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of an inexpensive industrial grade surfactant mixture as porosity stabilizer permits obtaining porous
carbons with well-developed micro and mesoporosity at low cost. The stabilizing effect on the sol-gel
nanostructure allows maintaining the gels porosity during conventional air drying, simplifying the pro-
duction of porous carbon by making unnecessary complex drying procedures (e.g. supercritical drying),
cumbersome solvent exchanges, and long curing times. The carbonization process of BSPCs studied by
Commercial surfactant mixtures TGA shows that the stabilizer and non-carbon elements (hydrogen and oxygen) are only eliminated dur-
Resorcinolformaldehyde ing pyrolysis at temperature above 600 °C. The BSPCs morphological and textural properties were studied
Soft template by scanning electron microscopy and nitrogen physisorption isotherms. The BSPCs present large specific
surface areas (up to 645 m?/g) containing mesopores and micropores. Furthermore, the pore distribution
and morphology depend on the monomer (resorcinol) to stabilizer (benzalkonium chloride) ratio. Cyclic
voltammetry and electrochemical impedance spectroscopy were employed to study the electrochemical
properties of the carbon materials. The BSPCs exhibit a large specific capacitance (up to 179 F/g at 2.8 mHz
in 1M H;S04) The results suggest that porosity stabilization of resorcinol/formaldehyde gels could be
performed using different cationic surfactants, even commercial mixtures like benzalkonium chloride.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Porous carbon materials such as activated carbons, carbon nano-
tubes and nanofibres, and recently novel structured carbons have
been widely used in a variety of applications [1]. In this sense sev-
eral studies have shown that different carbon materials: activated
carbons [2-4] (powder or fiber cloths), carbon nanotubes [5], car-
bon aerogels [6,7], carbon cryogels [8,9] and ordered mesoporous
carbons can be successfully employed in technological application
such as catalyst [10], supercapacitors [11], as electrodes [12]. The
use of carbon materials is based on their excellent chemical sta-
bility, thermal conductivity, high specific surface areas, large pore
volumes and good mechanical stability. Several of these materi-
als are synthesized by pyrolysis of resorcinol-formaldehyde (RF)
gels [13,14,11]. While the wet RF gel is highly porous, due to the
nanostructure obtained from the sol-gel synthesis process, upon
drying the pore structure collapses and the resulting material has
a smaller surface area [15]. Therefore, various strategies have been
explored towards stabilizing the pore structure in order to avoid the
shrinkage of the gel, especially in the critical stage of drying and/or
carbonization of the gel [16-18]. Another important consideration
for new synthetic strategies concerns the cost associated with the
synthesis of the material, i.e. supercritical and freeze drying pro-
cesses must be avoided without any sacrifice of the porosity in the
final material. Bell et al. and Lee et al. used a cationic surfactant
as a template in the polymerization reaction [19,20]. Surfactant
molecules in the synthesis generate spherical micelles in aque-
ous solution and act as templates for the sol-gel polymerization.
Bell considers that the gel polymerization is carried out around
the micelles, whereas Lee proposed that the spherical aggregates,
in the order of nanometers, would be formed within the micelles,
which then would interconnect three-dimensionally by a crosslink-
ing reaction. As a result, interstitial sites would generate the pores
of the material. Moreover, it is known that the surfactant adsorbs
on the pores walls after the reaction, making the surface tension
of the liquid/vapour interface decreases, allowing minimizing the
pore collapse during drying stages. Subsequently, it has been pro-
posed to stabilize microemulsions cationic surfactants which result
in the porous structure [21]. In other work, N. Nishiyama et al.
reported a new synthetic method to produce microporous car-
bons using surfactants [22]. Bruno et al. proposed that cationic
micelles of cetyltrimethylammonium chloride (CTAB) stabilize RF
nanoparticles and maintain the gel porosity during drying [11].
Taking into account the results these authors proposed the use
of cationic polyelectrolytes to stabilize the pores [23]. The use of
cationic polyelectrolytes in the synthesis of the gel allows varying
its concentration over a wide range; and consequently, the con-
centration is not limited to a minimum value as surfactants form
micelles.

The aim of this work is to obtain porous carbons with good
performance using inexpensive reactants which could be used
in large-scale synthesis at industrial scale. The use of industrial
grade benzalkonium chloride (BzC), which is composed of a mix-
ture of related cationic surfactants, to generate porous carbons
is proposed. The BzC is produced by the reaction of benzylamine
with a mixture of several long chain halides. Those halides are
themselves made by nucleophilic substitution on the long chain
alcohol prepared by reduction of fatty acids. These acids are pre-
pared by hydrolysis of triglycerides from animal fat or vegetal oil.
Taking into account the uses of the benzalkonium chloride (dis-
infectants, fabric softeners, etc.), a cationic surfactant mixture is
useful to achieve these tasks and is not necessary employing a
pure compound. In this work, BzC is used as surfactant in order
to stabilize the structure of the RF gels. Nevertheless, the use of
a mixture of surfactants with different chain length will produce
micelles of different sizes. It is demonstrated that the stabilizing
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Fig. 1. Composition of Benzal 80®. R=C12 (40%), C14 (50%), C16 (10%).

effect of RF nanoparticles is not highly affected by the micelle
size. It is shown the synthesis of porous carbon varying the molar
ratio of resorcinol/benzalkonium chloride (R/BzC) from 0.03 to 0.12.
The porous materials obtained using different R/BzC ratios allows
estimating the surfactant concentration that produces resins, and
then carbons, with well-developed porosity. Those highly porous
carbons could facilitate the electrochemical charging/discharging
trough the fast ion transport in the pores. The morphological
and textural properties of the BSPCs were studied by scanning
electron microscopy (SEM) and nitrogen physisorption isotherms.
Thermogravimetric analysis (TGA) shows that the stabilizer and
non-carbon elements (hydrogen and oxygen) are only eliminated
during pyrolysis at temperature above 600°C. The scanning elec-
tron microscopy (SEM) images show that the carbons are formed
by aggregation of primary particles. The nitrogen physisorption
isotherms were employed to evaluate the surface area and the pore
distribution and morphology. Based on the results it is possible to
conclude that the carbon presents large specific surface area (up to
645 m2/g) and that the porosity strongly depends on the resorcinol
to BzC ratio. Cyclic voltammetry and electrochemical impedance
spectroscopy were employed to understand the role of the pore size
and distribution on the electrochemical performance. The BSPCs
exhibit a large specific capacitance (up to 165 F/g) with low charge
transfer resistance due to the pores. In the best of our knowledge,
there are no reports dealing with the use of cetyltrimethylam-
monium chloride in the fabrication of porous carbon materials.
Additionally, since benzalkonium chloride is an industrial mixture
of biomass originated cationic surfactant, its use have environmen-
tal and economic advantages and suggests that micelles of different
sizes, as those originated from a mixture of surfactant, are effective
as pore stabilizer.

2. Experimental

2.1. Synthesis of resorcinol-formaldehyde-benzalkonium chloride
materials

Monolithic porous carbons were synthesized by polyconden-
sation of resorcinol (R) (Fluka) with formaldehyde (F) (Cicarelli)
in the presence of a Benzal 80® (B) as pore stabilizer and sodium
carbonate (C) (Cicarelli) as basic catalyst. Benzal® 80 is a solution
(80% p/v) of benzalkonium chloride. The benzalkonium chloride in
Benzal® 80 is composed of a mixture of quaternary ammonium
salts (structure depicted in Fig. 1).

The molar ratio of resorcinol to formaldehyde (37% wt. in an
aqueous solution) (R/F) and the ratio of resorcinol to water (R/W)
were fixed at 0.5. Furthermore, the R/C ratio was kept constant at
200 [24]. In order to study the influence of the BzC on the porous
structure of the synthesized carbons, the molar ratio to R/BzC was
varied from 0.03 to 0.12. All components were mixed and stirred for
10 min. Then the samples were polymerized by heating at 70°C, in
a closed system, for 24 h to obtain a porous organic gel. The organic
gel was dried at 70 °Cin air for 6 h. Finally, porous carbons materials
stabilized by BzC (BSPCs) were obtained by pyrolysis of the dried
monolithic gels at 800°C for 1 h under an argon atmosphere with
a heating rate of 40°C/h. The samples obtained were denoted as
BSPCx, where x represents the molar ratio R/BzC (0.03, 0.06 and
0.12).
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2.2. Carbonization process evaluated by TGA and TGA/MS
measurements

The carbonization process was evaluated by TGA analysis (under
flowing N, ), with a Mettler Toledo model TGA/SDTA851e/SF/1100
instrument coupled to a mass spectrometer Pfeiffer Vacuum brand
model Thermostar GSD301T. The heating rate was 10°C/min and
the temperature range of 25 to 1000°C.

2.3. Structural and morphological characterization

The study of the morphology of the carbon samples was
performed using Carl Zeiss EVO equipment MA10. The textural
properties of the synthesized carbons were evaluated by nitrogen
adsorption measurements at —196 °C using homemade automatic
manometric equipment designed and constructed by the Advanced
Materials Group (LMA), now commercialized as N, Gsorb-G (Gas to
Materials Technologies (www.g2mtech.com)). Before the adsorp-
tion experiments, the samples were degassed for 8h at 250°C.
Apparent surface area (SBET) was calculated by application of
the B.E.T. equation to the nitrogen adsorption data [25]. The
Dubinin-Radushkevich equation was used to calculate the micro-
pores volume (VO) and narrow micropores volume (Vn) from
the nitrogen (—196°C) and carbon dioxide (0°C) adsorption data,
respectively [26]. As already described in the literature, VO corre-
sponds to the total micropore volume, whereas Vn provides the
volume of micropores below 0.7-0.8 nm [27]. The mesopores vol-
ume (Vmeso) was deduced from the N2 adsorption isotherm, by
subtracting the value VO (N5) from the total amount adsorbed at
P/P0=0.98 [28]. The mesopores size distribution was estimated
by application of the Barrett-Joyner-Halenda (BJH) method to the
desorption branch of the nitrogen isotherm [29].

2.4. Preparation of electrodes and electrochemical measurements

The electrochemical characterization was performed by
cyclic voltammetry (CV) with Autolab Eco-Chemie potentio-
stat/galvanostat instrument, and the electrochemical impedance
spectroscopy (EIS) measurements were performed using a PC4
potentiostat/galvanostat-ZRA (Gamry Instruments, Inc.). The cyclic
voltammetry measurements were performed in a typical three-
electrode cell, where a mesoporous carbon and a silver/silver
chloride electrode (saturated KCl) were used as a counter and
a reference electrode, respectively. A sulfuric acid (1 M) aqueous
solution was used as an electrolyte. Before the measurements, the
carbon samples were milled and sieved to obtain powdered BSPCs
down to 0.210 mm size. The working electrodes were prepared by
coating Nafion-carbon ink onto a vitreous carbon electrode in order
to obtain a film-coated electrode, as described before [21]. Carbon
inks were prepared mixing 10 mg of powdered BSPCs with 0.25 mL
ethanol, 0.25 mL of deionized water and 0.15 mL of Nafion solution
(5 wt.%, DuPont). These mixtures were ultrasonicated for 60 min
to form a homogeneous ink. Then, 15 L of the resulting ink was
deposited by drop-coating on a glassy carbon electrode (1.5 cm?)
and dried at 50°C for 5 min. The procedure has been used before
[21], and gives results comparable with measurement of mono-
lithic samples where no binder or additional current collector is
present [11]. The presence of Nafion® allows the stabilization of
the colloidal dispersions of carbon microparticles [30]. The disper-
sions are stable for months but are treated with ultrasound before
use. The amount of active material (porous carbon) is calculated
from the deposition volume. Weighing with a microbalance (Pre-
cisa 262 SMA-FR, 0.01 mg precision) gives the same mass values
within 1% error. While the amount of mass is small, both mass and
capacitance values are reproducible and are larger or in the order
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Fig. 2. TG weight loss curves and d(M)/dT for resin BSPC0.03.

of similar studies of the intrinsic properties of carbon materials
[31,32].

The specific capacitance obtained by electrochemical
impedance spectroscopy (CEIS) was calculated from the data
at the lowest frequency (f), and evaluated using Eq. (1):

Cris = % (1)
where f is the measurement frequency, Z” is the frequency
imaginary part value and m is the active material mass. EIS mea-
surements were performed from 1x 10% to 2.8 x 10~3 Hz with
sinusoidal perturbation of 1 mV of amplitude and 10 points per
decade change in frequency. A resting time of at least 15 min at
each potential was used before measuring the electrochemical
impedance.

The measured values are the intrinsic specific capacitance of
the materials. On the other hand, the measurement of actual elec-
trodes requires other constraints in the electrode formation to
allow extrapolation of the measured parameters to commercial
devices [33].

3. Results and discussion

The porous carbons are obtained by pyrolysis of the porous
resin produced by reaction of resorcinol and formaldehyde in
the presence of a cationic surfactant (benzalkonium chloride).
The mechanism proposed before for the role of another cationic
surfactant (cetyltrimethyl ammonium bromide, CTAB) involves
the interaction of cationic micelles with negatively charged resin
nanoparticles avoiding the interparticle pore collapse during dry-
ing [11]. Therefore, the surfactant cannot be removed before drying.
A relevant question involves the removal of the surfactant during
pyrolysis. Therefore, we monitored the release of volatiles during
heating using thermogravimetric analysis TGA alone and coupled
with mass spectroscopy (TGA-MS).

3.1. TGA and TGA/MS measurements

Fig. 2 shows the thermogravimetric analysis of the resin
BSPC0.03, performed under nitrogen with a scan rate of 10 °C/min.
The results are expressed in% of mass loss and its derivative (DTG)
in function of temperature is shown, which goes from 25 to 800 °C.

Through the thermogravimetric analysis, the resin weight loss
value during carbonization process calculated is c.a. 40%. The anal-
ysis of the derivative shows two zones, the first until 150 °C can be
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Fig. 3. Normalized d(M)/dT profile and profile of species during thermal carbonization of RFB resin in N, atmosphere a) m/z=18, 31,44 and b) m/z=78, 91, 39.

attributed to the moisture loose and the second zone, from 150 to
550°C, corresponds to the thermal decomposition of the functional
groups in the resin, which were determined by a thermogravimet-
ric analysis coupled to a mass detector. Fig. 3(a and b) shows the
derivative and intensity variations in the mass spectra as a func-
tion of the temperature of selected m/z fragments obtained during
carbonization of the resin BSPC0.03.

The evolution of water and carbon dioxide due to the pyroly-
sis of the sample is clearly appreciated in the thermogravimetric
analysis (Fig. 3 a) up to about 550°C, as evidenced by mass frag-
ments m/z=18 and m/z=44. Furthermore, thermal decomposition
fragments at m/z=31 and 39 are observed (Fig. 3a and b) due to
the curing of the resin, and resulting in the formation of methy-
lene bridges in the polymer network. In Fig. 3 b, the fragments
m/z=78 and 91 are observed and can be attributed to the thermal
decomposition of benzalkonium chloride.

From this study, it is reasonable to conclude that for such mate-
rials the resin carbonization temperature must be above 600°C
because at lower temperatures there are still some remnants of
benzalkonium chloride. Additionally, up to 600°C water and car-
bon dioxide are produced by pyrolysis of the resin, suggesting that
the materials carbonized below 600 °C contain significant amount
of hydrogen and oxygen, besides carbon. The presence of chemical
groups bearing hydrogen and oxygen could involve differences in
the structure and morphology of the carbons.

While other m/z fragments are also detected the one shown
were chosen according to previous results [11] under the assump-
tion that the presence of the different surfactant does not change
the pyrolysis mechanism of the RF dry resin.

3.2. Morphology and textural properties of BSPC

Xerogels precursors of BSPC were obtained from the sol-gel
polycondensation of resorcinol and formaldehyde using benzalko-
nium chloride as pore stabilizer and dried in air at 70 °C for 6 h. The
dried porous gels were then carbonized by heating at 800°C in an
argon atmosphere. SEM images of the carbons materials are shown
in Fig. 4 at different magnifications.

Fig. 4 shows that the carbons are formed by aggregation of pri-
mary particles, typical of resorcinol-formaldehyde gels [29,34-37],
which form aggregates and it is possible to observe empty space
between the primary particles. The cavities between the aggregates
produce mesopores and/or macropores in the carbon material. It

is known that the RF primary particles or clusters are negatively
charged in a basic media due to the presence of phenolic groups
[38]. Thus, BzC micelles can stabilize the nanoparticles minimizing
aggregation. The pore size variation observed in the micrographs
could be explained as follows: the positively charged BzC forms
micelles which interact electrostatically with negatively charged RF
particles, initiating the self-assembly processes that results in RF-
particles/BzC clusters. At large R/BzC ratio, the cationic surfactant
induces the formation of small clusters increasing the aggregation
of the particles, which generates solid spheres containing micro-
pores. On the contrary, at low R/BzC ratio, the larger amount of
surfactant promotes the electrostatic interaction between posi-
tively charged surfactant chains and RF particles, thus generating
carbon materials containing micro and mesopores (BSPC o3).

Nitrogen adsorption-desorption measurements and pore size
distribution of BSPCs prepared with different R/BzC ratios are
showninFig. 5. The physical parameters deduced from the nitrogen
adsorption data are listed in Table 1.

All samples show a type I isotherm characteristic of micro-
porous samples with a small hysteresis loop at higher relative
pressures, indicating the additional presence of certain mesoporos-
ity in the carbon material. Moreover, the isotherms of sample
BSPCp o3 present an inflection point at very high relative pressures
due to the condensation in the interparticle space and/or the pres-
ence of macroporosity. All isotherms exhibit a sharp knee at low
relative pressures P/P0=0.01 indicating the presence of narrow
micropores. The BSPCy g sample exhibits the highest BET surface
area of 645 m?/g.

In Fig. 6 it can be seen the variation in surface area (BET) and
pore volume of the BSPCs based on the molar ratio (R/BzC).

The results in Fig. 6 show that the lower molar ratio R/BzC
favors the development of mesoporosity with an appropriate devel-
opment of microporosity. This effect is very desirable since the
presence of mesopores should improve the mass transport of chem-
ical species (reactants, products, ions) while the surface area is
large.

3.3. Electrochemical behavior of BSPC carbon materials electrodes

Cycling voltammetry measurements were carried out in order
to examine the BSPCs electrochemical properties. In Fig. 7 are
shown the cyclic voltammograms of different BSPCs in 1M H,SO04
at 50 mV/s.
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Fig. 4. SEM images obtained by scanning electron microscopy of a-c) BSPCq o3; d-f) BSPCq 06; g-i) BSPCq 12 at different magnifications.
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Fig. 5. a) Nitrogen adsorption isotherms of BSPCs prepared with different R/B ratios. b) Pore size distribution obtained after application of BJH and NLDFT (inset) methods.

Table 1

Textural properties of BSPCs obtained at different R/BzC ratio.
Samples Specific surface area?® (m?2/g) VoP (cm3/g) Vineso (cm3/g) V€ (cm3/g) Dp¢ (nm) Dp¢ (nm)
BSPCo 03 535 0.22 0.20 0.42 4 2
BSPCo 06 645 0.25 0.03 0.28 4 1
BSPCo.12 590 0.23 0.01 0.25 3 1

a Determined from BET theory.

b Determined from Dubinin-Radushkevich.

¢ Volume adsorbed at p/po of 0.98.

4 Determined after application of the BJH method to the desorption branch.

¢ Determined after application of the NLDFT method (slit/cylinder pore, equilibrium model).
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The shape of the cyclic voltammogram indicates that the BSPCs
electrical charge and discharge response are reversible and only
small indications of the presence of pseudocapacitive peaks are
detected.

The specific capacitance was quantitatively measured using
electrochemical impedance spectroscopy. In Fig. 8 the experimen-
tal results are shown in Nyquist plots.

The Nyquist plots of BSPc (Fig. 8) exhibits a capacitive behav-
ior in the low frequency range which involves not a vertical
dependence of the imaginary part, as expected for pure capaci-
tive behavior but a skewed line which could be related with the
existence of a semicircle with a centre at very low frequencies
(beyond the minimum frequency available in our instrument set-
up). A similar behavior has been observed before [21]. However,
the resistance changes weakly with the frequency and the behav-
ior tends to approach that of a pure capacitance, allowing to use
the value at the lowest frequency as the maximum capacitance.
The specific capacitances data obtained at the lowest frequency are
summarized in Table 2.

As it can be seen, the specific capacitance value is weakly
affected by the stabilizer/monomer ratio, in agreement with the
similar values of surfaces areas obtained by measuring the textural
properties.
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Fig. 8. Impedance plot measured from 1 x 10* to 2.8 x 10~3 Hz of BSPCs. Measure-
ment potential=0.5V vs Ag/AgCl. The insert shows the magnification of the high
frequency range.

Table 2
Specific capacitance of BSPCs obtained by cyclic voltammetry and electrochemical
impedance spectroscopy.

Material Specific capacitance (F/g)
Ceis

BSPCo.03 179

BSPCo.06 140

BSPCo.12 125

Specific capacitance obtained at 0.25V and at a frequency 0.0028 Hz.

As can be observed the values of specific capacitance, for
BSPCp o3 obtained using BzC are larger in comparison with other
methods such as supercritical drying [39,40] or freeze drying
[41,42].

The results suggest that the mechanism previously proposed
before for porosity stabiulization [11], is general and could be
applied using other cationic surfactants, besides CTAB, and even
mixtures like the benzalkonium chloride. The mechanism for
cationic micelles to stabilize the gel nanoparticles is described in
Fig. 9.

During the first stage of gelation, each nanoparticle grows indi-
vidually and it is dispersed in the solution. Later on, these particles
are added together to form the interconnected structure and finally
the cross-linked structure is formed. When the relative benzalko-
nium chloride concentration is high (R/BzC low), the micelles act
directly as a template and stabilize the dispersion of the polymeric
nanoparticles, thus preventing the pore collapse during the drying
step. At low surfactant concentration (R/BzC high) an aggregation
of the nanoparticles occurs and microporous areas are generated
in the structure, accompanied by a more pronounced pore collapse
during drying of the resin.

4. Conclusions

The use of industrial quality cationic surfactants (benzalko-
nium chloride) to act as stabilizer of a resorcinol-formaldehyde
gel nanoporous structure is demonstrated. Using this surfactant,
the production cost of carbon materials could be strongly dimin-
ished. The presence of the cationic surfactant avoids the collapse
of the wet gel during the air drying. The thermal behavior of the
resin during the carbonization step was analyzed by thermogravi-
metric measurement, the results show a mass loss of about 40%.



L.H. Tamborini et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 509 (2016) 449-456 455

colloidal NP colloidal NP network
individual growth aggregation formation
o ‘ o & % micro and mesopore
P O » diameter
° ([
’ ")
°% o % @ J

microporous solid spheres

@ RF nanoparticles (NP)

% micelles of benzalkoniumchloride

Fig. 9. A schematic representation of the porous resin formation mechanism.

The method proposed here simplifies greatly the production of
porous carbon by making unnecessary to use complex drying pro-
cedures, cumbersome solvent exchange and long curing times. In
addition, organic solvents are not utilized in our approach, reducing
the overall environmental impact preparing such novel materials.
The surfactant is still retained in the RF matrix after drying and
it is released during pyrolysis at a temperature about to 600°C.
The BSPC material with the better porosity was synthesized at a
molar ratio R/BzC of 0.03. The materials synthesized in this condi-
tion achieve larger surface area 535 m2/g, including both micro and
mesopores. The increment of molar ratio R/BzC shifts the pore size
distribution to lower size diameters, generating microporous solid
spheres.

The BSPCs present specific capacitances in the range
125-179F/g (measured by electrochemical impedance spec-
troscopy at 2.8 mHz).

The results suggest that the role of cationic surfactant micelles,
previously proposed [11], is general of cationic surfactants and not
a special effect of cetyltrimethylammonium bromide (CTAB). Such
result is relevant since, in the best of our knowledge, only CTAB has
been previously used as surfactant to stabilize porosity of RF resins.
Moreover, since benzalkonium chloride is a mixture of surfactants,
the successful stabilization of gel porosity during drying suggests
that micelles of different sizes can stabilize the nanoparticle struc-
ture.
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