12λ(1− λ) = 1− 3Q2, Q = 1− 2λ,

while the vacuum conformal dimension and ghost charge are determined to be

∆bc
0 = 1

2
(p0 − λ)(p0 + λ − 1) = 1

2
u0(u0 + Q),

(C.11)u0 = p0 + λ − 1.

We remark that the minimal conformal dimension state (“vacuum”) is|0〉ε0; only when
ε0 = 0 the state|+〉 ≡ c0|0〉0 = |0〉1 is degenerate with|−〉 ≡ |0〉0, both with dimension
∆bc

0 = λ
2(1 − λ). However, theSL(2,R) invariant vacuum|1〉 = |0〉1−λ does not coincide

(except whenλ = 1) with any of them. In any case, as it happens with the fermions
identifications

(C.12)|0〉p0+m ≡
{

bp0+m · · ·bp0−1|0〉p0, m ∈ Z−,

c−p0−m+1 · · ·c−p0|0〉p0, m ∈ Z+,

allow us to takep0 = ε0 with no loss of generality.

C.2. Commuting β–γ systems

Similarly to what we have just considered, we can take now a pair of spinoria
commuting fields(β, γ ) where, this time,λ is half-integer. With the replacements(b, c)

by (β, γ ), (bp, c−p) by (βp, γ−p), etc, things go similarly, so we just point out the ma
differences. In the first placethe commutation relation

(C.13)[γ−p;βq] = δp,q, p, q ∈ Zε0,

holds. The cases of interest in superstring theory areε0 = 0 andε0 = 1/2, which follow
the modding of the world-sheet SUGRA transformation parameters in the R and N
tors respectively. A reference state|0〉π0 is defined as in(C.6) but, since relations such a
(C.12)do not exist, each one of them defines different representations oru0 = 1− λ − π0
“pictures”[18]. Forλ = 3/2, for example, we haveu0 = −1/2−π0; the vacuum states ar
the states withπ0 = 1/2 andπ0 = 0 in the NS and R sectors respectively, the commo
used “−1” and “−1/2” pictures. It is worth noting that, due to the bosonic character o
operators, the R vacuum state|0〉0 is infinitely degenerated (instead of doubly) with the
of statesγ0

m0|0〉0 with m0 = 0,1,2, . . . . On the other hand, theSL(2,R) invariant state is
instead identified with the NS state|0〉1−λ, the reference state of the “0” picture.

The parameters and constants of the conformal-ghost algebra(C.9)(with ε = −1) are

c(λ) = 2− 12λ(1− λ) = −1+ 3Q2, Q = 2λ − 1,

∆
βγ

0 = 1
(π0 − λ)(1− λ − π0) = −1

u0(u0 + Q),

2 2

(C.14)u0 = 1− λ − π0.
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Of particular interest is the combined system of aλ = 2 b–c andλ = 3/2 β–γ , present in
the superstring. In this case we have

(C.15)cg = −26+ 11= −15, ∆
g

0 = −1+
{

3
8
1
2

=
{

−5
8, if R,

−1
2, if NS.

Appendix D. Partition functions

Here we list the relevant partition functions of the various systems considered in p
dence. We introduce the variablesq ≡ ei2πτ = e−2πt and z ≡ ei2πb, Vn stands for the
Rn-volume, the prime in a trace symbol means omitting the zero mode sector an
modular functionsη(τ), θαβ(ν, τ ) are as in Chapter 7 of[2] (see, i.e.,[21] for more),

η(τ) ≡ q1/24
∞∏

m=1

(
1− qm

)
,

Z2a
2b (τ ) ≡ ϑ

[
a
b

]
(0; τ )

η(τ )
= ϑ2a,2b(0; τ )

η(τ )

(D.1)= zaqa2/2−1/24
∞∏

m=1

(
1+ zqm−1/2+a

)(
1+ z−1qm−1/2−a

)
.

They satisfy the modular properties

η(τ) = (−iτ )−1/2η
(−τ−1)= e−i π

12η(τ + 1),

ϑ

[
a

b

]
(ν; τ ) = (−iτ )−1/2eiπ(2ab−τ−1ν2)ϑ

[
b

−a

](−τ−1ν;−τ−1)
= eiπa(a+1)ϑ

[
a

b − a − 1
2

]
(ν; τ + 1),

(D.2)Z2a
2b (τ ) = ei2πabZ2b

−2a

(−τ−1)= eiπ(a2+a+ 1
12)Z2a

2b−2a−1(τ + 1).

We get

ZX(τ) ≡ trqLX
0 −1/24 =




V1(2πl)−1t−1/2η(τ)−1, NN,

e−Ts∆x2t η(τ )−1, DD,(
Z0

1(τ )
)−1/2

, ND/DN,

Zψ(τ) ≡ tr eiπβF qL
ψ
0 −1/48 = (Zα

β(τ )
)1/2

,

α =
{

0, NS,

1, R,
β =

{
0, AP,

1, P,

Zbc(τ ) ≡
 trp0 qLbc

0 −c(λ)/24zUbc
0 −λ+1/2 = Z

2p0+1
2b (τ ),

1 ∣
 tr ′
p0

qLbc
0 −c(λ)/24(−)U

bc
0 −λ+1 ≡ Z2b(τ )

2 cosπb
∣
b=1/2 = η(τ)2, p0 ∈ Z,
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Zβγ (τ ) ≡




eiπ(π0−1/2) trπ0 qL
βγ

0 −c(λ)/24zU
βγ

0 +λ−1/2 = (Z1−2π0
1−2b (τ )

)−1
,

(π0, b) /∈ Z × Z,

tr ′
π0

qL
βγ

0 −c(λ)/24 ≡ 2 sinπb
(
Z1

1−2b(τ )
)−1∣∣

b=0 = η(τ)−2, π0 ∈ Z,

ZZ(τ) ≡ trν̄ qLZ
0 −1/12 =




V2
2πθ

eiπ(1/2−ν̄)
(
Z1−2ν̄

1 (τ )
)−1

, ν̄ 	= 0,

V2
8π2α′ cos2 ϕ0t

η(τ )−2, ν̄ = 0,

(D.3)ZΨ (τ) ≡ trr0 qLΨ
0 −1/24z−JΨ

0 = Z
1−2r0
2b (τ ).
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