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The performance of MCR-ALS was studied in the modeling of non-linear kinetic-spectrophotometric data
acquired by a stopped-flow system for the quantitation of tartrazine in the presence of brilliant blue and
sunset yellow FCF as possible interferents.

In the present work, MCR-ALS and U-PCA/RBL were firstly applied to remove the contribution of unex-
pected components not included in the calibration set. Secondly, a polynomial function was used to
model the non-linear data obtained by the implementation of the algorithms. MCR-ALS was the only
strategy that allowed the determination of tartrazine in test samples accurately. Therefore, it was applied
for the analysis of tartrazine in beverage samples with minimum sample preparation and short analysis
time. The proposed method was validated by comparison with a chromatographic procedure published in
the literature. Mean recovery values between 98% and 100% and relative errors of prediction values
between 4% and 9% were indicative of the good performance of the method.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Food dyes are often added to foodstuffs and drinks in order to
supply, intensify or restore their colour to create the desired col-
oured appearance (Código Alimentario Argentino, 2010). Synthetic
dyes are widely used as they show several advantages compared
with natural dyes such as high stability to light, oxygen and pH,
colour uniformity, low microbiological contamination and rela-
tively lower production costs. However, in certain quantities they
are harmful to human health (Silva, García, Lima, & Barrado,
2007), hence supervising of synthetic dyes in high consumption
products such as beverages becomes an indispensable task.

Tartrazine (E-102) is a highly used synthetic dye often em-
ployed as an additive in food, drinks, medicine and cosmetics. Its
colour is due to the presence of azo (N@N) functional groups and
aromatic ring structures. Argentine Alimentary Code establishes a
maximal concentration of 100 and 200 mg L�1 of tartrazine in
non-alcoholic and alcoholic drinks, respectively, and expresses
the obligation of these products to specify its presence in their la-
bel (Código Alimentario Argentino, 2010).

The common analytical techniques frequently used for the
determination of colourants include visible spectrophotometry
(Berzas, Rodríguez Flores, Villaseñor Llerena, & Rodríguez, 1999),
ll rights reserved.
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echea).
thin-layer chromatography (Oka et al., 1987; Soponar, Mot, &
Sârbu, 2008), capillary electrophoresis (Dossi et al., 2007a; Dossi,
Piccin, Bontempelli, Carrilho, & Wang, 2007b) and mostly high
performance liquid chromatography (Dossi, Toniolo, Susmel,
Pizzariello, & Bontempelli, 2006; Minioti, Sakellariou, & Thomaidis,
2007; Pereira Alves, Brum, de Andrade, & Netto, 2008; Vachirapa-
tama, Mahajaroensiri, & Visessanguan, 2008; Yang, Yin, & Shao,
2011; Yoshioka & Ichihashi, 2008). However, these methods are
known to use toxic solvents, spend long analysis time, and some-
times it is necessary to make sample pretreatments. On the other
hand, the combination of simple methodologies, such as spectro-
scopic methods with chemometric modeling, represents a rapid,
simple and cheap strategy for the determination of these colou-
rants (Al Degs, 2009; Dinc, Baydan, Kanbur, & Onur, 2002;
Lachenmeier & Kessler, 2008; Llamas, Garrido, Di Nezio, &
Fernández Band, 2009).

In the present report, spectral measurements as a function of
time were acquired in order to quantitate tartrazine based on its
kinetic reaction with potassium bromate. Because of the fact that
time period for data collection must be carefully controlled when
this kind of determinations are performed, its automation becomes
essential (Araújo, Catita, & Lima, 1998). Therefore, a stopped-flow
injection system was well suited to accomplish this task as it is
based on reproducible timing phenomena. For this purpose, the
samples and the oxidant were automatically mixed and injected
in the carrier flowing into a mixing coil. The flow was stopped
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and the temporal evolution of spectra was measured. Several inter-
esting applications have been developed in this context (Murillo
Pulgarín & García Bermejo, 1996; Muñoz de la Peña, Espinosa-
Mansilla, Acedo Valenzuela, Goicoechea, & Olivieri, 2002; Pitonesi,
Centurión, Ferenández Band, Damiani, & Olivieri, 2004; Wang & Lu,
2005).

When the temporal evolution of spectra for a reacting system is
acquired, the second-order data generated can be successfully han-
dled by second-order multivariate calibration algorithms. As new
products are originated in a kinetic process, differences in the spec-
tral or kinetic characteristics from those of the reagents can be
used to distinguish components in a mixture (Escandar et al.,
2007). Another important item is that second-order data enclose
the so-called ‘‘second-order advantage’’, which allows predicting
the concentration of the analyte of interest even in the presence
of unknown interferents. This also enables several analytes to be
determined simultaneously (Booksh & Kowalski, 1994). Recently,
an indirect kinetic-spectrophotometric method has been devel-
oped for the simultaneous determination of tartrazine and other
four synthetic colourants with different chemometric algorithms
(Ni, Wang, & Kokot, 2009).

Interestingly, two-way data matrices generated by this type of
kinetic methods combined with multivariate calibration make
unnecessary the formulation of kinetic models, which is a great
advantage over traditional kinetic-spectrophotometric methods,
allowing the development of empirical calibration models to pre-
dict analyte concentration in unknown samples (Esteves da Silva
& Oliveira, 1999). These kind of second-order data have been tradi-
tionally processed by the application of a well-known algorithm:
multivariate curve resolution-alternating least-squares (MCR-
ALS) (De Juan & Tauler, 2001). Recently, attention has been paid
to alternative second order multivariate calibration algorithms
based on latent-structured methodologies, namely unfolded partial
least squares/residual bilinearization (U-PLS/RBL) and multidimen-
sional partial least squares/residual bilinearization (N-PLS/RBL).
These algorithms appear to be more flexible and provide better fig-
ures of merit than their competitors (Lozano, Ibañez, & Olivieri,
2008).

Unfortunately, non-linearity in the absorbance–concentration
relationship occurs in certain kinetic-spectroscopic systems, and
this kind of response can be accredited to different causes such
as instrumental noise, physical or chemical sources, which can
cause curvature in the concentration–response function. This effect
is classified as a real non-linear effect (Gemperline, Long, &
Gregoriou, 1991). The chemometric algorithms mentioned before
in this text are all based on linear models, and hence they are
not applicable to the system under study, in which the relationship
between the response and the analyte concentration is non-linear.

Recently, unfolded principal component analysis coupled to
residual bilinearization (U-PCA/RBL) has been proposed as an algo-
rithm capable of dealing with non-linear second order information
(Olivieri, 2005). Furthermore, this method presents the second-
order advantage, which allows the elimination of the contribution
of the unsuspected components from the total sample data (Culzoni
& Goicoechea, 2007; García-Reiriz, Damiani, & Olivieri, 2007;
García-Reiriz, Damiani, Culzoni, Goicoechea, & Olivieri, 2008).

The main objective of this work was to study the performance
of MCR-ALS applied to the stop-flow kinetic determination of tar-
trazine as well as to compare the results acquired with this algo-
rithm and U-PCA/RBL, since it appears to be the most appropriate
algorithm to process non-linear second-order data.

In order to model the non-linear relationship between the cali-
bration data and the analyte concentration, a non-linear pseudo-
univariate calibration graph was obtained with the areas under
the kinetic profiles or the scores, if the algorithm applied
was MCR-ALS or U-PCA/RBL, respectively, and their associated
concentrations. These models were eventually employed to the pre-
diction of tartrazine in validation samples containing also different
amounts of brilliant blue (E-133) and sunset yellow FCF (E-110) as
possible interferents. Because of the presence of severe overlapped
profiles, U-PCA/RBL was not able to obtain the second-order advan-
tage. Therefore, only MCR-ALS was used to the quantitative deter-
mination of the dye in real samples. Prediction results obtained
for real samples were compared with those acquired using a liquid
chromatographic procedure, adapted from the one proposed by
Pereira Alves et al. (2008).
2. Theory

2.1. MCR-ALS

The multivariate calibration algorithm MCR-ALS has been
extensively described in the literature (De Juan & Tauler, 2001;
Saurina et al., 2001; Tauler, 1995) so, only a brief description of
it is given here.

The bilinear decomposition of the augmented matrix D is per-
formed according to the expression:

D ¼ CST þ E ð1Þ

in which the rows of D contain the spectra measured for different
samples at several decay times, the columns of C contain the kinetic
profiles of the intervening species, the columns of S their related
spectra, and E is a matrix of residuals not fitted by the model.

Decomposition of D is achieved by iterative least-squares min-
imization of the Frobenius norm of E, under suitable constraining
conditions during the ALS procedure. MCR-ALS requires initializa-
tion with system parameters as close as possible to the final re-
sults. In the present work we employed the SIMPLISMA (simple
to use interactive self-modeling mixture analysis) methodology
(Windig & Guilment, 1991) in all cases.

After MCR-ALS decomposition of D, the information contained
in C can be used for quantitative predictions. If the area under each
profile is considered as proportional to each component concentra-
tion, then a pseudounivariate model can be built. In this work, a
non-linear pseudounivariate graph was obtained and was used to
make the predictions on test and real samples.
2.2. Unfolded principal component analysis/residual bilinearization

The essentials of U-PCA/RBL have already been discussed in
Refs. Culzoni and Goicoechea (2007); García-Reiriz et al. (2007);
García-Reiriz et al. (2008) and Olivieri (2005).

In the present report we proved that calibration scores can be
employed to create a pseudounivariate model for further predic-
tions using test scores.

When unexpected components take place in the test samples,
its scores will not be suitable for analyte prediction in usual PCA.
Therefore, the necessity of an alternative technique arises in order
to mark the new sample as an outlier, isolate the contribution of
the unexpected constituent from that of the calibrated analytes
and then recalculate appropriate scores for the test sample. The
RBL procedure is then applied to a given array of test sample data
and the outcome scores are free from interferents signal. This step
provides the so-called second-order advantage to the
methodology.

In the present work, calibration scores were employed to build a
non-linear pseudounivariate calibration graph. Afterwards, the
scores corrected by the RBL procedure were used for prediction
of analyte concentration in the samples.
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3. Experimental

3.1. Reagents and solutions

Analytical reagent-grade chemicals and Milli-Q water were
used. Solid dye standards were obtained from Ardinet (Buenos
Aires, Argentina) with a purity higher than 95% in all cases. Stock
solutions of tartrazine (0.002 mol L�1), brilliant blue
(0.001 mol L�1) and sunset yellow FCF (0.002 mol L�1) were pre-
pared by dissolving appropriate amounts of each compound in
water.

A stock solution of Fe(II) 0.02 mol L�1 was prepared by dissolv-
ing the appropriate amount of Fe(NH4)(SO4)2�6H2O (Cicarelli, San
Lorenzo, Argentina) in water, adding 5.0 mL of H2SO4 and diluting
to the mark in a 500.00 mL volumetric flask. Solutions of potassium
bromate (Cicarelli, San Lorenzo, Argentina) 0.1 mol L�1 and phos-
phoric acid (Cicarelli, San Lorenzo, Argentina) 3.0 mol L�1 were also
prepared.

Methanol and ammonium acetate were obtained from Sintor-
gan (Buenos Aires, Argentina) and Cicarelli (San Lorenzo, Argen-
tina), respectively.

3.2. Instrumentation and software

A stopped-flow-injection (FIA) system was developed using five
modules (degasser, pump, injection valve, autosampler and DAD
detector) of an Agilent 1100 Series instrument (Agilent Technolo-
gies, Waldbronn, Germany). The flow-injection manifold was de-
signed to automatically inject 95 lL of the sample solution,
previously merged with 5 lL of the reagent (bromate 0.1 mol L�1),
into a Milli-Q water carrier flowing at 1.5 mL min�1 through a
800 mm length and 0.5 mm i.d. flexible mixing coil. The pump
was stopped after 42 s since sample injection, the resultant mix-
ture solution passed through the detecting flow cell and the reac-
tion was monitored during 108 s. Once this time was reached, the
flow was restored. Spectra were registered for each FI peak in the
range 400–650 nm each 1 nm, at regular steps of 0.4 s for a total
time of 150 s. Hence, the size of each temporal-spectral data matrix
was 375 � 251, although it was later reduced by appropriate re-
gion selection (see below).

The chromatographic method was adapted from the one pro-
posed by Pereira Alves et al. (2008). Chromatograms were recorded
using the same Agilent 1100 Series instrument, although the mea-
surements were done on a 3.5 lm ZORBAX Eclipse XDB-C18 col-
umn (4.6 � 75 mm) from Agilent Technologies.
Table 1
Composition and prediction results of the validation set 1.

Sample Tartrazine (mg L�1)

Nominal MCR-ALSa,b

Temporal mod

1 11.09 11.6 (0.2)
2 16.87 15.0 (0.1)
3 19.28 17.2 (0.1)
4 4.99 5.2 (0.3)
5 2.50 2.5 (0.1)
6 11.09 9.9 (0.3)
7 11.09 11.0 (0.1)
8 16.87 16.97 (0.01)
9 4.99 5.3 (0.4)
Mean recoveryb (%) 98.1 (7.0)
REPc (%) 9.0

a Average of duplicate analysis.
b Between parenthesis the standard deviation.
c Relative error of prediction, REP ¼ 100

c ½
1
I

PI
1ðcact � cpredÞ2�1=2, where I is the number of

concentration.
The MCR–ALS algorithm was implemented using the graphical
interface downloaded from http://www.mcrals.info. A useful inter-
face for data input and parameters setting written by Olivieri, Wu,
and Yu (2009) was employed for U-PCA/RBL implementation. The
multivariate methods discussed in the present work were run in
MATLAB 7.1 (MATLAB 7.1, 2005).

3.3. Analytical procedure

3.3.1. Calibration standards and mixtures of dyes
The experimental procedure was developed preparing a calibra-

tion set of ten samples of tartrazine with concentrations equally
distributed in the range 2.00–20.00 mg L�1.

Two validation sets were prepared employing different concen-
trations than those used for calibration and following a central
composite design. One of them containing nine samples (set 1)
with different concentrations of tartrazine and brilliant blue, and
the other one containing twenty samples (set 2) with different lev-
els of tartrazine, brilliant blue and sunset yellow in concentrations
ranging from 2.50 to 19.50 mg L�1 (see Tables 1 and 2).

Calibration and validation samples were prepared by measuring
appropriate aliquots of standard solutions of each dye, placing
them into 10.00 mL volumetric flasks to obtain the desired concen-
trations, adding 200 lL of phosphoric acid 3.0 mol L�1 and 100 lL
of stock solution of Fe(II) 0.02 mol L�1 and completing to the mark
with Milli-Q water.

All of the samples were prepared in duplicate. An injection pro-
gram was developed to automatically merge 95 lL of each sample
with 5 lL of bromate 0.1 mol L�1, and to subsequently inject the
mixture into the FIA system.

3.3.2. Beverage samples
The analysed samples were three soft drinks ready to consume,

one powdered drink and an alcoholic drink, which contain tartra-
zine among other dyes (see Table 3), purchased from a local super-
market. All of the samples contained citric acid as acidifier. The rest
of the declared ingredients were artificial sweeteners such as
aspartame, acesulfame potassium, saccharin, sodium cyclamate
and sucralose, fruit flavoring, preservatives including sodium ben-
zoate, potassium sorbate, sulfur dioxide and calcium lactate. Other
ingredients were sodium citrate, calcium chloride and magnesium
sulphate. Water was present in all the samples except in powdered
drink. Carbonic gas was added to only two samples.

Samples were homogenised and degassed, if necessary, by
ultrasonic bath. In the case of the solid sample, it was previously
Brilliant blue (mg L�1)

Nominal

e Spectral mode

10.6 (1.7) 2.50
14.8 (0.1) 17.24
16.8 (0.1) 11.02
6.2 (0.2) 17.24
3.6 (0.1) 11.02
10.3 (0.2) 19.64
10.90 (0.01) 11.02
14.58 (0.01) 4.99
5.3 (0.3) 4.99
102.3 (19.1)
14.7

samples, cact and cpred are the actual and predicted concentrations, and c is the mean

http://www.mcrals.info


Table 2
Composition and prediction results of the validation set 2.

Sample Tartrazine (mg L�1) Brilliant blue (mg L�1) Sunset yellow (mg L�1)

Nominal MCR-ALSa,b Nominal Nominal

1 10.99 9.5 (0.8) 11.02 10.94
2 10.99 10.34 (0.01) 11.02 10.94
3 10.99 10.89 (0.01) 11.02 10.94
4 16.00 14.9 (0.1) 16.09 11.02 5.95
5 10.99 11.3 (0.7) 11.02 2.44
6 16.00 15.8 (1.2) 5.94 16.04
7 10.99 10.0 (0.6) 11.02 19.55
8 10.99 11.86 (0.01) 2.49 10.94
9 10.99 10.6 (0.1) 11.02 10.94
10 5.98 4.7 (0.7) 16.09 5.95
11 10.99 11.5 (0.1) 11.02 10.94
12 10.99 10.1 (0.4) 19.54 10.94
13 10.99 11.6 (0.3) 11.02 10.94
14 5.98 6.9 (0.4) 5.94 16.04
15 19.47 19.40 (0.01) 11.02 10.94
16 2.51 2.7 (0.1) 11.02 10.94
17 5.98 6.3 (0.1) 16.09 16.04
18 5.98 7.8 (0.3) 5.94 5.95
19 16.00 17.2 (0.1) 5.94 5.95
20 16.00 13.85 (0.01) 16.09 16.04
Mean recoveryb (%) 99.9 (11.2)
REPc (%) 6.5

a Average of duplicate analysis.
b Between parenthesis the standard deviation.
c Relative error of prediction, REP ¼ 100

c ½
1
I

PI
1ðcact � cpredÞ2�1=2 where I is the number of samples, cact and cpred are the actual and predicted concentrations, and c is the mean

concentration.

Table 3
Results of tartrazine determination in beverage samples.

Samplea Flavour Declared dyesb Tartrazine (mg L�1)

HPLC MCR-ALS

SD1 Orange-peach E-102, E-110 4.07 4.17
SD2 Green mango E-102, E-133 6.58 6.69
SD3 Orange-peach E-102, E-110 0.79 0.73
PD Apple E-102, E-110 21.55 21.08
AD Green evolution E-102, E-133 7.73 7.75
tcalculated

c 0.56
Mean recoveryd (%) – 98.8 (4.2)
REPe (%) – 4.2

a SD1-3: soft drinks, PD: powdered drink, AD: alcoholic drink.
b E-102 (tartrazine), E-110 (sunset yellow), E-133 (brilliant blue).
c Value of t (calculated according to Miller and Miller (2005)) is lower than the critical value 2.78 (95% confidence level and 4 degrees of freedom).
d Between parenthesis the standard deviation.
e Relative error of prediction, REP ¼ 100

c ½
1
I

PI
1ðcact � cpredÞ2�1=2, where I is the number of samples, cact and cpred are the actual and predicted concentrations, and c is the mean

concentration.

A.V. Schenone et al. / Food Chemistry 138 (2013) 1928–1935 1931
homogenised in its own package and all of the content was pre-
cisely weighted and directly dissolved in 1000.0 mL of ultra-pure
water at room temperature.

The sample solutions were placed into 10.00 mL volumetric
flasks with 200 lL of phosphoric acid and 100 lL of stock solution
of Fe(II). The solutions were then centrifugated at 6000 rpm for
2 min and injected into the FIA system. Generally, the beverages
were clear and no sediments or suspension were observed, but
the samples were centrifuged to remove any particle which could
be present in each of them, in order to prevent any obstruction in
the FIA system.
3.3.3. Chromatographic procedure
The concentration of tartrazine in commercial products was

verified by the HPLC method adapted from the one proposed by
Pereira Alves et al. (2008), at room temperature, using a mixture
of (methanol:ammonium acetate 0.08 mol L�1) as mobile
phase flowing at 1 mL min�1 with ultraviolet detection at
454 nm. In order to achieve a successful resolution, the following
gradient program was applied: 15% of methanol for the first
2.5 min, then it was increased to 50% for the next 6.5 min and final-
ly decreased to 15%. In these conditions, the total analysis time for
each chromatogram was 10 min.
4. Results and discussion

4.1. Spectral and kinetic characteristics

The reaction between tartrazine and potassium bromate in the
presence of Fe(II) has been applied before (Culzoni et al., 2008).
During this oxidation reaction, the absorbance of tartrazine (peak
at 430 nm) decreases leading to an uncoloured component. Bril-
liant blue does also react with bromate, suffering a kinetic degra-
dation and yielding a product whose spectrum shares the
maximum absorption wavelength of tartrazine. In turn, it can be
considered a potential interferent. In the case of sunset yellow,



Fig. 1. Normalized absorption spectra of the dyes: (A) tartrazine, (B) sunset yellow,
(C) brilliant blue and (D) oxidation product of brilliant blue. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Normalized kinetic curves obtained for tartrazine, sunset yellow, brilliant
blue and its degradation product at their maximum absorption wavelengths. Pink
solid line indicates tartrazine, green dashed line brilliant blue, cyan dotted line the
product of brilliant blue oxidation and black dashed-dotted-dotted line sunset
yellow. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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its spectrum is less similar (although it also presents a minor peak
at 420 nm) but its absorbance also decreases in the presence of the
oxidant generating an uncolored product. The spectra of the three
dyes can be appreciated in Fig. 1, as well as the one from the reac-
tion product of brilliant blue with potassium bromate. Fig. 2 shows
the kinetic curves of these compounds at their absorption maxima,
i.e.: 430, 630 and 490 nm for tartrazine and brilliant blue product,
brilliant blue and sunset yellow, respectively.
4.2. Prediction on validation samples of set 1 and set 2

As mentioned in Section 3, appropriate sensor regions were selected
in both dimensions before building the models. Specifically, times were
restricted to 46–132 s and wavelengths to 400–500 nm, leading to
216� 101 data points per sample. The temporal evolution of the
absorbance intensity in the useful range for a sample containing tar-
trazine during reaction with bromate produces a second order data.

The second-order data for each of the test samples were joined
to those for the calibration set and were arranged as column-wise
bidimensional data structures to being analysed with MCR-ALS.
To estimate the number of components for each set of samples,
preliminary exploratory data analysis using singular value decom-
position (SVD) combined with data inspection revealed that appro-
priate models could be made using three components for set 1 and
four components for set 2. The initial estimations for MCR-ALS
were obtained by the selection of the purest variables based on
SIMPLISMA (Windig and Guilment, 1991).

In the present work, non-negativity in spectral and concentra-
tion profiles was applied for all of the analytes. The correspondence
among species in the experiments was also used as constraint,
indicating the presence or absence of the three or four components
in the calibration and test samples of set 1 and 2, respectively.

Firstly, MCR-ALS was applied to set 1 in both the temporal- and
spectral-augmentation modes. Unimodality constraint was also
used in concentration profiles in the second case.

The areas under the concentration profiles retrieved by MCR-
ALS for each sample are proportional to the analyte concentration
and those corresponding to the calibration set were employed to
build a pseudounivariate graph. As the non-linear behaviour be-
tween signal and concentration is transmitted, the relationship
was modeled with a second degree polynomial function and was
used to predict tartrazine concentration xT:

yT ¼ aþ bxT þ cx2
T ð2Þ

in which a, b and c are regression parameters and yT the analyte
area under the concentration profile. The least-square fitting gave
a = 4 (4) � 102, b = 148 (9) � 101 and c = �17 (4) (standard devia-
tion in the last significant figure in parentheses) and a correlation
coefficient r2 = 0.9942 for the temporal-augmentation mode. In
the case of the spectral-augmentation mode, these values were
a = 13 (3) � 102, b = 112 (7) � 101 and c = �17 (3) and a correlation
coefficient r2 = 0.9924.

The gathered prediction results are presented in Table 1. As can
be seen, better results are obtained when the temporal-augmenta-
tion mode is applied, with a REP% of 9.0. On the other hand, a value
of REP% of 14.7 is obtained when the spectral-augmentation is
implemented. This fact can be ascribed to the degree of spectral
and kinetic overlap between the intervening species calculated
employing the following expression:

S12 ¼
ksT

1s2k
ks1kks2k

ð3Þ

in which s1 and s2 are the spectra for components 1 and 2, respec-
tively. The value of S12 ranges from zero to one, corresponding to
the extreme situations of no overlapping and complete overlapping,
respectively. When Eq. (10) is employed to estimate the degree of
kinetic overlap between components, the spectra are replaced with
the corresponding time profiles.

The degree of spectral overlap between tartrazine and the oxi-
dation product of brilliant blue is 0.9961, while their degree of ki-
netic overlap is 0.9779. At first sight, these values show a stronger
overlap in the spectral dimension in comparison with the time
dimension indicating that spectral-augmentation mode would be
the best choice, but this is true if there is no lack of synchronization
in the temporal profiles. Furthermore, the spectral and kinetic
overlap between tartrazine and brilliant blue in the analysed
wavelength region, are 0.9017 and 0.9921, respectively, showing
the opposite behaviour. Additionally, if sunset yellow is consid-
ered, this performance is repeated and the kinetics of tartrazine
and this dye are much more overlapped than their spectra (see
Figs. 1 and 2). For these reasons, samples of set 2 were only ana-
lysed in the temporal-augmentation mode.

Fig. 3 A and B shows both the kinetic and spectral profiles re-
trieved by MCR-ALS when processing a test sample of set 2 and
some of the calibration samples. Notice in Fig. 3A that the profiles



Fig. 3. Profiles retrieved by MCR-ALS when processing a test sample of set 2 together with calibration samples. (A) Kinetic profiles. (B) Spectral profiles. In both cases, pink
solid line indicates tartrazine, green dashed line brilliant blue, cyan dotted line the product of brilliant blue oxidation and black dashed-dotted-dotted line sunset yellow. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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show the presence of an increasing signal due to the brilliant blue
oxidation product in the test sample. In addition, another two sig-
nals with decaying profiles in the working wavelengths can be seen
due to the absorption of brilliant blue in this region and to the
presence of sunset yellow which produces an uncoloured
compound during its degradation. On the other hand, a time-
decreasing signal of tartrazine is appreciated in both the test and
calibration samples.

The prediction results for both sets (Tables 1 and 2) were rea-
sonably good, leading to a mean recovery of 98 (7)% and 99
(11)% , and a relative error of prediction (REP) of 9.0% and 6.5%
based on the average calibration concentration for set 1 and 2,
respectively, in the temporal-augmentation mode. These parame-
ters indicate that the proposed method is a feasible methodology
for achieving the second-order advantage in cases of sample com-
ponents with very similar spectra and a non-linear relationship be-
tween signal and analyte concentration.

As U-PCA/RBL has been found to be flexible enough to deal with
non-linear second-order information (García-Reiriz et al., 2008)
and taking into account the non-linear behaviour demonstrated
before, we worked under the hypothesis that this algorithm could
be useful to model the data obtained for this kinetic system.

The data matrices were unfolded into column vectors of size
21715 � 1. The scores obtained from the calibration samples were
also employed to build a polynomial function [see Eq. (2)], but in
this case yT refers to tartrazine scores. The regression coefficients
were a = 4 (2) � 102, b = 61 (3) � 101 and c = �8 (2), and the corre-
lation coefficient r2 = 0.9938.
The test samples of set 1 were subjected to residual bilineariza-
tion in order to eliminate the contribution of the two uncalibrated
components and to a PCA analysis in order to obtain the scores.
When U-PCA/RBL was applied to the validation set 2 to acquire
the scores without the contributions of uncalibrated components
only one interferent was found.

Prediction errors were higher than those obtained with MCR-
ALS leading to a REP of 14.6% and 16.3% when predicting samples
of set 1 and set 2, respectively. This might be due to the observed
failure in extracting a convenient interferent profile and can be
responsible of the poor ability of the U-PCA/RBL algorithm to mod-
el the data under study. As was recently commented, when severe
overlapping occurs, RBL may not be a useful procedure for obtain-
ing the second-order advantage (García-Reiriz et al., 2007, 2008).
Consequently, the amount of tartrazine in the presence of brilliant
blue as unexpected components can not be accurately quantitated
following this strategy.

4.3. Prediction of beverage samples

MCR-ALS was employed to analyse drink samples with tartra-
zine in the presence of other dyes. In order to validate the perfor-
mance of the new method, the samples were also analysed by the
HPLC method and the predicted tartrazine concentrations are dis-
played in Table 3.

A typical chromatogram of the dyes in one of the studied sam-
ples, in which tartrazine and sunset yellow are present, shows the
complete separation of the components achieved in six minutes
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(figure not shown). Furthermore, samples with tartrazine and bril-
liant blue needed nearly 10 min to be separated. On the other hand,
only 150 s are enough to perform an accurate quantitation of tar-
trazine when the proposed method is applied.

To decide whether the results of the proposed method and the
HPLC method are comparable or not, t statistical test was carried
out on the basis of paired t-statistic technique (Miller & Miller,
2005). As can be appreciated in Table 3, t-calculated value (0.56)
is lower than t-table value (2.78 with 95% confidence level and 4
degrees of freedom), which indicates that there are no significant
differences between the reference method and the strategy de-
scribed in the present report.

The reasonable figures of merit obtained when comparing MCR-
ALS results with those obtained by the chromatographic method
demonstrate the acceptable performance of the proposed
methodology.
5. Conclusions

The combination of stopped-flow analysis and the kinetic reac-
tion with bromate, which generates second-order data presenting
non-linear behaviour, can be successfully implemented to deter-
mine tartrazine in the presence of other dyes and unexpected sam-
ple matrix components.

The most convenient method (U-PCA/RBL), in principle, could
not be capable of modeling the existent collinearity between the
analyte and interferent spectra, showing a limitation of the meth-
od. On the other hand, it is remarkable the ability of MCR-ALS to
model non-linear second-order data providing profiles whose
areas could be fit with a convenient polynomial function, retrieving
satisfactory figures of merit. When this model is applied to the
analysis of real samples, the results are satisfactory and statisti-
cally comparable with those delivered by HPLC. Furthermore, the
levels of tatrazine which were found in the analysed samples were
five times lower than its maximum value established by the Argen-
tinian legislation. If future samples with higher concentrations
need to be analysed, a simple dilution will make it possible.

The proposed method provides a rapid, accurate, and economi-
cal alternative to separation methods.
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