
angular coverage and constant impedance are obtained. This an-
tenna provides a 3-dB axial-ratio bandwidth of 13.5% and a peak
gain of 9 dB. The obtained results make the proposed antenna
suitable for satellite communications.
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ABSTRACT: Planewave propagation with hyperbolic/hyperboliclike
characteristics in uniaxial dielectric media is investigated. The phase
velocity is positive with respect to the time-averaged Poynting vector for
both evanescent and nonevanescent propagation in nondissipative me-
dia. A conceptualization of a uniaxial medium, which exhibits hyperboli-
clike planewave characteristics as a homogenized composite medium, is
presented. © 2005 Wiley Periodicals, Inc. Microwave Opt Technol Lett
48: 363–367, 2006; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/mop.21350

Key words: hyperbolic dispersion relations; elliptical dispersion rela-
tions; Bruggeman homogenization formalism

1. INTRODUCTION

As the materials sciences and technologies continue their rapid
development, realistic possibilities are emerging of realizing so-
called metamaterials with novel and hitherto unconsidered optical/
electromagnetic properties. A prime example is provided by the
recently discovered metamaterials which support planewave prop-
agation with negative phase velocity (NPV), and thereby negative
refraction. Until 2000, little attention had been paid to the phe-
nomenon of negative refraction. Since 2000, there has been an
explosion of interest in negative refraction [1, 2], following ex-
perimental reports of a metamaterial which supports negative
refraction in the microwave regime [3].

Naturally occurring uniaxial crystals have been extensively
studied ever since the earliest days of the optical sciences. How-
ever, the electromagnetic properties of uniaxial media have re-
cently been revisited by theoreticians in consideration of the pros-
pects for NPV propagation in such media [4–7]. A closely related
issue concerns uniaxial dielectric-magnetic media with indefinite
constitutive dyadics [8, 9].

The defining characteristic of a uniaxial dielectric medium is a
distinguished axis of symmetry, known as the optic axis. Mathe-
matically, the permittivity dyadic of a uniaxial dielectric medium
may be expressed as

! " !I # !!x $ !" x̂x̂, (1)

where a coordinate system has been selected in which the direction
of the optic axis coincides with the direction of the unit vector x̂
lying along the x axis, and I denotes the 3 # 3 identity dyadic. The
real-valued parameter

Figure 6 Measured radiation patterns of the three-turn concave hemi-
spherical helical antenna at C/% $ 1.04
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& " !
!x

!
for !x, ! ! !

Re{!x}
Re{!}

for !x, ! ! "
(2)

may be usefully employed to characterize planewave propagation
in the medium specified by (1). The upper expression is appropri-
ate for nondissipative media whereas the lower expression is
appropriate for dissipative media.

The electromagnetic/optical properties of uniaxial media with
& % 0—this category includes most naturally occurring uniaxial
crystals—have long been established. Comprehensive descriptions
can be found in standard works [10, 11]. Uniaxial media with & &
0 are much more exotic. Interest in these media stems from their
potential applications in negatively refracting scenarios [8, 9] and
in diffraction gratings [12], for example.

Planewave propagation in a uniaxial medium is characterized
in terms of a dispersion relation which is quadratic in terms of the
corresponding wavevector components. The dispersion relations
for nondissipative media with & % 0 have an elliptical represen-
tation, whereas a hyperbolic representation is associated with & &
0. In this paper, we investigate the planewave characteristics and
conceptualization of uniaxial dielectric media with hyperbolic
dispersion relations.

2. PLANEWAVE ANALYSIS

The propagation of plane waves with field phasors

E! (r!) " E! 0exp(ik! ! r!)
H! (r!) " H! 0exp(ik! ! r!)" (3)

in the uniaxial dielectric medium specified by the permittivity
dyadic (1) is investigated. The permittivity parameters are gener-
ally complex-valued, that is, !, !x ! ". The wavevector k! is taken
to be of the form

k! " 'x̂ # (ẑ, (4)

where ' ! !, ( ! ", and ẑ is the unit vector directed along the
z-axis. This form of k! is appropriate to planar boundary value
problems [11] and from the practical viewpoint of potential optical
devices [12]. We note that the plane waves (3) are generally
nonuniform.

The source-free Maxwell curl postulates

' ) E! (r!) " i*B! (r!)
' ) H! (r!) " (i*D! (r!)" (5)

to yield the vector Helmholtz equation:

)!' ) I" ! !' ) I" $ +0*
2!* ! E! !r!" " 0! , (6)

+0 is the permeability of free space. Combining (3) with (6) yields
the planewave dispersion relation:

!'2 # (2 $ !+0*
2"!'2!x # (2! $ !x!+0*

2" " 0. (7)

In the following, we consider the time-averaged Poynting vec-
tor

P! !r!" "
exp!(2 Im+(,z"

2+0*
Re+#E! 0#2k!* $ !E! 0 ! k!*"E! *0,. (8)

Evanescent plane waves are characterized by Im{(} % 0. The
scenario characterized by Im{(} & 0 is not physically plausible
for passive media, even of the negatively refracting kind [12, 13],
and is therefore not considered here.

2.1. Ordinary Wave
The ordinary wavevector

k! or " 'x̂ # (orẑ (9)

arises from the dispersion relation (7) with components satisfying

'2 # (or
2 " *2!+0. (10)

The vector Helmholtz Eq. (6) yields the eigenvector solution E! 0 $
Eyŷ, and is directed parallel to the unit vector ŷ lying along the
y-axis, where the complex-valued magnitude Ey is determined by
the initial/boundary conditions. Consequently, the time-averaged
Poynting vector reduces to

P! !r!" "
exp!(2 Im+(or,z"

2*+0
#Ey#2Re+k!*or,. (11)

Since

Re+k!or, ! P! !r!" "
exp!(2 Im+(or,z"

2*+0
#Ey#2)'2 # !Re+(or,"

2* , 0, (12)

we say that ordinary plane waves have positive phase velocity
(PPV) for all directions of propagation.

Let us focus attention on a nondissipative medium (that is, !,
!x ! !). From (10) we see that Im{(or} - 0 for (i) ! % 0 when
*2!+0 & '2 and (ii) ! & 0. Thus, nonevanescent ordinary plane
waves propagate in a nondissipative medium only when ! % 0 and
(*.!+0 & ' & *.!+0. In geometric terms, the wavevector
components have a circular representation in (', (or) space.

2.2. Extraordinary Wave
The extraordinary wavevector

k! ex " 'x̂ # (exẑ, (13)

arises from the dispersion relation (7), with components satisfying

'2!x # (ex
2 ! " *2!!x+0. (14)

In the case where (ex $ 0, the mathematical description of the
extraordinary wave is isomorphic to that for the ordinary wave.
Therefore, we exclude this possibility from our consideration in
this section. The eigenvector

E! 0 " $ x̂ $
!x'

!(ex
ẑ%Ex (15)

arises as a solution to the vector Helmholtz Eq. (6); the complex-
valued magnitude Ex is determined by the initial/boundary condi-
tions. The corresponding time-averaged Poynting vector is given
by
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P! !r!" "
exp!(2 Im+(ex,z"

2*+0
Re&'$' !x

!(ex
'2

'2 #
!x(*ex

!(ex
%x̂

# $(*ex # '2
!*x

!*(*ex
%ẑ"#Ex#2. (16)

Hence, we obtain

Re+k!ex, ! P! !r!" "
exp!(2 Im+(ex,z"

2*+0
)(Re{(ex})2 # '2!'2' !x

!(ex
'2

# Re&!x(*ex

!(ex
" # Re{(ex}Re& !*x

!*(*ex
"%(. (17)

We analytically explore the nondissipative scenario for non-
evanescent and evanescent planewave propagation in subsections
2.3. and 2.4., respectively, whereas both the dissipative and the
nondissipative scenarios are treated graphically in subsection 2.5.

2.3. Nonevanescent Propagation
From Eq. (14), the inequality

*2!x+0 $ '2& - 0 (18)

is satisfied for nonevanescent planewave propagation in a nondis-
sipative medium, where & is defined in (2). Thus, Im{(ex} $ 0. We
explore the cases & % 0 and & & 0 separately as follows.

(i) If & % 0, then we require (*.!+0 & ' & *.!+0 in
order to comply with (18). This implies that ! % 0 and
!x % 0. In geometric terms, the wavevector components
have an elliptical representation in (', (ex) space.

(ii) If & & 0, then the inequality (18) reduces to *2!+0 & '2.
Therefore, we see that nonevanescent propagation arises
for (a) ' % *.!+0 and ' & (*.!+0 when ! % 0 and
(b) (/ & ' & / when ! & 0. In geometric terms, the
wavevector components have a hyperbolic representation
in (', (ex) space.

For Im{(ex} $ 0 and !x, ! ! !, we find that (17) reduces to

Re+k!ex, ! P! !r!" "
*3+0&

2!x
2

2(ex
2 . (19)

Hence, nonevanescent plane waves have PPV regardless of the
sign of & or !x.

2.4. Evanescent Propagation
We turn to evanescent planewave propagation in a nondissipative
medium as characterized by the inequality

*2!x+0 $ '2& . 0. (20)

Hence, we have Re{(ex} $ 0. As in the previous subsection, we
explore the cases & % 0 and & & 0 separately.

(i) If & % 0, then the situation mirrors that which we de-
scribed earlier for hyperbolic nonevanescent propagation.
That is, evanescent propagation arises for (a) ' % *.!+0

and ' & (*.!+0 when ! % 0 and (b) (/ & ' & /
when ! & 0. In geometric terms, the wavevector compo-
nents have a hyperbolic representation in (', Im{(ex})
space.

(ii) If & & 0, then evanescent propagation arises provided that
! % 0, !x & 0, and (*.!+0 & ' & *.!+0. In
geometric terms, the wavevector components have an el-
liptical representation in (', Im{(ex}) space.

For Re{(ex} $ 0 and !x, ! ! !, we find that (17) reduces to

Figure 1 A plot of the real (solid curve) and imaginary (dashed curve)
parts of (ex against ' for !x $ 6!0 and ! $ 2!0. The values of ' and (ex

are normalized with repsect to *.!0+0

Figure 2 As in Fig. 1, but for !x $ (6 0 i0.75)!0 and ! $ (2 0
i0.5)!0

Figure 3 A plot of the real (solid curve) and imaginary (dashed curve)
parts of (ex against ' for !x $ (6!0 and ! $ 2!0. The values of ' and
(ex are normalized with respect to *.!0+0
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Re+k!ex, ! P! !r!" "
*'2!x&

2!'2& $ *2+0!x"
exp!(2 Im+(ex,z". (21)

Hence, evanescent plane waves have PPV if (a) & & 0 or (b) & %
0 and !x % 0. However, negative phase velocity (NPV) propaga-
tion arises if & % 0 and !x & 0.

2.5. Illustrative Examples
Let us illustrate the geometric aspect of the dispersion relations
with some representative numerical examples.

Firstly, suppose we consider the case & % 0 with ! $ 2!0 and
!x $ 6!0, where !0 is the free-space permittivity. In Figure 1 the
real and imaginary parts of (ex are plotted against '. The elliptical
nonevanescent nature of the dispersion relation is clear for
(*.2!0+0 & ' & *.2!0+0, while the hyperbolic evanescent
nature is apparent for ' & (*.2!0+0 and ' % *.2!0+0. The
elliptical/hyperbolic geometric interpretation breaks down when
dissipative media are considered. However, the corresponding
dispersion relations are geometrically reminiscent of their nondis-
sipative counterparts. This can be observed in Figure 2, in which
the graphs corresponding to Figure 1 are displayed for ! $ (2 0
i0.5)!0 and !x $ (6 0 i0.75)!0.

Secondly, we turn to the case & & 0 with ! $ 2!0 and !x $
(6!0. The real and imaginary parts of (ex are graphed against '
in Figure 3. The graphs mirror those of Figure 1 but with noneva-
nescent and evanescent aspects interchanged; that is, we observe
hyperbolic nonevanescent characteristics for ' & (*.2!0+0 and
' % *.2!0+0, and elliptical evanescent characteristics for
(*.2!0+0 & ' & *.2!0+0. The corresponding graphs for ! $
(2 0 i0.5)!0 and !x $ ((6 0 i0.75)!0 are presented in Figure
4. Note that the shapes of the graphs in Figures 4 and 2 are similar
but not identical.

3. CONCEPTUALIZATION VIA HOMOGENIZATION

Although uniaxial dielectric media with & & 0 are not readily
observed in nature,§ they can be conceptualized as metamaterials
by means of homogenization.

For example, let us consider the homogenization of a composite
comprising two component materials phases, labelled as a and b.
Both component material phases are taken to be isotropic dielectric
media: !a and !b denote the permittivity scalars of phases a and b,
respectively. The component material phases are envisioned as
random distributions of identically-oriented, spheroidal particles.
The spheroidal shape—which is taken to be the same for all
spheroids in component material phase a and b—is parameterized
via the shape dyadic U $ diag(Ux, U, U). That is, we take the
spheroid’s principal axis to lie along the x axis. The spheroid’s
surface is prescribed by the vector

r! s!/, 0" " 1U ! r̂!/, 0", (22)

with r̂ being the radial unit vector specified by the spherical polar
coordinates / and 0. The linear dimensions of the spheroid, as
determined by the parameter 1, are assumed to be small relative to
the electromagnetic wavelength(s).

The permittivity dyadic of the resulting homogenized compos-
ite medium (HCM):

!HCM " diag!!x
HCM, !HCM, !HCM", (23)

as estimated using the Bruggeman homogenization formalism, is
provided implicitly via

faaa # fbab " 0, (24)

where fa and fb $ 1 ( fa denote the respective volume fractions
of the material component phases a and b. The polarizability
dyadics in (24) are defined as

a! " !!!I $ !HCM" ! )I # i*D ! !!!I $ !HCM"*(1, !! " a, b", (25)

wherein the depolarization dyadic is given by the surface integral

D "
1

i*42)
0

22

d0)
0

2

d/ sin /$ 1
r̂ ! U(1 ! !HCM ! U(1 ! r̂%U(1 ! r̂r̂ ! U(1.

(26)

Closed-form expressions for the depolarization dyadic for uniaxial
media are available in terms of hyperbolic functions [17]. How-
ever, we note that these exact results are not valid for nondissipa-
tive media with & & 0, and numerical evaluation of D has to be
resorted to.

The Jacobi iteration scheme

!HCM[P] " "+!HCM)p $ 1*,, !p " 1, 2, 3, . . . ", (27)

where the operator " is defined via

"+!HCM, " + fa!
a)I # i*D ! !!aI $ !HCM"*(1 # fb!

b)I # i*D

! !!bI $ !HCM"](1} ! + fa)I # i*D ! !!aI $ !HCM"*(1

# fb)I # i*D ! !!bI $ !HCM"*(1}(1, (28)

may be employed to solve (24) for !HCM. Suitable initial values for
the iterative scheme are provided by

!HCM)0* " ! fa!
a # fb!

b"I. (29)

For further details on the Bruggeman homogenization formalism,
the reader is referred to [15, 16] and to references therein.

Let us consider the homogenization scenario wherein material
component phase a is taken to be iron at the 670-nm free-space
wavelength. Correspondingly, we take !a $ ((4.34 0 i20.5)!0.
The material component phase b is assumed to be free space; that

§ Note that bismuth, for example, exhibits & & 0 at liquid-helium temper-
atures [14].

Figure 4 As in Fig. 3, but for !x $ ((6 0 i0.75)!0 and ! $ (2 0
i0.5)!0
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is, !b $ !0. The shape of the component spheroids is specified by
Ux/U $ 12. The Bruggeman estimates of the HCM permittivity
parameters !HCM and !x

HCM are plotted as functions of volume
fraction fa in Figure 5. At intermediate values of fa we see that & &
0 for a substantial range of fa values.

Extensive accounts of similar numerical homogenizations,
based on the Bruggeman formalism and more general approaches,
can be found elsewhere [15, 18].

4. CONCLUDING REMARKS

The dispersion relations for uniaxial dielectric media have been
characterized with respect to the parameter & of Eq. (2). For & &
0, the dispersion relations are hyperbolic for nondissipative media
and hyperboliclike for dissipative media. Similarly, the dispersion
relations are elliptical for nondissipative media and elliptical-like
for dissipative media with & % 0. Through the homogenization of
isotropic component material phases based on spheroidal topology,
we have demonstrated that metamaterials with & & 0 may be
straightforwardly conceptualized. Thus, a practical means of
achieving the exotic electromagnetic properties associated with
hyperbolic and hyperboliclike uniaxial media has been presented.
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ABSTRACT: An active integrated antenna (AIA), which consists of a T-
shaped microstrip-line-fed slot antenna, is proposed. Since the designed
antenna has an electromagnetically coupled feedback loop, it can easily
solve the problem of DC isolation between ports of the amplifier. The fabri-
cated parallel feedback antenna oscillator shows stable oscillation at a fre-
quency of 10.05 GHz. The measured EIRP is 37.79 mW, and the cross-
polarization levels are at least (15-dB lower than those of co-polarization
for all directions. © 2005 Wiley Periodicals, Inc. Microwave Opt Technol
Lett 48: 367–370, 2006; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/mop.21351

Figure 5 The real (above) and imaginary (below) parts of !HCM and
!x

HCM plotted vs. volume fraction fa. The permittivity values are normal-
ized with respect to !0. Component phase values: !a((4.34 0 i20.5)!0

and !b $ !0; spheroidal shape parameters: Ux/U $ 12
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