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Centennial of X-ray diffraction: development of an unpromising
experiment with a wrong explanation
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In February 1912 in Munich, P. P Ewald, one of A. Sommerfeld’s Ph.D. students, consulted
M. Laue on matters related to crystal optics, his thesis subject. During the conversation, Laue
conceived the idea that a crystal might act as a three-dimensional diffraction grating to the
X-rays. Despite the idea having met with scepticism among his colleagues, Laue succeeded in
getting the help of two of W. C. Roentgen’s doctorands: F. Friedrich, Sommerfeld’s laboratory
assistant, and P. Knipping: to undertake the, by now, legendary experiments that originated
a new branch of Physics. The results solved two fundamental questions of the time: namely
are the X-rays electromagnetic radiation (light) of very short wavelength? And also, do the
crystals have spatial periodic arrangements? The affirmative answer to both questions was
immediately followed in 1913 by the instrumentation and re-interpretation of the phenomenon
through the pioneering work by W. H. Bragg and his son W. L. Bragg, who paved the way to
the portentous development of structural crystallography by X-ray diffraction that took place
during the last hundred years.
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1. Historical background

The turn of the nineteenth century was prolific in Physics discoveries and advances. At that
time, among the several problems that attracted the scientist’s interest, there was the answer to
two (by then, uncorrelated) fundamental questions. An old one, namely are the crystals spa-
tially periodic arrangements of matter? The other, a new one: are the recently discovered X-rays
(W. C. Roentgen, 1895), particles?, as shown by the photoelectric effect produced by the rays;
or electromagnetic (EM, light) waves?, as shown by the electrodynamics of its generation (G. G.
Stokes, A. M. Liénard, E. Wiechert, independently in 1896), the polarization effects discovered
by Barkla in 1906,[1] and the possible presence of diffraction effects from irradiated wedge-
shaped pointed slits in the early experiments by Haga and Wind,[2] followed by experiments
by Walter and Pohl,[3,4] whose more precise data were measured photometrically by Koch.[5]
Sommerfeld applied the diffraction theory to explain these data, obtaining a rough estimate for
the mean wavelength: λ = 0.4 Å (0.04 nm).[6]

The notion that crystals consist of ‘similar molecules similarly situated’ goes back to the sev-
enteenth century, well ahead of a detailed experimental verification. This picture, which Haüy
(French mineralogist, 1743–1822) had elaborated at the end of the eighteenth century, was able
to explain many empirical regularities of macroscopic crystals.[7,8] A lattice arrangement of
point centres of force had been introduced by Seeber in 1824 [9,10] and had been assumed by
A. L. Cauchy ca. 1830 in laying the foundations of elasticity theory. The mathematical the-
ory of crystal lattices and their possible space groups was developed by J. F. C. Hessel (1830),
M. L. Frankenheim (1835), and A. Bravais (1850); then extended by L. Sohncke in the 1870s
and 1880s, and finally completed by A. M. Schoenflies, W. Barlow, and E. Fedorov ca. 1890
with the compilation of the full list of the 230 space groups in which a crystal lattice can
be arranged in three dimensions.[11,12] This mathematical development can be summarized
as follows: The constituting atoms of stable crystals can be arranged in fourteen Bravais lat-
tices, distributed in seven crystal systems according to the symmetry of a total of 230 space
groups.

In the 1900s, Germany was a world centre for the development of Physics and, particularly,
Munich, gathered in three different laboratories not far from one another, a singular conjunction
of capabilities well suited to answer the above two key questions, hence giving rise to a new
branch of Science. In fact, the discoverer of X-rays, Wilhelm C. Roentgen, directed (from 1900)
the Institute for Experimental Physics; Sommerfeld, who was researching on the nature of X-rays
and their excitation by the stopping of cathode rays (electrons), was the Head of the Institute for
Theoretical Physics, with Laue (a former Max Planck’s disciple) as a staff member (from the
fall 1909) specially interested in Optics, particularly diffraction Physics; and Paul H. Groth, the
world’s most famous authority on (pre-diffraction) crystallography was Director of the Institute
for Mineralogy and Crystallography.
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Crystallography Reviews 3

2. The seed

Towards the end of the summer semester of 1910, Ewald, a student of Sommerfeld, approached
the Professor to ask for his supervision in a doctoral thesis. Sommerfeld presented to Ewald a
list of some 10 or 12 topics to choose. Ewald picked up the last subject of the list, dealing with
the theoretical derivation of the ‘optical properties of an anisotropic arrangement of isotropic
resonators’. Sommerfeld had this problem last on his list because he had no definite idea on how
to deal with it.[13]

3. The inspiration

Ewald had finished his calculations and was writing his thesis during the Christmas recess 1911
and in January 1912. To discuss some rather radical departures of his results from the traditional
theory, Ewald sought the opinion of Laue, because of his strong knowledge of fundamental
physical issues.[13] Previously, Laue had been commissioned by Sommerfeld (in 1911) to write
a chapter on wave-optics in the Volume 5 of Encyclopaedia of Mathematical Sciences and was
familiar with light diffraction by optical gratings.

In February 1912, Ewald met Laue to explain his work on optical waves in crystals. Laue
could not help with the specific problem Ewald posed to him but rather asked: ‘what is the
distance between the resonators?’ To this Ewald answered that it was very small compared to
the wavelength of visible light, perhaps l/500 or l/1000 of the wavelength. In the course of the
discussion, Laue asked what would happen if, instead of visible light, there were EM waves of
very short wavelength propagating through the lattice? Ewald replied that this particular case
could be dealt with within the framework of his theory, by just introducing an appropriate value
of λ in the equations. In a momentous inspiration, Laue conceived the idea that a crystal lattice
could serve as an almost perfect three-dimensional diffraction grating for light with an extremely
short wavelength, namely X-rays!

4. The experimental proof

Like a seed in a fertile ground, Laue’s idea had developed in the right place and at the right
time. However, Laue’s proposal to test experimentally his idea by bombarding a single-crystal
with X-rays and look for diffraction maxima met with scepticism among many of his colleagues,
including Sommerfeld and WilhelmWien themselves. The origin of this disbelief was in part due
to a gross overestimation (by an order of magnitude) of the random displacement due to thermal
motion of the atoms around their equilibrium positions in the crystal lattice. The faulty calcula-
tion amounted to a value of 0.75 Å for the atomic oscillation amplitude, close to the estimated
values for X-ray wavelengths (Sommerfeld’s λ = 0.4 Å; Wien’s λ = 0.7 Å) and therefore large
enough to destroy the degree of periodicity required for observing X-ray interference effects.[13]
Despite the pessimism of his peers, Laue continued to discuss his idea and to seek for experi-
mental help, even in the informal researchers’ gathering at the Café Lutz where prevailed the
opinion that experiments were more reliable than theory and that, since the diffraction experi-
ment required no elaborate set-up, it should be tried. Friedrich, a former Roentgen’s doctorate
and now a Sommerfeld’s assistant (in charge of experiments on the generation of X-rays by
stoppage of accelerated electrons in vacuum tubes) offered himself to do the work. After some
initial opposition of Sommerfeld to divert the time of his assistant from his specific duty to an
improbable experiment; and the joining to the team of Paul Knipping (who had just finished his
thesis work at Roentgen’s Institute and was nicknamed ‘the watchmaker’ because of his experi-
mental skills), Friedrich and Knipping started by Easter 1912 their ground-breaking and, by now,
legendary experiments.
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4 O.E. Piro

Figure 1. Experimental set-up employed by Friedrich and Knipping in their X-ray measurements. The
source of Roentgen’s radiation is separated from the crystal under investigation by a lead screen, S, pierced
at B1, and a series of ever-finer lead diaphragms B2 (in the lead chamber K), B3 and B4. Around the crys-
tal Kr photographic plates may be placed at various positions P1–5. The extension R is added to trap the
straightforwardly passing rays to avoid disturbing secondary rays due to the wall. For precision measure-
ments, there is a diaphragm Ab for the pinhole B1 in screen S. Figure adapted from Ref. [14] and reproduced
with permission of John Wiley & Sons.

An improved version of the original experimental set-up is shown in Figure 1. The
anticathode-crystal distance was about 35 cm. To avoid perturbing external effects, Friedrich
constructed a lead box containing the crystal and the photographic plate; and initially collimated
the X-ray beam by letting it pass through a 3 mm diameter hole drilled on the box side facing the
tube (10 mm thick). A single-crystal of triclinic copper sulphate hydrate (CuSO4.5H2O) found
in the laboratory was used as a target. It was positioned with no special orientation and fixed
with wax to a holder within the box. The photographic plate was placed between the X-ray tube
and the crystal on the assumption that the crystal would act like a reflection grating. The first
exposure gave a negative outcome. Then, Friedrich and Knipping concluded that better results
could be obtained by positioning the radiographic plate behind the crystal, as for a transmission
grating. To cover the detection at wide scattering angles, Knipping insisted in placing plates all
around the crystal.

The result of the second trial was positive. On the plate behind the crystal, surrounding the
image of the incident X-ray beam, there appeared rings of blurred spots (Figure 2). Despite
the picture fuzziness (in part due to the poorly collimated incident X-ray beam), it provided
an unequivocal proof that some new property of X-rays had been found which had escaped
all previous investigations (mainly dealing with transmission of the direct ray through mat-
ter), hence giving strong support to the correctness of Laue’s idea of diffraction of X-rays by
crystals.
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Crystallography Reviews 5

Figure 2. Friedrich and Knipping’s first successful X-ray diffraction photography of a copper sulphate
single crystal, obtained after an exposure of 30 min. Reproduced from Ref. [14] with permission of John
Wiley & Sons.

Laue learned the result at the Café Lutz and immediately went to the Institute to examine the
data. According to Laue’s recollections [15]:

I was plunged into deep thought as I walked home along Leopoldstrasse just after Friedrich showed
me this picture. Not far from my own apartment at Bismarckstrasse 22, just in front of the house
at Siegfriedstrasse 10, the idea for a mathematical explanation of the phenomenon came to me. Not
long before I had written an article for the Encyclopaedia of Mathematical Sciences where I had to
re-formulate Schwerd’s theory of diffraction by an optical grating (1835), so that it would be valid,
if iterated, also for a cross-grating. I needed only to write down the same condition a third time,
corresponding to the triple periodicity of the space lattice, in order to explain the new discovery. In
particular it was thus possible to relate the observed circular pattern of rays to the cones corresponding
to the three interference conditions. The decisive day, however, was the one a few weeks later when I
could test the theory with the help of another, clearer photograph.

Friedrich and Knipping pursued several experimental tests to make sure that the crystalline
nature of the sample was involved in producing the pattern. To this purpose, they pulverized
the crystal and kept the resulting powder in a little paper box while exposing it to X-rays. The
photograph showed the central spot formed by the primary beam and the rings of large spots
were absent. Only very small specks were seen in the region around the primary spot. They also
had convinced themselves that only the primary spot was formed when the sample was removed
altogether.

At this time, the three investigators themselves were wrongly convinced that the diffracted
rays would consist of characteristic radiation emitted by the crystal under the influence of the
incident X-ray beam. In fact, Friedrich and Knipping wrote in their paper:

a crystal had to be chosen containing a metal of considerable atomic weight, in order to obtain intense
and homogeneous secondary rays, as these seemed the most suitable ones for the experiment. Accord-
ing to Barkla, metals of atomic weight between 50 and 100 were to be taken into consideration. Since
initially we had no good crystal containing such metals, we used for the preliminary trials a fairly
well-developed copper sulphate crystal.

Copper has atomic weight equal to 63.5; zinc, its neighbour in the Periodic Table, has an
atomic weight of 65.4. It is therefore very likely that the above considerations prompted the
purchase of high-quality zinc-blende plates as soon as the first results were obtained. Before
these plates arrived, and during the period of construction of a more elaborate camera, diagrams
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6 O.E. Piro

were taken with cleavage plates of cubic zinc-blende (ZnS), rock salt (NaCl), and galena (PbS).
They confirmed the observations obtained with triclinic copper sulphate. The preliminary tests
had included shifting the crystal parallel to itself, showing that all parts of the crystal gave the
same pattern; fixing a second photographic plate behind the crystal at double the distance of the
first one, on which a picture of double the size was obtained, hence proving that there were really
secondary rays spreading out from the crystal; and finally, changing the orientation of the crystal
by a few degrees to find that the position of the spots is very sensitive to the orientation of the
crystal with respect to the incident X-rays. These last observations showed the convenience of
constructing an improved apparatus so that not only the direction and delimitation of the incident
ray, but also the orientation of the crystal, were accurately defined. The skilful Friedrich achieved
this by setting up the crystal on a precise goniometer and using a collimating system consisting
of a first hole of about 3 mm diameter in a 10 mm thick lead plate, followed at a distance of 70
mm by a much finer hole of 1.5 mm diameter, also drilled in 10 mm thick adjustable lead sheet.
The experimental conditions during the more elaborate measurements of Friedrich and Knipping
(cf. Figure 1) were as follows [14]:

Distance anticathode-crystal = 350 mm
Distance B3 − B4 = 70 mm (hole at B3 of 3 mm in diameter)
Distance hole at B4-crystal = 50 mm (hole at B4 of 1.5 mm)
Distance crystal-plates P1, P2, and P3 = 25 mm
Distance crystal-P4 = 35 mm
Distance crystal-P5 = 70 mm
Current in a moderately soft radiation tube = 2–10 mA
Exposition time = 1–20 h.

With the improved apparatus, the X-ray diffraction photographs were much better than the
previous ones. Figure 3 shows one of Friedrich and Knipping’s radiographic plates obtained
with an oriented zinc-blende single-crystal.

Figure 3. X-ray diffraction pattern of single crystal cubic zinc-blende obtained with the X-ray beam
incident along the fourfold axis. Reproduced from Ref. [14] with permission of John Wiley &
Sons.
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Crystallography Reviews 7

5. The publication of the discovery

Laue, Friedrich, and Knipping’s research was communicated to the Bavarian Academy of
Sciences at the meetings of 8 June and 6 July 1912 by Sommerfeld as Fellow of the
Academy. Roentgen seconded the acceptance and emphasized the relevance of the work. Two
papers were published in the Proceedings of the Academy, one of them entitled ‘Interferenz-
ErscheinungenbeiRöntgenstrahlen’ (‘Interference Phenomena with RoentgenRays’) by Friedrich
et al.;[14] and the other one entitled ‘Eine Quantitative Prufung der Theorie fur die Interferenzer
Scheinungen bei Röntgenstrahlen’ (‘A Quantitative Study of the Theory of Interference Phe-
nomena in X-rays’) by Laue.[16] Simultaneously with Sommerfeld’s presentation in Munich,
Laue himself reported on his discovery to his old group of Berlin physicists at the meet-
ing of the Berlin Physical Society of 8 June 1912. Laue then went to Wurzburg where he
gave a seminar to Wien’s Physics group. Erwin Madelung from Göttingen happened to be
present and obtained from Laue the loan of his seminar slides to show them to his col-
leagues in Göttingen. The first of the papers published in the Bavarian-Academy contains 8½
pages under Laue’s name, an introductory paragraph, and the theory of diffraction by a three-
dimensional lattice. The remaining 11 pages are signed by Friedrich and Knipping and describe
the preliminary and the final experimental results. Twelve Laue diagrams are reproduced by
heliogravure on five plates. In the second paper, Laue applies the formulae of the general the-
ory to a discussion of the ZnS diagram with X-rays incident along the crystal axis of fourfold
symmetry.

We shall now review Laue’s theoretical contribution employing modern mathematical nota-
tion. Laue considered a general triclinic crystal lattice of unit cell constants �aj (j = 1, 2, 3)
located at the origin of a coordinate system (Figure 4) of length Nj cells along each unit cell
vector �aj and having an atom of X-ray scattering amplitude f located at each lattice point, thus
summing up a total of N1 × N2 × N2 unit cells (or atoms).

The position �A(l) of the atomic scatterers is given by

�A(l) = l1�a1 + l2�a2 + l3�a3; 0 ≤ lj ≤ Nj − 1 (j = 1, 2, 3). (1)

If a monochromatic plane wave of X-rays with wave vector �k = 2πk, |k| = 1/λ : wave number
is incident on the crystal, then the amplitude (electric field) of the elastic scattered wave of wave

Figure 4. Diffraction from a tridimensional crystal lattice.
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8 O.E. Piro

number k′(|k′| = |k|)is given by

E = f (�k)
N1−1∑
l1=0

N2−1∑
l2=0

N3−1∑
l3=0

exp[i2π �k · �A(l)], with �k = k′ − k. (2)

On account of Equation (1), the triple summation can be expressed as

F =
N1−1∑
l1=0

exp[i2π l1(�k · �a1)] ×
N2−1∑
l2=0

exp[i2π l2(�k · �a2)] ×
N3−1∑
l3=0

exp[i2π l3(�k · �a3)], (3)

where each factor is a geometric series which can be readily summed up to give

Nj−1∑
lj=0

exp[i2π lj(�k · �aj)] =
1 − exp[i2πNj(�k · �aj)]

1 − exp[i2π (�k · �aj)]
,

and therefore

F =
3∏

j=1

exp[i2πNj(�k · �aj)] − 1

exp[i2π (�k · �aj)] − 1
=

3∏
j=1

exp[iπNj(�k(��k · �aj)]

exp[iπ (�k · �aj)]
×

[
sin πNj(�k · �aj)

sin π (�k · �aj)

]
, (4)

with corresponding diffraction intensity proportional to

I = f 2 sin2πN1(�k · �a1)

sin2π (�k · �a1)
× sin2πN2(�k · �a2)

sin2π (�k · �a2)
× sin2πN3(�k · �a3)

sin2π (�k · �a3)
. (5)

For diffraction maxima, all three denominators must vanish, namely

�k · a1 = h,

�k · �a2 = k,

�k · �a3 = l,

where h, k, l are integers.

(6)

As mentioned above, previously Laue had derived in Encyclopaedia of Mathematical Sciences
the diffraction intensity of optical cross (2D) gratings involving the first two of the above factors
in Equation (5) and the corresponding diffraction maxima given by the first two conditions in
Equation (6). Now it was an easy matter for him to generalize the results to 3D gratings and X-
ray light by adding the third factor in Equation (5) and the corresponding third maxima condition
to Equation (6). This was the mathematical explanation of the phenomenon that Laue imagined
on his way home after seeing the first photograph that Friedrich showed to him.

Laue’s results can be cast in a more compact and revealing form. By expressing the wave
vector change �k as a function of its departure from a neighbouring reciprocal lattice vector H ,
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Crystallography Reviews 9

namely K = �k − H ⇒ �k = K + H , there results:

sin2πNj(�k · �aj) = sin2(πNjH · �aj + πNjK · �aj) = sin2(πNjK · �aj)and also :

sin2π (�k · �aj) = sin2π (K · �aj),

and the triple product of Equation (5) now adopts the expression:

3∏
j=1

[
sin2πNjK · �aj

sin2πK · �aj

]
= fI(K) : Interference function, (7)

which for large N’s values adopts sharp maxima when K = 0, namely fI(K = 0) =
(N1 × N2 × N3)2 = N2, with N = total number of lattice unit cells.Thus, the condition for 3D
diffraction maxima is

�k = H : Laue condition, (8)

one of the shortest and most meaningful equations in Physics.
In the second paper,[16] Laue applies his formulae of the general theory to discuss the ZnS

diagram with X-rays incident along the crystal axis of fourfold symmetry (Figure 3). To describe
the conceptual difficulties that his discussion faced, we must point out the ones dealing with the
EM nature of the X-rays as was known at the time. In a vacuum tube, the X-rays are generated
when an electron accelerated to kinetic energies of tens of keV is suddenly stopped by impact
with an atom in the anticathode, hence emitting a short pulse of radiation whose width is of the
order of magnitude of the atomic dimension. Moving at the speed of light, this implies an EM
pulse duration of the order of 10−19 s. This view of X-rays as ‘bremsstrahlung’ has been put for-
ward soon after Roentgen’s discovery in 1895 and has been developed specially by Sommerfeld.
From the inverse relationship between time duration τ and frequency bandwidth δω of an EM
pulse, namely τ × δω ≈ 1 or in terms of energyτ × δE ≈ �, it turns out that the bremsstrahlung
bandwidth is tens of keV and consequently the EM pulse has a very broad wavelength band. In
addition, after 1907 the picture was complicated by the discovery that the bombarding electrons
can also excite the emission from the anticathode heavy atoms of one or more characteristic,
highly monochromatic, X-radiation (fluorescence). In fact, the time duration of this process is
about 10−15 s and therefore the characteristic radiation has an energy spread of only about 1 eV
and therefore a very sharp wavelength band (quasi-monochromatic radiation).

Laue’s interpretation of the photos was mainly hampered by

(i) A faulty extension from 1D and 2D diffraction gratings to what would be observed for
3D gratings. Laue believed that continuous (bremsstrahlung) radiation would not produce
diffraction peaks but blackened photographic plates. However, the X-ray diffraction by a
crystal is not a mere extension of an optical experiment from 2D to 3D gratings. In fact, an
ingenious geometrical construction called Ewald’s sphere,[17] involving the crystal ‘recipro-
cal lattice’, shows that a continuous and well-collimated X-ray beam scattered by a stationary
crystal would consist in discrete spots due to (in general) different wavelengths. When the
peaks were really observed, he found the interference maxima to be consistent with a set
of five discrete wavelengths, but misinterpreted them as due to fluorescent lines from the
crystal’s heavier atoms excited by the primary X-ray beam, despite the prevailing belief that
fluorescence emitted by crystal atoms is an incoherent process and therefore incapable of
producing interference phenomena.

(ii) His interpretation of the diffraction pattern for ZnS was additionally marred because he
wrongly assumed a simple cubic (sc) lattice when in fact zinc-blende crystallizes in a face-
centred cubic (fcc) lattice. This was made clear later by W. L. Bragg.

Max von Laue was honoured in 1914 with the Nobel Prize in Physics ‘for his discovery of the
diffraction of X-rays by crystals’.
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10 O.E. Piro

6. The Braggs

In 1912 William Henry Bragg was a Cavendish Professor of Physics at the University of Leeds,
to where he had moved in 1908 from Adelaide University, Australia. In Leeds he extended his
previous study on ionization in gases by α-rays to X-rays, using in the latter case the anode
characteristic radiation of vacuum tubes. He strongly favoured a corpuscular interpretation of
X-rays because of the observed atomic photo-ionization effects excited by these rays.

Bragg’s son, William Lawrence, was following in his father’s footsteps pursuing a career
in Physics. After an initial training in Physics and Mathematics in the University of Adelaide,
he completed his education at the Cavendish Laboratory of Cambridge under J. J. Thomson,
obtaining in 1911 his first appointment as lecturer at Trinity College.

News on Laue’s discovery, including reproductions of Friedrich and Knipping’s photographic
plates, reached England and, particularly, W. H. Bragg. He interested his son in the finding and
together they undertook an independent study of the subject, which started at Leeds during the
summer of 1912. They initially tried the possibility of explaining Laue’s patterns by some other
assumption than that of the diffraction of waves. In fact, W. L. Bragg made some unsuccessful
experiments to see if there was any evidence of ‘X-ray corpuscles’ moving along between rows
of atoms in crystals.[18]

Seeing that the efforts to explain Laue’s results in the framework of a corpuscular theory led
to nowhere, W. L. Bragg commented in a 1943 account:

On returning to Cambridge to ponder over Laue’s paper, however, I became convinced of the correct-
ness of his deduction that the effect was one of wave diffraction, but also convinced that his analysis
of the way it took place was not correct.

A clue as to the correct interpretation of the phenomenon was suggested by the following
W. L. Bragg’s observation on the shape of the diffraction spots on the radiographic plate
(Figure 5):

When the plate was placed at P1 near the crystal the spots were almost circular like C1, but when
placed farther back at P2 they became very elliptical (C2). Now Laue had ascribed his pattern to the
diffraction of certain specific wave-lengths in the X-ray beam by the regular pattern of the crystal.
Given a fixed wave-length, optical theory tells us that the diffraction must take place at a definite
angle, and this means that the diffracted rays drawn in the picture should all have been parallel. I had
heard J. J. Thomson lecture about Stokes’ theory of the X-rays as very short pulses of electromagnetic
radiation. I worked out that such pulses of no definite wave-length should not be diffracted only in
certain directions, but should be reflected at any angles of incidence by the sheets of atoms in the crystal
as if these sheets were mirrors. A glance at the geometry of the figure in which the rays are drawn as if
reflected, shows that they close together again vertically while continuing to spread horizontally, thus
explaining why the spots get more elliptical as the plate is placed farther away.

This observation led Bragg to interpret the X-ray diffraction pattern as due to the interference
of reflected rays from the atoms located on families of parallel crystal planes. These planes would
act towards X-rays similar to a parallel arrangement of equally spaced and semi-transparent
mirrors towards incident light in Optics. Thus, the condition for constructive interference of
reflected X-rays would be given by

2d sin ϑ = nλ : Bragg′s equation, where

d = separation between closest planes in the family,

ϑ = glancing angle of the incident beam,

λ = X − ray wavelength,

n = reflection order. (9)
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Crystallography Reviews 11

Figure 5. W. L. Bragg’s interpretation of the shape of the spots on a Laue diagram as due to reflecting
crystal planes. Reproduction of Figure 2 from Ref. [19]. Courtesy of Cambridge University Press.

Following a suggestion by Charles T. R. Wilson of trying a direct experiment of X-ray reflec-
tion from a crystal cleavage face, because such a face must be parallel to dense sheets of atoms,
W. L. Bragg performed the experiment with mica, where he directed an X-ray beam on the cleav-
age surface of a 1 mm-thick mica slip at a glancing angle of 10° to find, after a few minutes of
exposure, a well-marked reflected spot on a photographic plate located behind the slip. To further
test that the reflection law was obeyed, Bragg (i) changed the incident angle and the slip-to-plate
distance, (ii) bent the mica slip into an arc to observe that the reflected ray can be brought to a
line focus.[20]

It remained to explain why certain of these atomic mirrors in the zinc-blende crystal reflected more
powerfully than others, a difficulty which had led Laue to postulate a group of definite wave-lengths.
William J. Pope and William Barlow had a theory that the atoms in cubic compounds like ZnS were
packed together, not like balls at the corners of a stack of cubes, but in what is called cubic close-
packing, where the balls are also at the centres of the cube faces (fcc). I tried whether this would
explain the anomaly, and it did! It was clear that the arrangement of atoms in zinc-blende was of the
face-centred type. I was careful to call my paper on the structure of zinc-blende “The Diffraction of
Short Electromagnetic Waves by a Crystal” [19] because I was still unwilling to relinquish my father’s
view that the X-rays were particles; I thought they might possibly be particles accompanied by waves.

Though W. L. Bragg determined in this first work the correct Bravais lattice for ZnS (fcc), no
detailed structure, however, of the compound was proposed.

7. The first crystal structure determinations

W. J. Pope, who was Professor of Chemistry at Cambridge, suggested to W. L. Bragg to apply
his X-ray structural method to crystals of alkali halides, namely NaCl, KCl, KBr, and KI. It
turned out that their Laue pictures, though still complex, were however simpler than those of
zinc-blende and, after a laborious procedure, led Bragg to a complete solution of the structures.
These were the first crystals to be analysed by X-rays.[21]

8. The X-ray spectrometer

In order to examine the reflected beam in detail, W. H. Bragg built an X-ray spectrometer. In
this instrument, a crystal face can be set so as to reflect the X-rays at any angle, and the strength
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12 O.E. Piro

of the reflected beam can be measured by an ionization chamber. With this instrument, W. H.
Bragg made the next great discovery. In addition to the continuous (Bremsstralung) X-radiation
with a wide spread of wavelengths (which W. L. Bragg had called ‘X-ray pulses’), he found that
each metal used in the X-ray tube as source of radiation gave a characteristic X-ray spectrum of
definite wavelengths, just as elements give line spectra in the optical region.[22] With this work,
W. H. Bragg laid the foundations of X-ray spectroscopy. The X-ray spectrometer (Figure 6) also
proved to be a more powerful method of analysing crystal structure than the Laue photographs
which W. L. Bragg had used initially, and indeed which W. L. Bragg argued was needed for him
to be sure that his salt crystal structures from their X-ray Laue diagrams were certainly correct.

With this instrument, one could examine the various faces of a crystal in succession, and
by observing the angles at which, and the intensity with which, they reflected the X-rays,
one could deduce the way in which the atoms were arranged in the lattice. On the other
hand, a suitable crystal face could be used to determine the wavelengths of the characteristic
X-rays coming from different elements as sources. Thus, a monochromatic X-ray beam could be
selected by reflection from a crystal (monochromator). W. H. Bragg measured the wavelengths

Figure 6. X-ray spectrometer. P, cathode; Q, anti-cathode; A, B, adjustable slits; C, crystal sample; D,
slit; I, ionization chamber. Reproduction of Figure I from Ref. [22]. Courtesy of Nature.
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Crystallography Reviews 13

of the X-ray spectra given by the elements platinum, osmium, iridium, palladium, rhodium, cop-
per, and nickel. He identified them with Barkla’s K and L radiations. He calculated their energy
quanta according to Planck’s relationship, and showed that this agreed with the energy of the
cathode rays required to excite them. He showed that the shortest wavelengths (Kα and Kβ)
from various elements were similar, and that they were approximately inversely proportional to
the square of the atomic weight. This first result anticipated the subsequent generalization of the
principle by Henry G. J. Moseley, who used it to determine the atomic numbers. He also mea-
sured absorption edges, the critical wavelengths at which a sharp step in the absorption of X-rays
by an element takes place.[23]

9. First analysis of crystal structures with the X-ray spectrometer

We shall review here W. L. Bragg’s qualitative approach to the crystal structure determination
for the series of alkali halides, based on considerations of crystal lattice symmetry, the atomic
scattering strength (which he provisionally attributed to atomic weight A), the relative ‘reflec-
tivity’ of the crystal planes based on the distribution of atoms that lay on them, and employing
systematically his equation and a good deal of physical and chemical insight.[24] He showed
that the diffraction data provided support to the proposed crystal model of Figure 7, consisting in
two interpenetrating cubic fcc lattices, one of alkaline ions, the other with halide ions, relatively
displaced to each other along a cell axis of half its length.

Bragg considered reflections in planes of atoms parallel to the three primary crystal
planes (100), (110), and (111). For a simple cubic Bravais lattice (sc), the distances between
neighbouring planes in each family are in the ratio 1 : 1/

√
2: 1/

√
3 but no X-ray data of such

a lattice were available at the time. However, Bragg noticed that this sc lattice (with half the
cell constant of Figure 7) could be mimicked by potassium chloride (sylvine) because the X-
rays will see almost identical scatterers as potassium and chloride are close to each other in the
Periodic Table. In fact, he observed no diffracted intensity for the (111) reflection. He then

Figure 7. Rock-salt structure of alkali halides. Black disks indicate alkali (halide) ions and the open ones
the halide (alkali) counter-ions. AB = a: cubic cell constant. Reproduction of part A of Figure 1 from Ref.
[24]. Courtesy of the Royal Society.
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14 O.E. Piro

measured reflection intensities from the (100) family of NaCl-containing planes, namely ABFE,
dbfh, etc. in Figure 7, the (110) family of also NaCl-containing planes, namely BDHF, adhe,
etc., and from the (111) family of intercalated Na-containing and Cl-containing planes, namely
BDE (Na), adl (Cl), etc. The repetitive distance between planes in these families is in the
ratios1 : 1/

√
2: 2/

√
3. He was then in possession of experimental X-ray diffraction data to vali-

date the proposed cubic fcc Bravais lattice for the alkali halides series of salts. In fact, he could
interpret the null (111) intensity in KCl as due to almost perfect cancellation effects of X-ray
reflections from neighbouring BDE (K) and adl (Cl) planes in the lattice. Furthermore, the same
consideration led him to interpret the weak intensity observed for the (111) line in NaCl, as
now the reflection from the above planes, though in phase opposition, have different amplitudes
because of the difference in scattering power of Na and Cl ions, hence leading to partial cancella-
tion of the reflected waves. Similarly, Bragg interpreted the diffraction pattern of KBr and KI as
mainly due to a single fcc of halide ions as these have an atomic scattering power much greater
that their alkali counterpart.

Bragg was initially motivated in determining the X-ray wavelength from the diffraction pattern
of the alkali halides. To this purpose, from his equation

2d(hkl) sin ϑ(hkl) = λ, where

d(hkl) =
a

(h2 + k2 + l2)1/2 ,
(10)

and from the measured values of the diffraction angles ϑ(hkl) for the reflections in the above
three families of planes, he found the values of the λ-independent ratios

a3

λ3
=

V

λ3
, where V : unit cell volume.

Bragg then calculated the cell volume V in an alternative way, based on the cubic fcc Bravais
lattice he found for the alkali halides (which implies a number Z = 4 of molecules per unit cell),
the molecular weight (MW), Avogadro’s number (NA), and the experimental density ρ of the
solids, through:

ρ =
Z × MW

V × NA
. (11)

Bragg applied his procedure to the NaCl data to obtain a = 5.6 Å, and from Equation (10) the
X-ray wavelength value λ = 1.1 Å, corresponding to the characteristic Lβ emission line of the
platinum anticathode of the X-ray tube he was using. This is an important result: (i) for the first
time, a reliable absolute measure of X-ray wavelengths was possible, hence affording the quanti-
tative determination of the geometry and metric of any crystal and their mutual comparison and
(ii) the employment of monochromatic X-radiation (the one provided by the sharp characteristic
lines of the anticathode element) affords a great simplification in the interpretation of diffraction
patterns, as opposed to the cumbersome multi-wave Laue’s method.

10. Crystal structure determination of diamond

W. H. Bragg was far more interested in the spectroscopy of X-rays than in crystals and most struc-
ture determinations were carried out by his son, with the only exception of a co-authored paper
on diamond which showed the capability of the instrument he had devised.[25] In this work,
the Braggs used an X-ray tube with an anticathode of rhodium because this metal gives a very
strong and relatively monochromatic radiation consisting in one main characteristic radiation
(RhKα) of λ = 0.607 Å, and a much less intense monochromatic beam of λ = 0.533 Å (RhKβ)
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Crystallography Reviews 15

Figure 8. Spectrum of rhodium X-ray radiation, analysed through rock-salt 200 reflection. The r2 and R2
lines correspond to the 400 reflection of the characteristic Kβ and Kα lines. Adapted from Figure 1 of Ref.
[25]. Courtesy of the Royal Society.

Figure 9. Diffraction spectra of rhodium X-rays reflecting from diamond (111) planes. Adapted from
Figure 2 of Ref. [25]. Courtesy of the Royal Society.

and relatively little continuous radiation, as measured by the 200 reflection in an NaCl single-
crystal acting as a monochromator (Figure 8). This is a very convenient feature to use with the
‘reflection (or Bragg’s) method’, which employs monochromatic radiation and to collect diffrac-
tion data with an ionization chamber. The other method is the original one called ‘Laue method’
that employs continuous radiation and the X-ray data are collected on photographic films.

Let us describe the essential steps of the procedure followed by the Braggs to unravel the
crystal structure of diamond.

(1) They first measured the reflecting ϑ(hhh) angles from the first 111 to the fifth 555 reflec-
tion order from the natural cleavage (111) surface of a diamond employing rhodium X-radiation
(Figure 9).

(2) From Bragg’s Equation (9)

2d(hhh) sin ϑ(hhh) = 2[d(111)/h] sin ϑ(hhh) = λ, where d(111) = a/
√

3,

they determined the common value of

sin ϑ(hhh)

h
=

λ

2 d(111)
, where h = 1, 3, 4, 5

to be 0.1495, and from λ = 0.607 Å the value of the inter-planar distance d(111) = 2.03 Å.
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16 O.E. Piro

(3) Then, they assumed that diamond has a cubic fcc Bravais lattice (Figure 10), which hosts
four lattice points per cell, and considered the distance between the members of the (100), (110),
and (111) families of planes and their relative reflectivity:

(i) The planes of atoms parallel to (100), as ABFE, RMQL, etc., are equally spaced in a/2 and
contain equal numbers of scatterers.

(ii) The planes of atoms parallel to (110), such as BDHF, are regularly spaced at a distance
a/2

√
2and also contain the same number of scatterers.

(iii) The (111) planes, as EDB, HFC, are regularly spaced at a distance a/
√

3and again are all
equivalent to each other.

In what the Braggs called the ‘normal case’, any one of these sets of planes gives a series of
diffraction spectra which diminish rapidly in intensity as we go from lower to higher orders. The
relative diffraction line positions and qualitative intensities are shown in Figure 11. The Braggs
considered the spectrum of (111) planes as a distinctive peculiarity of fcc lattices. In fact, if the
effective centres were at the corners of an sc lattice of cell length a, then the spacing would be

Figure 10. Cubic face-centred (fcc) Bravais lattice. Reproduction of Figure 3 from Ref. [25]. Courtesy of
the Royal Society.

Figure 11. X-ray diffraction spectra of a cubic face-centred lattice. Reproduction of Figure 4 from Ref.
[25]. Courtesy of the Royal Society.
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Crystallography Reviews 17

Figure 12. X-ray diffraction spectra of diamond. Reproduction of Figure 9 from Ref. [25]. Courtesy of
the Royal Society.

a, a/
√

2, and a/
√

3, and the three sets of spectra would occur at sin ϑhkl values proportional
to the sequence (for the first three orders):

1, 2, 3;
√

2, 2
√

2, 3
√

2;
√

3, 2
√

3, 3
√

3, with the last set at variance with an fcc lattice,
where the sin ϑhkl ratios for (111) planes are in the sequence

√
3/2,

√
3, 3

√
3/2.

(4) Now, they compared the fcc spectra of Figure 11 with individual cases to reveal their
particular structures. For example, the peculiar NaCl (111) diffraction line can be described by
the fact that the first-order spectrum is weak and the second-order strong. The interpretation is
that the Na and Cl fcc sub-lattices are shifted from each other along the a-axis by half its length:
the first-order 111 line tends to disappear and the second-order 222 to increase in importance.
In the case of KCl, the K and Cl atoms scatter almost equally and then the 111 line disappears
completely. In zinc-blende (ZnS) or iron pyrite (FeS2), one kind of atom (the metal) is a much
stronger scatterer than the other and therefore their spectra resemble the ones characteristic of
mono-atomic fcc lattices.

(5) In the diamond case, the reflection orders on the (111) plane are shown in Figure 12. The
Braggs first determined the number of carbon atoms per unit cell (Z) from their experimental
value of the cell constant a =

√
3 d111 =

√
3 × 2.03 Å = 3.55 Å, and the observed density ρ of

diamond (ρ = 3.51 g cm−3) through Equation (11):

Z =
ρVNA

MW
=

ρa3NA

MW
, where

MW = 12; NA = 6.023 × 1023,

to obtain Z ≈ 8 C-atoms per unit cell. The authors next locate an fcc sub-lattice with four C-
atoms and noticed that the absence of the second-order reflection 222 implies that there must
be another equivalent set of planes of atoms parallel to (111) planes that exactly bisect them. In
fact, if successive reflections from neighbouring (111) planes are delayed in λ from each other
and interfere constructively, then the successive reflections in (222) planes would lag in λ/2 and
therefore interfere destructively.

Taking into account all the information, the Braggs made the simplest assumption fulfilling all
data of locating the remaining four C-atoms on an fcc Bravais lattice shifted from the previous
fcc lattice along the cube diagonal by ¼ of its length (Figure 13).

From the revealed diamond crystal structure, it turned out that each carbon is bonded to other
4 C-atoms in a perfect tetrahedral coordination with a bond length of d(C − C) =

√
3 a/2 =

1.522 Å, a result that constitutes the first direct experimental determination of a single C–C
bond distance of tetravalent sp3 carbon.
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18 O.E. Piro

Figure 13. Unit cell content of diamond. The structure consists of two similar fcc lattices of C-atoms
displaced from each other by a (¼, ¼, ¼) translation along the cube diagonal. Drawn with ORTEP.[26]

The authors next compared the X-ray diffraction spectra of diamond with the one of zinc-
blende to find that ZnS is built up in exactly the same way, except that the planes of atoms
parallel to (111) now contain alternately either zinc or sulphur atoms only. This is evidenced
by the reappearance of 200 and 222 lines in ZnS, which were absent in diamond as now the
neighbouring (200) and (222) planes are interspaced by planes having different atomic species,
namely Zn–S–Zn–S– and then the perfect destructive interference effect in diamond between
C-containing planes is replaced by partial destructive interference due to Zn-containing and S-
containing neighbouring planes in zinc-blende.

11. Exhaustion of early W. L. Bragg’s method of ‘trial and error’

By using single-crystal measurements with W. H. Bragg’s X-ray spectrometer, many of the
measurements also due to W. H. Bragg, W. L. Bragg was able to solve the crystal struc-
tures of zinc-blende (ZnS), fluorspar (CaF2), cuprite (Cu2O), iron pyrite (FeS2), sodium nitrate
(NaNO3), and the calcite (CaCO3) group of minerals.[24] ZnS and CaF2 are the simplest because
(as in the case of the alkali halides) the atoms occupy special positions in the crystal; FeS2

and CaCO3 are more difficult as the S and the carbonate ion are not fixed by symmetry and
therefore to find their positions required a study more complicated (involving one or more
adjustable structural parameters) than the ones the Braggs had carried on until then. As this
work signals the limitations of the early W. L. Bragg’s procedure of ‘trial and error’, let us
review his determination of the iron pyrite structure, having only a single adjustable structural
parameter.

(1) Bragg used X-ray radiation from a palladium anode, which produces little continuous radia-
tion and a large proportion of its spectral energy is concentrated in two lines (Kα and Kβ),
one (Kα) of wavelength λ = 0.576 Å, much stronger than the other one (Kβ).

(2) Bragg measured the intensity for different angles with the ionization chamber. At all angles,
there was a general (due to continuum X-rays) reflection. Then, he selected the ϑ-angles that
satisfied the condition 2d sin ϑ = nλ, with λ = 0.576 Å and observed a strong special (due
to the intense CdKα line) reflection superposed on the general continuum. By subtracting
the extrapolated intensity at neighbouring angles, he obtained the intensity of this special
(monochromatic) reflection (Bragg had previously used rhodium rays which has a spectrum
almost identical with that of palladium; Figure 8).

(3) Bragg selected the first few orders of reflection on the same three primary planes as above,
namely (100), (110), and (111) and measured the angular positions and intensities of the
reflected beams from NaCl, CaF2, ZnS, and FeS2 (Table 1) for comparison purposes.
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Crystallography Reviews 19

Table 1. The angles give the setting of the ionization chamber and are twice the ϑ glancing angle.

Rock salt, Pd rays
(100) 100 11.7° 30 23.8° 7 36.2°
(110) 100 16.5° 24 34.0° 7 52.0°
(111) 20 10.2° 100 20.6° 0 – 6 42.5°

Fluor spar, Pd rays
(100) 0 – 100 24.5° 0 – 13 50.5°
(110) 100 17.4° 16 35.4° 6 51.5°
(111) 100 10.7° 0 21.5° 10 32.5° 9 43.7° 3 53.5°

Zinc blende, Rh rays
(100) 40 12.8° 100 25.9° 0
(110) 100 18.2° 25 37.2° 7 57.5°
(111) 100 11.4° 5 23.0° 8 34.7°

Pyrites, Rh rays
(100) 100 13.0° 0 26.2° 0 39.6° 14 53.8° 4 69.0°
(110) 100 18.1° 50 37.2° 0 – 0
(111) 80 11.4° 100 22.6° 50 34.2° 0 – 22 58.8°

Notes: The numbers are proportional to the intensities of the spectra. Reproduction of Table I from Ref. [24]. Courtesy
of the Royal Society.

(4) Having determined that FeS2 has a cubic fcc Bravais lattice with the Fe atoms at the
cell corners and face centres, a first consideration suggested was for the sulphur atoms
to take positions in the cell similar to the fluorine atoms in the highly symmetric struc-
ture of fluorspar (CaF2), which Bragg had solved previously. Here, the Ca-atoms are also
at the cubic fcc lattice points and twice as many fluorine atoms are at geometric cen-
tres of the eight sub-cubes into which can be divided the basic cubic unit cell (Figure 7).
One thus could expect the X-ray diffraction spectrum of FeS2 to resemble that of CaF2.
As can be readily appreciated from Table 1, this is not the case and Bragg modelled the
structure of FeS2 by shifting the S-position from the sub-cubes body centres and along
the cube diagonal to explain the observed X-ray spectra. This implies the introduction of
a single variable parameter, namely the magnitude of the shift, to be determined from the
X-ray data. To this purpose, Bragg followed the laborious procedure that is condensed in
Figure 14.

To roughly estimate the diffraction intensities to be compared with the observed ones reported
in Table 1, Bragg

(i) assumed that one could apply to X-ray reflections from atomic crystal layers the analogous
results on interfering reflections from multiple-layers in Optics;

(ii) assumed as a ‘general law’ that ‘the diffracting power of an atom is proportional to the
atomic weight’. In reality, it is roughly proportional to the atomic number Z (Z ≈ A/2);

(iii) identified the measured X-ray intensities as being proportional to the square of the resulting
amplitudes;

(iv) from empirical observations, assumed that the ‘normal’ spectra reflected from a simple
series of identical (111) planes have intensities in the ratio 1, 0.2, 0.07, 0.03, and 0.01 for
the first to fifth reflection orders.

W. H. Bragg and W. L. Bragg were jointly honoured in 1915 with the Nobel Prize in Physics
‘for their services in the analysis of crystal structure by means of X-rays’.
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20 O.E. Piro

A

B

C

Figure 14. Bragg’s procedure to solve the structure of iron pyrite. Upper figure: (A) Front and rear half of
the fcc structure of FeS2. (B) Projection of FeS2 structure into the (100) face for d(Fe–S):sub-cube diagonal
ratio equal to 1:5. (C) Crystal layers of Fe and/or S atoms as projected onto planes parallel to (100), (110),
and (111) planes, indicating their content relative to iron. Reproduction of Figure 4 from Ref. [24]. Lower
text: Analysis of the sulphur position by spectral analysis of I(hhh) intensities. Comparisons of calculated
and observed ratios of intensities (right) for the hhh reflections identified on the left. Similar comparisons
were made for the I(h00) and I(hh0) spectral orders. Adapted from part of text on page 484 of Ref. [24].
Courtesy of the Royal Society.
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Crystallography Reviews 21

12. Conclusions

For high symmetry crystals of simple compounds where atoms lay on lattice points, the ‘reflect-
ing planes of atoms’ envisaged by Bragg resulted in a useful notion to solve the first structures.
However, for even little more complicated crystals, the ‘reflecting plane’ concept becomes mean-
ingless as the atoms in general are not arranged in such crystal planes, which are truly geometric,
rather than physical objects. The concept of ‘reflecting planes’ was soon replaced by layers
of modulated reflectivity which were represented by Fourier series, an advance anticipated by
W. H. Bragg [23] and then elaborated by others.

Pretty soon it became clear that the light atomic electrons were the ones that scatter the X-rays;
in fact the nuclei are too heavy to follow the rapid oscillations of this EM radiation (of about 1018

cycles per second).
For further progress in crystal structure determination, going beyond the early semi-

quantitative methods of ‘trial and error’ mainly developed by the Braggs during the first half
of the 1910s, there was the need for

(1) a better description of the Physics behind the X-ray scattering by atoms, molecules, and
solids including the atomic scattering factors of the atoms of different elements;

(2) a detailed mathematical description of the diffraction of crystals (Fourier series);
(3) general-purpose ab-initio resolution methods (Patterson, direct methods, anomalous

dispersion-based methods, intrinsic phasing, etc.) to solve the so called ‘phase problem’
in crystallography;

(4) improved and more powerful X-ray sources (Coolidge X-ray vacuum tubes, rotating anode,
synchrotron radiation, the X-ray laser);

(5) improved procedures of X-ray data collection (Weissenberg and precession cameras with
photographic recording, automatic diffractometers equipped with scintillation counters, area
detectors, etc.);

(6) A substantial increase in computing power (development of electronic computers).

The advances in the solution of the above requirements produced during the last hundred years
are at the core of modern structural crystallography.
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