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Abstract—This letter proposes a polarimetric Synthetic Aper-
ture Radar (SAR) image classification method based on the
Expectation-Maximization (EM) algorithm. It is an unsupervised
algorithm that determines the number of classes in the scene
following a top-down strategy using a covariance based hipothesis
test. A G

0

p mixture model is used to describe Multilook Complex
(MLC) polarimetric data, and the proposed algorithm is tested in
simulated and real datasets obtaining good results. The classifi-
cation performance is evaluated by means of the overall accuracy
and the kappa indices obtained from Montecarlo analysis. Finally,
the results are compared to those obtained by other classic and
recently developed classification algorithms.

Index Terms—SAR images, Classification, Radar Signal Pro-
cessing, G0

p distribution, EM algorithm, Mixture Models.

I. INTRODUCTION

The process of SAR data classification is heavily depen-

dent on the model and algorithms employed. The classical

Wishart distribution based on the complex Gaussian model of

the scattering coefficients successfully describes homogeneous

areas with fully developed speckle and no texture [1]. The

well known unsupervised classification method presented in

[2] is based on the mentioned distribution and uses H/α
decomposition [3] as initialization. However, the increasing

resolution of SAR sensors due to the continuous technology

improvement causes the classical models no longer fit to the

measured data. Therefore, more complex models have to be

used to interpret the observations.

In this regard, Frery et al. developed the G distribution

family, which is capable of describing highly heterogeneous

data [4]. However, the versatility of the G model has the

complexity of its parameter estimation as counterpart. In [5],

the authors proposed a mixture of G0p densities and the SEM

(Stochastic Expectation Maximization) algorithm to classify

PolSAR data, using the method of moments to estimate the

parameters. In [6], the work presented in [5] was extended

using different initializations. In both algorithms the number

of classes in the dataset must be informed which establishes

a semi-supervised approach. More recently, in [7] the authors

proposed an automatic segmentation algorithm based on the

Ud-distribution and Markov Random Fields (MRF) to model

the pixel’s context information. The Ud-distribution includes

the G0p model as an asymptotic case but due to its complicated

probability density function a close-form maximum-likelihood

estimation solution does not exist [8], so the method of matrix

log-cumulants was used in [7] to estimate its parameters.

In this work a classification algorithm based on the EM

method and G0p mixture model is proposed. It is an unsuper-

vised algorithm which only needs the equivalent number of

looks as initial information. A Wishart statistic test provides

the number and the structure of the classes in the image,

and then the parameters of each class are estimated using

the EM method. Instead of using moments or cumulants to

estimate the parameters, the classification is performed using

the maximum-likelihood estimates. In order to simplify the

estimation process, the pixel labels are considered indepen-

dent. The information of the pixel neighborhood is simply

considered outside the EM loop using a mode filter. This is

computationally less expensive than the MRF approach and

yet produces good enough results.

Since the same data model and EM based approach as in

[5] are used herein, the present work can be considered as

its improved unsupervised extension that provides the MLE

estimates of the model parameters. In [9] a semi-supervised

version was presented, which is the base of the more complete

version presented here. The paper proceeds as follows. In

Section II the G0p mixture model used for PolSAR data is

explained. In Section III, the five stages of the proposed algo-

rithm are developed, and Sections IV and V present the results

for simulated and real data respectively. The classification

performance is evaluated in terms of the overall accuracy, the

kappa statistic and computational cost. Finally, the conclusions

are presented in Section VI.

II. DATA MODEL

Polarimetric SAR data is built from radar return, which

is related to the dielectric properties of the surface. The

polarimetric data of a monostatic SAR are formed by a

complex vector z = [shh
√
2shv svv], where hh, hv, vv are

the polarization channels [10, p.65]. In homogeneous areas

the scattering vector z is described by a complex circular

Gaussian distribution. The asociated multilook complex data

(MLC) defined as Z =
∑

zz
H/n follow a Wishart distribution

WC(C, n), where C = E{zzH} is the covariance matrix, n
is the number of looks, (·)H denotes conjugate transpose and

E{·} denotes the expectation operator.

In non-homogeneous areas, the scattering vector deviates

from the Gaussian statistic. Each fully polarimetric data point

(pixel) Z can be described as the product of two stochastic

variables Z = xY, where x ∈ R+ describes the backscatter

from the terrain and Y ∈ C
3×3 describes the speckle. In

this work the G0p model is used. It was proposed in [11]xxx-x-xxxx-xxxx-x/xx/$xx.xx c©2017 IEEE
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and it can successfully describe homogeneous, heterogeneous

and extremely heterogeneous targets. In this context x is

Inverse Gamma distributed with shape parameter−α and scale

parameter γ: x ∼ Γ−1(−α, γ). Y obeys a Wishart distribution

WC(C, n), where n is the number of looks and C is the

covariance matrix of the SAR return. The G0p density function

for Z results:

f(Z; θ) = (1)

nnd|Z|n−dΓ(dn− α)

h(n, d)|C|nΓ(−α)(γ)α (nTr(C−1
Z) + γ)α−dn

where θ = (α, γ,C, n)1, h(n, d) = πd(d−1)/2Γ(n) . . .Γ(n −
d+1) and d = 3 is the number of polarizations. The parameter

α < 0 is directly related with the rugosity of the terrain and

C describes its polarimetric characteristics. Tr(·) and |.| are

the trace and determinant, respectively.

A. Mixture Model

Each pixel is modeled by a finite mixture of G0p densities:

f(Z,Θ) =

K∑

j=1

ωjfj(Z; θj), (2)

where K represent the number of classes that compose the

SAR return and fj is the density given in (1). Each class is

described by a set of parameters θj = (αj , γj ,Cj , nj). The

coefficients wj indicate the proportion of the jth component

in the mixture, subject to the restrictions
∑K

j=1 ωj = 1 and

ωj ≥ 0, j = 1 . . .K . The vector parameter of the mixture is

Θ = (ω1, . . . , ωK , θ1, . . . , θK).

III. ALGORITHM STRUCTURE

The proposed algorithm follows a top-down strategy, com-

posed of five stages: initialization, split-and-merge, estimation,

classification and smoothing. It begins with a unique class

and iteratively divides the dataset into more classes as it finds

evidence of more complex structures within each class. This

stage provides a suitable initialization to the EM algorithm

which computes the parameter estimates of the mixture model

and the labeled image. Finally, a simple non-linear mode filter

is applied to obtain the final image.
After a trivial initialization, the Split-and-Merge stage is

performed to determine K , the number of classes in the

dataset. It is based on the Wishart covariance matrices test

[12] and the Wishart classifier [2]. This stage also provides the

initialization (labeled pixels) for the next stage. The estimation

stage applies the EM algorithm to the G0p mixture model to

estimate the parameter vector Θ = (ω1, . . . , ωK , θ1, . . . , θK).
In the next stage the algorithm performs a Maximum A

Posteriori (MAP) classification of every pixel in the dataset

based on the estimated parameters θj . Finally, a non-linear

filter (mode filter) is applied on the labeled data to smooth the

resulting image. In the following sections the details of each

stage of the algorithm are provided.

1It is worth noting that, since in the multiplicative model x has unitary
mean, it is possible to eliminate γ from the G0

p
expression as indicated in

[11]. In this letter γ is preserved maintaining the unitary mean, without loss
of generality.

A. Initilization

As a very undemanding initialization, every pixel in the

dataset is assigned to a unique initial class. This is the first

step of the top-down strategy performed in the following stage

to capture the classes structure of the dataset.

B. Split and Merge

In this stage the number of classes K , a class-partition data

PK and set of covariance matrices {M} = {M1, . . . ,MK}
describing each class center are obtained. The partition PK

and {M} will be used as the initialization for the next stage.
This stage proceeds iteratively. Assuming there are KL

classes and a partition PKL
at Lth iteration, the randomly

initialized Wishart classifier is applied to the pixels in each

class to identify two subclasses. After convergence is reached,

there are two covariance matrices Mi1 and Mi2 as the esti-

mated subclass centers for each class Ci. It must be determined

whether this two subclasses are sufficiently separated as to

consider them two distinct clusters. In order to do that, the

Wishart covariance matrix test developed in [12] is used

as the cluster separation measure. The test considers the

null hypotheses H0 : Mi1 = Mi2 against the alternative

H1 : Mi1 6= Mi2. Under H0 the loglikelihood-ratio test

becomes

logQ =n(2d log 2 + log |Mi1|+ log |Mi2| (3)

− 2 log |Mi1 +Mi2|).
The probability of z being smaller than −2ρ logQ is

P{ − 2ρ logQ ≤ z} = P{χ2(d2) ≤ z} (4)

+ wP{χ2(d2 + 4) ≤ z} − wP{χ2(d2) ≤ z}
where ρ = 1−17/12n and w = −d2(1−1/ρ)2/4+7d2(d2−
1)/(96n2ρ2) [12]. Given a probability of false alarm (PFA),

a threshold Λ|P{−2ρ logQ ≤ Λ} = 1 − PFA is computed

using (4) and compared with Q′ = −2ρ logQ. If Q′ ≤ Λ
H0 is accepted and the class is not divided. If Q′ > Λ, H0 is

rejected, meaning that there is enough evidence to assume that

the matrices describe different classes. Therefore, the class is

divided according to the Wishart classification and Mi1, Mi2

are the new class centers.
After this split process is performed for the KL classes,

a merging process is needed because subclasses belonging

to different classes were not tested, and it is possible that

they belong to the same class. The expression (3) is computed

for all matrices resulting from the split process, Mik , Mjr,

i, j = 1 . . .KL, i 6= j; k, r = {1, 2}. Using the same PFA,

those test values smaller than Λ indicate acceptance of H0,

i.e. they belong to the same class and should be merged.

The minimum of those values (corresponding to most similar

matrices) indicates that their respective classes have to be

merged: their pixels are relabeled with a unique value and a

new class center is calculated as the mean of the two involved

subclass centers. After this split and merge process, there are

KL+1 classes, with KL+1 ∈ [KL, 2KL]. In the next iteration

L+1, the process is repeated for KL+1 classes. It stops when

KM = KM+1 = K and there were no merged classes in the

M th iteration.
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This simple procedure allows to identify the class structure

of the dataset using the number of looks as the only required

information. The PFA acts as adjusting variable, setting the

sensibility of the process to differentiate classes.

C. Estimation

In order to estimate the vector parameter Θ of the mixture

model (2), the EM algorithm [13] is applied with K classes,

PK partition and class centers {M} as initialization. Avoiding

the details of the calculation, the lth EM iteration expressions

are:

Expectation step:

γ
(l)
ij =

ω
(l−1)
j fj(Zi, θ

(l−1)
j )

∑K
r=1 ω

(l−1)
r fr(Zi, θ

(l−1)
r )

(5)

Maximization step:

ω
(l)
j =

∑N
i=1 γ

(l)
ij

N
=

N
(l)
j

N
(6)

C
(l)
j =− νj

N∑

i=1

γ
(l)
ij

Zi

nTr(C
(l)
j

−1
Zi) + γj

(7)

L =N
(l)
j log(Γ(nd− αj)) (8)

−N
(l)
j log(Γ(−αj))−N

(l)
j αj log(γj)

+
N∑

i=1

γ
(l)
ij (αj − nd) log(n(Tr(C−1

j Zi)) + γj)

where νj = (nd−αj)/N
(l)
j , N

(l)
j =

∑
i γij and N is the total

number of pixels.

The parameter γ
(l)
ij in Eq. (5) computes the posterior prob-

ability of the i data point belonging to the jth class, at the

lth iteration. Eq. (7) computes the covariance matrices of each

class. L is an expression to be maximized with respect to

αj and γj . Because Eqs. (7) and (8) are not independent, the

Expectation Conditional Maximization (ECM) method is used

[14] that consists of maximizing each variable conditioned

to the others, i.e constraining the parameters space in each

maximization where the collection of all constrains is such that

the maximization is over the full parameter space. Therefore,

first (7) is solved with fixed αj and γj , and then L is maxi-

mized with the obtained Cj . Both procedures are performed

numerically for every iteration of the EM algorithm.

The solution for the expression (7) requires deeper explana-

tion. It is a trascendental equation with no analytical solution.

To solve it, the principle derived in [15] is used. C
(l)
j is found

recursively as:

C
(t+1)
j = −νj

N∑

i=1

γ
(l)
ij

Zi

nTr(C−1
j

(t)
Zi) + γj

(9)

initializing with the covariance matrix computed in the previ-

ous EM iteration: Cj
(t=0) = Cj

(l−1). Although the conver-

gence of the proposed recursion is not demonstrated in this

work, it was extensively tested and in all the cases converged

to the correct value. The computation stops when

ǫ =
‖C(t+1)

j −C
(t)
j ‖F

‖C(t)
j ‖F

(10)

becomes smaller than a predefined value. ‖ · ‖F represents

the Frobenius norm. When convergence is reached C
(t)
j ≈

C
(t+1)
j = C

(l)
j .

After the EM algorithm achieves the convergence, the vector

estimate Θ̂ that fully describes the mixture model (2) is

known. Because the complete estimation process comprises

two nested iterative algorithms (EM and covariance estima-

tion), it can take too long if the whole dataset is used.

Therefore a representative subset of data can be used to

speed up the estimation. The algorithm was tested with data

subsets formed by randomly sampling the original data up to a

factor of 0.6 (60% of the original dataset) with no appreciable

degradation in the estimation results.

D. Classification

In this stage a MAP classification is performed. Once the

estimation stage is completed, all the classes in the mixture

are identified by the estimated parameters. Every original

data point Zi is then assigned to the class with the greatest

likelihood, providing a labeled image that represents the

classification result:

Cj ← Zi , j = argmax
j

fj(Zi, θj), ∀i, j.

E. Smoothing

After MAP classification, the labeled image may appear

noisy, with groups of pixels with different labels to their

surrounding neighbors labels. This effect is a known issue of

MLE based algorithms, when no pixel neighborhood informa-

tion is used in the estimation process. Hence, a nonlinear 3×3
window size mode filter is applied to the labeled data in order

to model spatial correlation, thus improving visualization of

the results.

IV. PERFORMANCE WITH SIMULATED DATA

In order to evaluate the performance of the algorithm, a

Montecarlo analysis was performed. Several SAR images were

simulated with four classes using the mixture model (2). Each

class is described with a G0p density and every one of them

contributes to the mixture equally (ωj = 1/4, j = 1 . . . 4).

Every class realization was generated according to the

procedure suggested in [5] using the multiplicative model

described in Section II with the covariance matrices

Cj = Toepl([1 ρj ρ2j ]), where ρ1 = 0.8003+ j0.1419 (cyan),

ρ2 = 0.4715− j0.1927 (red), ρ3 = 0.1576− j0.9706 (yellow)

and ρ4 = −0.4404 − j0.1645 (blue). This values were

proposed in [16] to generate polarimetric SAR matrices. The

expression Toepl([a b c]) indicates the Hermitian Toeplitz

matrix with first column [a b c]. In every Montecarlo

configuration a four classes SAR image was simulated with

covariances Cj , and α and n taken from the lists α =
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{−1.5,−2,−2.5,−3,−3.5,−4,−4.5,−5,−5.5,−6,−10},
n = {5, 7, 9, 15, 25}. Fifty datasets were generated for each

configuration, giving a total of 2750 Montecarlo runs. Fig.

1(a) shows the span image of a Montecarlo realization. Each

zone consisting of 100× 100 pixels is assigned to a class of

the simulated mixture model.

(a) (b) (c)

Figure 1. (a): Span image of one Montecarlo realization (simulated terrain).
(b): Histogram of the detected number of classes on 2750 runs. (c): Classifi-
cation result example for simulated data.

The proposed algorithm was applied to every Montecarlo

realization. Two different aspects of the algorithm were tested:

its ability to identify the correct number of classes and the

accuracy of the classification. The former was evaluated by

counting the resulting classifications which identified four

classes. In order to evaluate the accuracy, the confusion

matrix and the associated kappa index [17] were computed

for each classification in which 4 classes were identified. The

average of the kappa values is a measure of the accuracy

of the algorithm. Fig. 1(b) shows the Montecarlo results for

the identified number of classes, showing low dispersion

around the correct value and Fig. 1(c) shows a representative

classification (resulting from a single Montecarlo realization).

The performance indices of the complete Montecarlo analysis

results in an average overall accuracy of 0.9967 and an

average kappa index of 0.9958, showing an excellent level

of agreement with the simulated terrain.

V. PERFORMANCE WITH REAL DATA

In the present section the proposed algorithm is tested with

real SAR MLC data, corresponding to an AIRSAR 450× 500
pixels image of the San Francisco area2. Fig.2 shows the scene

in RGB false color and the defined control zones, identifying

the different classes in the image: sea, vegetation, urban and

coast. The first three classes are visually distinguishable, while

the coast class is hidden, but it has been identified in previous

works [10]. These zones are used as ground truth to evaluate

the performance using the confusion matrix.

In order to test the consistency and accuracy, the proposed

algorithm was applied 40 times to the real dataset, with

PFA=0.05 and n=3.43. The confusion matrix and related

indices were computed for every classification result and the

averaged overall accuracy and kappa values were computed

to measure the performance.

In addition, three different algorithms were implemented

and tested with the same real dataset to compare the perfor-

mances: the classic Wishart classifier (WC) [2] with random

2Available in https://earth.esa.int/web/polsarpro/airborne-data-sources
3This value was previously estimated in [6] using the same dataset.

initialization, the recently developed Spectral Clustering al-

gorithm (SC) described in [18] and the Horta’s classification

algorithm (HC) with percentile initialization [5]. Since these

algorithms can not determine the number of classes, the correct

number of four classes was informed to them. In the case of

the SC algorithm, it requieres a number of superpixels (Nsp) to

perform the initial image segmentation and a width parameter

(σ) to define the kernel function. These parameters were tuned

to obtain the best classifications results for the dataset under

study, which result in Nsp = 500 and σ = 7.

Figure 2. San Francisco image [R= hh, G= hv, B= vv]. Control zones: blue:
sea, red: urban, green: vegetation, white: coast.

(a) (b)

(c) (d)

Figure 3. Classification results: (a) Wishart Classifier (WC). (b) Spectral
Clustering (SC). (c) Horta’s algorithm (HC). (d) Proposed algorithm.

The representative labeled images are shown in Fig. 3

for each algorithm. It can be observed that both WC and

SC algorithms oversized the “coast” class, while the latter

identifies the “urban” class more densely than the other

algorithms. The resulting images from the proposed and HC

algorithms are very similar because they are based on the same

data model. However, the proposed algorithm identifies the

“coast” and “urban” classes better than HC. Table I shows the

performance average indices of the 40 classifications4. The

proposed approach follows closely the performance of the SC

algorithm; however, it must be remarked that SC requires fine

tuning in order to reach acceptable results. In addition, the

small difference is largely compensated with the much lower

computational cost, which is three times smaller in terms of

processing time. The WC and HC algorithms present even

4In the case of the SC algorithm, only the best classification was considered
because that algorithm does not have any random stage. The classification
result is completely determined once Nsp , σ and the input data are set.
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smaller processing times, but their performance parameters are

significantly worse. The experiments were made on a desktop

PC with the following characteristics: O.S. Windows 7, CPU

Intel Core i3 3.1GHz, RAM 8GB.

Table I
PERFORMANCE FOR REAL DATA

Algorithm

WC SC HC Proposed
accuracy 0.8426 0.8761 0.8292 0.8639

kappa 0.7597 0.8086 0.7382 0.7933
CPU time [sec] 336 9310 817 3091

VI. CONCLUSION

An unsupervised algorithm for polarimetric SAR data clas-

sification based on the G0p model was developed. The top-down

approach of the Split-and-Merge stage provides the number of

classes and a suitable initialization to the EM algorithm. Since

it starts with a unique class for the whole image, it makes

the classification insensitive to the initialization. In addition

to the classification results, the proposed algorithm provides

the MLE estimates of the mixture unlike the moments based

estimates provided by [5] and [6], at the cost of a more

computationally expensive M step.
The proposed algorithm was applied to simulated and real

data. In the former case the Montecarlo analysis showed low

dispersion in the identified number of classes, which validates

the Split-and-Merge stage, and very accurate results in terms of

average overall accuracy and kappa indices, which validates

the Estimation and Classification stages. In the case of real

data, the algorithm showed high consistency by identifying

the reference zones in all the cases, with high accuracy in

the classification results, comparable to those obtained by

supervised state-of-the-art algorithms [19], [20].
Three additional classification algorithms were implemented

for comparison purposes: the classic Wishart algorithm,

Horta’s algorithm, which uses the same data model, and a

recently developed spectral clustering algorithm. The proposed

algorithm showed a better performance considering the kappa

index and processing time. In addition, unlike the competitors,

it can determine the number of classes in a dataset without

previous information.
The proposed algorithm has only the PFA as adjusting

parameter, which set its sensitivity in the classes identification

process. This is an additional advantage over the spectral

clustering algorithm where Nsp and σ have to be set. Fur-

thermore, the performance of the SP algorithm probed to be

very sensitive to the kernel width σ, which has to be manually

tuned for every new dataset.
The MATLAB code along with the required datasets to re-

produce the results can be found at http://www.ieeexplore.org.
Future work will be centered in improving the Split-and-

Merge stage. The Wishart classifier used to estimate the

covariance matrices could be replaced by other less expensive

methods. In addition, although it did not represent an issue in

the present work, convergence of Eq. (7) has to be studied. A

suitable alternative is to adapt the problem to fit the hypothesis

of the work presented in [16] where convergence has been

proved.
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