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a b s t r a c t

The binding of proton and metal cations to humic substances has been analyzed with a regularized fitting
procedure (using the CONTIN software package) to extract conditional affinity distributions, valid at a
given ionic strength, from binding (titration) curves. The procedure was previously tested with simulated
titration curves using a simple bi-Gaussian model, the NICA–Donnan model, and the Stockholm humic
model. Application to literature data for proton binding shows that in several cases the affinity distribu-
tion found is bimodal (carboxylic and phenolic sites) as usually assumed; however in other cases, spe-
cially for fulvic acids, a trimodal distribution is clearly discerned, with a smaller peak between the two
noted above attributed to the presence of vicinal carboxylic groups. The analysis of metal binding curves
has been performed in a few cases where the available data could be reliably processed, separating the
proton affinity distribution and obtaining the conditional affinity spectra. For Cd(II) and Pb(II) a bimodal
distribution is found, attributed in principle to mono- and bidentate binding, based on spectroscopic data.
In the case of Cu(II), a more complex affinity distribution is found showing 3–4 peaks; this is consistent
with spectroscopic studies, where different binding modes, up to tetradentate, have been observed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Humic substances (HSs) form the most important part of soil
organic matter (SOM) and are also present in groundwaters. SOM
has a fundamental role in nutrient availability for plants, and also
has several other important properties [1,2]. HS show colloidal
behavior and interact with other chemical species in the natural
environment, including binding of inorganic cations; this ability,
in particular for binding heavy metals, has an important role in
the fate of such pollutants in the environment. Thus, this topic
has attracted a high number of researchers [3–13] over the last
decades. Among the different experimental studies, equilibrium
binding data, usually in the form of titration curves, have been re-
ported in the literature; most of them have been reviewed by Mil-
ne et al. [3,14], and several more have been published more
recently [4,15–20]. The interpretation of such curves in terms of
equilibrium binding reactions is complicated by the fact that HS
are heterogeneous in nature, showing a high number of binding
chemical groups (sites) with varying equilibrium constants (or
affinity for the bound species). A fully detailed molecular descrip-
tion of HS is, at best, very difficult to achieve, so that simplified
models have been widely employed to interpret the titration
curves. These models generally include a description of the intrin-
ll rights reserved.

@yahoo.com.ar (F.V. Molina).
sic binding constants in terms of a distribution, the affinity distri-
bution or affinity spectrum, and an electrostatic contribution to
account for the colloidal behavior of HS. The intrinsic affinity distri-
bution has been assumed to be either discrete (effectively similar
to a mixture of weak acids) or continuous, with some assumed dis-
tribution function, but in both cases two main types of groups or
sites have been included: carboxylic sites, with pKa in the range
3–5, and phenolic ones, with pKa ranging between 8 and 10.

One of the first models was the Gaussian humic model, where a
bimodal Gaussian function, including the two types noted, without
electrostatic contribution, was applied [5]. The most widely used
continuous distribution model is the NICA–Donnan (ND) model,
developed by the Wageningen group [3,6,14,21], which has been
applied with good results, from the point of view of fitting ability,
to a number of problems involving natural organic matter, and hu-
mic substances in particular. It consists of a bimodal Sips distribu-
tion coupled with the Donnan volume electrostatic model. Among
the discrete site models, Tipping models WHAM V and VI [4,22–25]
have shown good predicting capabilities. It consists of two groups
of four discrete sites (carboxylic and phenolic), and has been com-
bined for the electrostatic effects either with a Donnan volume
model or with a solid particle surface model [4]. More recently,
the Stockholm humic model (SHM) was proposed and applied to
several cases [26–30]. It is related to Tipping’s WHAM models V–
VI, defining a discrete affinity distribution and introducing a parti-
cle-surface-type electrostatic model, with some similarity to the
CD-MUSIC model for inorganic colloids.
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Besides the application of specific models, work has also been
devoted to extract affinity distributions directly from experimental
data, including analytical [31–34] and numerical [35–40] methods.
The extraction of affinity distribution from experimental data is an
ill-posed problem [35,36,41] and as such common least-squares
methods lead to a nearly infinite number of oscillating solutions
[41]. One way to overcome this problem is the use of constrained
regularized least-squares methods, which have been applied by
several authors [35–37]. In a regularization procedure, the objec-
tive function to be minimized, usually the sum of quadratic differ-
ences, is modified by a regularizor term, which penalizes the
unwanted solutions, in this case those showing rapidly changing
behavior, favoring instead smooth solutions, with few peaks. Even
when it is difficult to extract true exact distributions from titration
data [36], at least without additional knowledge, useful informa-
tion can be obtained with such procedures. Provencher has devel-
oped a regularization method, implemented in the CONTIN
program code [41,42], which has been widely employed, with
applications to relaxation studies [43], dynamic light scattering
[44,45], and NMR spectroscopy [46,47] among many others [48–
50]. In particular, several applications to adsorption studies have
been reported [35,51–54]. In the application of this and other
numerical methods, conditional affinity spectra are commonly ob-
tained, valid under given conditions, usually fixed ionic strength
and, in the case of metal binding, also fixed pH [31,39,55].

In this work, the CONTIN package is employed to analyze pro-
ton and cation binding data to HS, including humic (HA) and fulvic
(FA) acids, without applying any specific model. Literature data for
proton binding are processed and conditional affinity distributions
are obtained and interpreted in terms of HS structure. The distribu-
tions found are compared with existing models. For metal binding,
a separation of the proton affinity spectrum is proposed and liter-
ature data are analyzed; the results are discussed in terms of rele-
vant spectroscopic studies for these systems.
2. Methods

2.1. Application of regularization methods to ion binding

2.1.1. Proton binding
Humic substances are highly heterogeneous compounds found

in groundwaters and soils. They have acid base behavior which
can be written as a binding process

A� þHþ�HA ð1Þ

where A� stands for a single proton binding group (site) in the
humic substance. For a simple acid with a homogeneous binding
equilibrium constant, the process (1) can be described by a
Langmuir-type equation

Q H ¼ Q S
KHaH

1þ KHaH
; ð2Þ

where QH is the amount (mol/kg) of H+ bound, QS is the maximum
(saturation) amount of H+, KH is the binding equilibrium constant,
and aH is the H+ activity in the solution. Because HAs are heteroge-
neous, there is not a single constant but a distribution (or affinity
spectrum), so Eq. (2) becomes, as it is well known,

Q H ¼ Q S

Z 1

�1

KHaH

1þ KHaH
gðlog KHÞd log KH; ð3Þ

where the Langmuir expression is applied to the fraction of sites
with the same KH value; this is the local isotherm,

qH ¼ qS
KHaH

1þ KHaH
; ð4Þ
where qS is the amount of sites with binding constant between
logKH and logKH + dlogKH. In Eq. (3), g is a conditional affinity dis-
tribution if the bulk H+ activity is considered, as electrostatic effects
are not taken into account. As often QS is not known a priori, the
product QSg(logKH) = g0(logKH) is obtained as an unnormalized dis-
tribution; QS can in principle be obtained through normalization of
g0. Moreover, from titration experiments, the absolute value of QH is
not determined, but instead the change of humic negative charge
(i.e., unbound sites) DQA is obtained, so that the equation to be
solved is

DQA ¼ Q A þ Q0 ¼ �ðQ S � Q HÞ þ Q0 ¼ Q 0 � Q S þ Q H

¼
Z 1

�1

KHaH

1þ KHaH
g0ðlog KHÞd log KH þ DQ0; ð5Þ

where Q0 is the initial charge before the titration.

2.1.2. Regularization procedure
Eq. (3) is a Fredholm integral equation of the first kind, and the

inversion of such equations is an ill-posed problem because there
are multiple oscillation solutions satisfying them. Thus, standard
fitting procedures are not suitable for finding the affinity distribu-
tion. These problems can be solved numerically to estimate the dis-
tribution function g(logKH) using regularization algorithms, such
as that implemented in the CONTIN package by Provencher
[41,42]. In this procedure, Eq. (3) is discretized on a grid of Ng

points km as

Qk ¼
XNg

m¼1

cmFkðkmÞsðkmÞ þ Lkb; ð6Þ

where Fk(k) is the kernel function, in the present case the local iso-
therm which is chosen as the Langmuir function

FkðkÞ ¼
10kak

1þ 10kak

; ð7Þ

with ak being the proton activity corresponding to Qk; ak and Qk

(1 6 k 6 Ny) are the experimental points. b is a constant background
(here, DQ0). The discretized distribution s(k) and b are to be deter-
mined. Eq. (6) can be written in matrix form

q ¼ Ax; ð8Þ

where A is an Ny � Ng + 1 matrix containing cmFk(k) and the Lk, in
the present case set to 1; q is a vector (dimension Ny) containing
the Qk values and x is a vector (dimension Ng + 1) containing the un-
knowns, sm(k) and b. The objective function minimized in CONTIN
[41,42] is

VðaÞ ¼ v2 þ a2R ¼ M�1=2 q� Axð Þ
��� ���2

þ a2 r� Bxk k2
; ð9Þ

where M is the covariance matrix of the experimental uncertainties
and k� � �k indicates the Euclidean norm. The second term of the
right-hand side of Eq. (9) is the regularizor; a is the regularization
parameter, its value controlling the weight of the regularization
function R. This function in CONTIN is set as

R ¼ r� Bxk k2 ¼
Z kNg

k1

o2s

ok2

 !2

dk; ð10Þ

where k1 and kNg are the upper and lower grid limits. This function,
being essentially the curvature of s, favors smooth solutions. The
regularization parameter a can be automatically chosen by CONTIN
or controlled through input parameters. These parameters are
rsv,min and rsv,max, such as a lies in the range [41]

rsv;mins1p 6 a 6 rsv;maxs1; ð11Þ

where s1 is an internal scale factor (see Appendix A.1 of [41]) and
p is the internal precision, automatically set, in the Windows
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environment employed, to p = 1.49 � 10�15. Other restrictions
include nonnegativity of the solution, which is important in exclud-
ing many oscillating solutions, and also user-defined restrictions.

CONTIN uses as a means to select the optimum a value the
parameter

P1ðaÞ ¼ F f1ðaÞ;NDFða0Þ;Ny � NDFða0Þ
� �

; ð12Þ

where F(f,n1,n2) is Fischer’s F distribution with n1 and n2 degrees of
freedom, a0 is the a value which minimizes V(a), NDF(a0) is the
number of freedom degrees for such value, and

f1ðaÞ ¼
VðaÞ � Vða0Þ

Vða0Þ
� Ny � NDFða0Þ

NDFða0Þ
: ð13Þ

The solution chosen by CONTIN is that with P1 nearest 0.5. Thus,
the convergence criterion in CONTIN is essentially based on the F
distribution. As discussed later on in Section 3.1.4, on physical
grounds restrictions to the a range were imposed thus modifying
the above behavior.

2.1.3. Competitive metal–proton binding
HSs bind metal cations such as Ca2+, Pb2+, Al3+, etc. As a first

approximation, the metal binding can be written similarly to (1):

A� þMzþ
�AMz�1

: ð14Þ

However, in general both Mz+ and H+ bind to the same sites, so that
the competitive Langmuir equation can be used as local isotherm
for the amount of Mz+ bound, qM. Assuming that each Mz+ binds
to a single site, it can be written

qM ¼ qS
KMaM

1þ KHaH þ KMaM
; ð15Þ

where KM is the metal binding constant and aM is the metal activity.
Now for the heterogeneous case, Eq. (15) should be integrated for a
bidimensional distribution p(logKH, logKM), which in the general
case will include the correlations between H+ and Mz+ binding:

Q M ¼ Q S

Z Z
qMðKM;KH; aM; aHÞpðlog KM; log KHÞd log KM d log KH:

ð16Þ

As a way to simplify the problem we will assume that p can be writ-
ten as the product of two distributions corresponding to KH,
g(logKH), and KM, f(logKM). This assumption implies in principle
that these distributions are different and independent (uncorre-
lated). In practice, if g is the distribution deduced for H+ binding
in the absence of any interfering ions, the affinity distribution f will
carry the H+–Mz+ correlations. Because binding of metal cations in
the full absence of protons is, at best, difficult to achieve experimen-
tally, the ‘‘pure” distribution for Mz+ binding is experimentally not
accessible. Thus, the amount of metal bound will be written as

Q M ¼ QS

Z Z
KMaM

1þKHaHþKMaM
gðlogKHÞf ðlogKMÞd logKH d logKM:

ð17Þ

As the logKH distribution is determined in a separate experiment,
Eq. (17) can be solved with CONTIN by grouping as

Q M¼
Z 1

�1

Z 1

�1

KMaM

1þKHaHþKMaM
g0ðlogKHÞdlogKH

� �
f ðlogKMÞdlogKM;

ð18Þ

with the factor in brackets as the kernel.
In the general case, multisite binding of metals should be con-

sidered, as there is spectroscopic evidence indicating that a frac-
tion of the bound metal is in bidentate or even tetradentate form
[56,57]. However, because different metal fractions will be bound
with different stoichiometries, it will be introduced here an aver-
age stoichiometric coefficient r such as

rA� þMzþ
�ArM

z�r : ð19Þ

In this case, considering a Langmuir-type equilibrium for the local
isotherm leads to the following equations:

KHaH ¼
qH

qS � qH � rqM
ð20Þ

KMaM ¼
qM

qS � qH � rqMð Þr
: ð21Þ

The system (20),(21) cannot be solved analytically for qM (except for
integer r) which can, instead, be found numerically, and used to find
f in

QM¼
Z 1

�1

Z 1

�1
qMðaH;aM;KH;KMÞgðlogKHÞdlogKH

� �
f ðlogKMÞdlogKM:

ð22Þ

Eq. (19) can be solved for f with CONTIN, with r as an external
parameter and

Fk ¼
Z 1

�1
qMðaH; aM;KH;KMÞgðlog KHÞd log KH ð23Þ

as the kernel function. The approach present here bears some
resemblance to the conditional affinity spectrum (CAS) method pro-
posed by Garcés and co-workers [31,55] where the CAS is the distri-
bution p restricted to a fixed pH (constant aH), p0(logKM,
aH = constant). However, the CAS of [55] includes a proton contribu-
tion whereas Eq. (17) implies a further separation of the proton
affinity spectrum in the absence of M.

2.2. Data employed and numerical procedure

The CONTIN program, modified to use Eqs. (7) and (23) as
kernels, was used to extract affinity distributions. The statistical
weights of experimental data were generally set as all equal,
unless otherwise noted. As a first test, synthetic titration curves
were used, generated with Eq. (3) and a simple bimodal Gauss-
ian distribution for proton binding; a second bimodal distribu-
tion was assumed for metal binding (r = 1) and titration
curves were simulated with Eq. (16). Different tests to study
the effect of experimental errors were also conducted. Follow-
ing that, titration curves simulated using the ND and the
SHM models, at different ionic strengths, were processed with
CONTIN and compared. ND simulations were conducted using
Kinniburgh’s FIT program version 2.581 [58], and SHM calcula-
tions were done using Gustafsson’s Vminteq program [26]. In
the case of metals, test with simulated titration curves using
a simple bi-Gaussian model were followed by analysis of exper-
imental data. Experimental data were mostly taken from the
extensive gathering of Milne et al. [3,14] which is available as
Supplementary Information of [3]; it contains acid base titration
datasets of a number of fulvic and humic acids, and for titra-
tion with different metal cations for some of them. Some data-
sets were also taken from Fernández et al. [15]. However, the
processing with CONTIN to recover the conditional affinity dis-
tribution has several requirements (wide pH or pM range, rela-
tively high density of data points, constant ionic strength)
which are not fulfilled in all cases, so some data could not be
processed; moreover, some dataset were discarded when pro-
cessing due to the presence of large peaks at either end of
the calculated distributions which could not be eliminated. All
that is especially true for metal binding data, where only me-
tal–PPHA data could be used [7,59]. The datasets selected are
summarized in Table 1.



Table 1
Datasets analyzed with CONTIN.

Code Material Ionic strengths (M) pH range Ref.

FH-04 Bersbo fulvic acid 0.1 3.1–7.2 [3]
FH-06 Satilla River fulvic acid 0.1 3.2–10.8 [3]
FH-14 Laurentian soil fulvic acid 0.05 4.2–9.8 [3]
FH-23 Laurentian soil fulvic acid 0.1 3.6–10.4 [3]
HH-09 Purified peat humic acid (PPHA) 0.01; 0.08; 0.09; 0.31 3.5–10.5 [3]
HH-16 Kinshozan OH humic acid 0.003; 0.02; 0.12 3.3–10.3 [3]
HH-18 Purified Aldrich humic acid 0.1 3.4–10.4 [3]
HH-23 PUHA 0.01; 0.03; 0.1; 0.3 3.0–9.8 [3]
TolS-FA Toledo soil FA 0.3 3.5–10.3 [15]
TolS-HA Toledo soil HA 0.3 3.6–10.4 [15]
HCd-03 PPHA + Cd2+ 0.1 4; 6; 8 [3]
HCu-04 PPHA + Cu2+ 0.1 4; 6; 8 [3]
HPb-05 PPHA + Pb2+ 0.1 4; 6; 8 [3]

0 5 10 15

0.0

0.1

0.2

0.3 Exact
1 % dev.
3 % dev.
5 % dev.

logKH

g(
lo

g K
H
)

Fig. 2. Distributions resulting from simulated binding curves calculated with the
distribution shown in Fig. 1, exact and with random errors as indicated.
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3. Results and discussion

3.1. Proton binding

3.1.1. Test with data simulated with a simple model
Fig. 1 shows the bimodal Gaussian distribution used as the

g(logKH) distribution. With this distribution (no electrostatic ef-
fects), a simulated titration curve was calculated with Eq. (3). Be-
sides the exact one, other curves were also calculated with ±1%,
3%, and 5% random deviation. Fig. S1 (supplementary information)
shows the QH vs pH curves calculated with QS = 1. Fig. 2 shows the
recovered affinity distributions. The algorithm appears to be quite
robust regarding random dispersion, as the original distribution is
recovered reasonably well up to 5% added random dispersion.
Fig. 3, on the other hand, shows the result of changing the pH range
of the binding curve. For a pH range of 4–9 a simular result as for
pH 3–10 is found, but by further restricting to the range to 5–8 the
resulting distribution is severely distorted compared with the ori-
ginal. The number of peaks could not be restricted, even by setting
the parameter rsv,min as high as 1011. These results are in agreement
with previous observations by Ruf and co-workers, that these
methods are more sensitive to systematic than random deviations
[44,60].

3.1.2. Test with data simulated with the NICA–Donnan model
Using the FIT 2.582 program [58], proton binding curves were

simulated with the ND model for different ionic strengths, I from
0.01 to 1 M, using generic average parameters (default parameters
of the FIT program). Also, a curve without electrostatics (obtained
0 5 10

0.0

0.1

0.2

0.3

g(
lo

g
K H

)

log KH

Fig. 1. Simulated bimodal Gaussian affinity distribution used for tests.
by setting the Donnan volume to 0) was simulated for comparison.
Fig. 4 shows the normalized conditional distributions recovered
with CONTIN, along with the theoretical one, the bimodal Sips dis-
tribution. As expected, the distribution deduced without electro-
statics is coincident with the original. For the other cases it is
observed that, as the ionic strength decreases, the distribution de-
parts from the theoretical one both in position and in shape, shift-
ing to higher KH values and becoming broader. This is a
consequence of the enhanced adsorption al low I values due to
0 5 10 15
0.0

0.1

0.2

0.3

g (
lo

g
K H

)

log KH

pH 3 to 10
pH 4 to 9
pH 5 to 8

Fig. 3. Distributions obtained for different pH ranges in the simulated binding
curves.
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Fig. 4. Distribution curves recovered from simulated NICA–Donnan titration
curves.
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nonspecific (electrostatic) interactions. The shift of the peak posi-
tions is linear in I (see Fig. S2, supplementary information). In order
to compare with other results later on, it is worth noting that the
curves of Fig. 4 can be fitted very satisfactorily with two Sips-
shaped peaks (Fig. 5b), whereas fitting to Gaussian peaks are less
satisfactory (Fig. 5a). The curve shown is for a high ionic strength,
where nonspecific effects are less pronounced.
0 5 10 15

0.0

0.5

1.0

1.5

g(
lo

g
K

H
)

log KH

NICA-Donnan Sim. I = 1
Sips Fit Peak 1
Sips Fit Peak 2
Cumulative Fit Peak

b

0 5 10 15

0.0

0.5

1.0

1.5

Sim. NICA-Donnan I = 1
Gaussian Fit Peak 1
Gaussian Fit Peak 2
Cumulative Fit Peak

a

g(
lo

g
K

H
)

log KH

Fig. 5. Fitting of the distribution curve, deduced for a NICA–Donnan simulated
titration curve with I = 1, to Gaussian peaks (a) and Sips peaks (b).
3.1.3. Test with data simulated with the Stockholm humic model
Employing Gustaffson’s Vminteq program [26], titration curves

with standard parameters were obtained. Fig. 6a shows the exact
curve obtained for I = 1 M, and the same with added random devi-
ations, whereas in Fig. 6b the deduced distributions are shown. It is
observed that a discrete distribution is only recovered using the
exact curve; introduction of random errors, even small, causes that
a discrete distribution is no longer found, but a continuous one,
similar to those predicted by the ND model, is obtained. The same
result is found by restricting the regularization parameter a to the
maximum value compatible with data fitting (see Section 3.1.4.).
Furthermore, the exact discrete distribution is not recovered, espe-
cially for low logKH values, where only three peaks are found. The
titration curve should be extended to lower pH values in order to
observe the full four logKH values.

In Fig. S3 the influence of ionic strength on the distribution
found with CONTIN (using the ‘‘exact” titration curves) is plotted.
The shift of the distribution peaks with I is not linear, at variance
with the case of the ND model. This difference is a consequence
of the respective electrostatic models.

3.1.4. Analysis of experimental data
In the following, we will show the application of CONTIN to

experimental data of acid–base titrations (i.e., proton binding) of
humic substances, using data published by Milne et al. [3,14] and
Fernández et al. [15]. When processing several of these datasets
with CONTIN with default conditions, often the resulting distribu-
tions show a relatively large number of peaks, which would have
little physical justification. Thus, the following procedure was
employed, illustrated by Figs. 7 and 8 for the dataset HH-16 from
0 10 20
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b

4 6 8 10
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Exact curve
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α

Fig. 6. (a) Titration curve simulated with the SHM model, exact (line) and with
added random deviations, of 1% and 3% magnitude; (b) the SHM assumed pK
discrete distribution (gray bars) and CONTIN obtained distributions.
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Fig. 7. Processing of the titration of Kinshozan OH HA (dataset HH-16 of Milne et al.) at I = 0.12 M. Left: experimental data (circles) and fitted curve (line); inset: residuals
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Milne et al., corresponding to Kinshozan OH humic acid. Fig. 7a
shows the fitting obtained (with the residuals plot in the inset)
with default conditions, and Fig. 7b the corresponding distribution;
this presents 6 peaks, with a predominance of low logKH values
(relatively strong acidity). This distribution is unlikely from a
physical point of view. Thus, further restrictions were introduced
in the regularization. After several attempts, the following proce-
dure gave consistent results in this and the following cases: the
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parameter rsv, min (limiting the lowest a value in the first analysis)
was progressively increased, leading to smoother and less featured
distributions as shown in Fig. 7c–h. rsv,min < 106 did not cause
significant changes in the results; for rsv,min about
3.0 � 106 � 1.0 � 107 the distribution obtained shows essentially
two peaks, in agreement with the usual assumptions, and still
resulting in substantially good fitting. Beyond these values, the dis-
tribution shows still two peaks, but broader, and the fitting quality
decreases noticeably, as revealed by the residuals plot (Fig. 7g). Ta-
ble 2 shows the final values found for a, P1, and v2.

Fig. 9a compares the conditional affinity distributions found at
different ionic strengths for the purified peat humic acid, and
Fig. 9b shows the observed dependence with I of the two main
peaks, compared with the dependence found from titration curves
predicted (with optimized parameters for this HA) by the ND and
SHM models. It is found that the experimental data show a smaller
dependence with the ionic strength than the models, especially for
the phenolic peak. Fig. S4 compares the affinity distributions found
for several HAs with ND model predictions. Here, a general obser-
vation is that the ND model appears to predict less change of the
distribution shape on the ionic strength than found from experi-
mental data: the resulting effect in model predictions is mainly
the displacement of the distribution curve along the logK axis,
whereas experimental data result in curves which change both po-
sition and shape.

The general shape of the distributions found in Fig. 7f and other
datasets examined (later on) is similar to that described in the lit-
erature, interpreted in terms of carboxylic sites (lower proton
affinity, the higher area peak) and phenolic ones (high proton affin-
ity, the broad peak near logKH = 9). Thus, one can attempt to
deconvolute the peaks accordingly. Fig. 10a shows the deconvolu-
tion of the affinity distribution from Fig. 7f in terms of Gaussian
functions. It is found that three Gaussian peaks are needed to ob-
tain a satisfactory fit, with a small peak in the middle of the two
main ones. Fig. 10b shows the same using Sips function peaks,
Table 2
Resulting parameters for fitting dataset HH-16 (I = 0.12 M) with CONTIN.

rsv,min a final v2 P1

1.0 2.78E � 5 3.28 � 10�4 0.454
1.0 � 105 3.34E � 5 3.40 � 10�4 0.337
1.0 � 106 1.66E � 4 5.14 � 10�4 0.276
3.0 � 106 6.01E � 4 8.13 � 10�4 0.537
1.0 � 107 0.00155 0.00113 0.547
3.0 � 107 0.00451 0.00288 0.927
1.0 � 108 0.0145 0.01572 0.986
3.0 � 108 0.0422 0.05011 0.638
the function underlying the widely used NICA–Donnan model. It
is observed that, even using three peaks, the fitting is noticeably
less satisfactory. As it has been discussed by several authors, the
difference is probably not important regarding generic data fitting,
since only the main moments are important for the description of
the titration (binding) curve.

Figs. S5 and S6 show other examples; in several cases, the curve
found should be fitted with three peaks whereas in others with two
peaks only, but it is generally observed that Gaussian peaks give
better fit than Sips ones. Another observation is that in some cases
the curves found are similar to those predicted from NICA–Donnan
fitting [14] but in other cases there are differences, most notably a
higher and narrower phenolic-like site peak.

In the case of fulvic acids (see Figs. S7 and S8), it is noticeable
that in most cases three well-differentiated peaks are found, which
are satisfactorily fitted with Gaussian functions; when comparing
humic and fulvic acids from the same origin, it can be observed
in the example shown in Fig. S7 (Toledo soil [15]) that the fulvic
acid shows three well-defined peaks whereas the HA fraction
shows only two. Furthermore, the examples shown in Fig. S8a
and S8b correspond to the same material (Laurential soil FA) re-
ported by different authors; the distributions are qualitatively sim-
ilar, albeit not quantitatively coincident. It should be noted that the
NICA–Donnan parameters found by Milne et al. for these datasets
are widely different, so the differences should be attributed to
experimental differences between the respective authors, such as
FA handling and purifying procedures, and titration technique. It
should also be noted that in the case of Fig. S8c, the dataset spans
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only to pH about 7, so that the 2-peak distribution found for FH-04
could be conditioned by that fact.

The middle peak found in several distributions is centered
about pKa = 6–7, which lies in the range of the pKa2 values for adja-
cent carboxylic groups (such as phtalic or oxalic acids); a similar
result was found by fluorescence measurements [32]. Thus, this
finding would indicate that some carboxylic groups are vicinal.
Although the presence of carboxyl groups in humic substances is
well established (see, for example, [61]), vicinal carboxyl groups
are more difficult to detect. Benzene polycarboxylic groups, de-
tected by analytical pyrolysis, have been reported in a number of
publications (for example, see [62]). However, as it has been re-
cently pointed out [63], the subject remains controversial as sev-
eral studies attribute such findings to artifacts of the methylating
pyrolysis procedure [64,65]. On the other hand, the presence of vic-
inal aliphatic carboxyl groups has been reported in some fulvic
acids [8].

3.2. Competitive metal binding

3.2.1. Test with data simulated with a simple model
To deduce the conditional affinity (binding constant) distribu-

tion for cation binding, the H+ affinity distribution found at the
same ionic stre ngth was employed in Eqs. (17) and (21).

Tests conducted with simulated data were conducted with sat-
isfactory results as shown in the Supplementary Information.
Fig. S9a shows (open circles) the simulated constant distribution
for metal binding. Binding curves were calculated with Eq. (17)
for different r values, using the proton affinity distribution shown
in Fig. 1. Following, the distributions were recovered using CON-
TIN. Fig. S9a compares the results obtained using the exact simu-
lated curve, with those using a curve with random errors
introduced. It is observed that the same shape is obtained, but with
some deviations. Fig. S9b shows the influence of the parameter r on
the distribution recovered. As observed, there are some differences,
mainly in the low affinity part of the distribution; however, it
should be noted that the presence of a spurious peak at the low
end is not a common case, and can be suppressed by limiting the
regularization parameter a.

3.2.2. Analysis of experimental data
Literature data of Cd(II), Pb(II), and Cu(II) binding to PPHA are

now analyzed, and the results are discussed in comparison with
available spectroscopic information on binding of these cations
to HS. Although information for exactly the same systems (the
same HA) is not available, from a qualitative point of view the anal-
ysis is meaningful, as humic substances from different origin show
a similar behavior, even those from paleosols [9].

Fig. 11 shows the conditional affinity distributions found for
Cd(II) and Pb(II) binding to purified peat humic acid, using data
published by Milne et al. [3] from [7,59]. As it is observed, the re-
sults are quite similar, showing relatively narrow peaks, the most
prominent being that at low logKM values, with one or two smaller
peaks for higher stability binding sites. There is a pH dependence of
the distributions, shifting to higher values as the pH increases. The
assumption of separability introduced in Eq. (17) implies that
f(logKM) should be pH independent to be consistent. However, it
should be taken into account that those plotted in Fig. 11 are
conditional distributions; even when they correspond to the
same ionic strength, the HA will have a different charge at the
different pHs and so the electrostatic effect will be different. The
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displacement observed in Fig. 11 is consistent with the ionic
strength effect shown in Fig. 9: as the electrostatic effect becomes
more pronounced, the affinity curves shift to higher logK values.
These results will be now discussed in terms of the available spec-
troscopic evidence.

Cd(II) binding to HS has been quite intensely studied [10,16,66–
73] and, owing to the relative abundance of the 113Cd isotope, NMR
studies have provided important structural information on the
binding sites [66,67,74,75]. Otto et al. [66,67] studied Cd(II) bind-
ing to fulvic acids using 113Cd chemical shift and relaxation mea-
surements, concluding that there are two clearly differentiated
sites: one strong binding site best represented by a polydentate
carboxylate model (albeit an hydroxycarboxylate site could also
be possible), and another weaker site, attributed to monocarboxy-
late binding. This last type of site was also considered as the more
abundant by Grassi and Daquino [74]. Thus, the results of Fig. 11
could, in principle, be interpreted in terms of these two type of
sites: a weaker, more abundant binding site with logKCd about
2–4 and a stronger, less abundant site with logKCd near 6; however,
more evidence is required to confirm this interpretation. There is a
third, very small peak observed at pH 8, which could be due to
binding to sites with high proton affinity, not observed at lower
pH values because its very low occupation by Cd ions would make
them not detectable within experimental error. In the case of
Pb(II), the curves are similar, albeit only one peak is found at pH
4; again, this fact can be attributed to the second type of site hav-
ing higher proton affinity, thus displacing completely Pb(II) ions at
pH 4. Lead sorption by humic substances has been also widely
studied [11,17,18,31,68,76–83]; however, there is less spectro-
scopic evidence available. Xia et al. [76] studied the interaction
of Pb(II) with a humic extract from a silt loam soil suggesting the
presence of two C atoms in the second coordination shell, which
would indicate bidentate binding. Thus, an interpretation similar
to Cd(II) could in principle be given for lead: the higher peak at
low logKPb values attributed to monodentate binding to carboxylic
groups, and the peak at higher logKPb values to bidentate binding.
However, the higher affinity sites could also be of the monodentate
type: recently, Puy et al. [31] obtained conditional affinity spectra,
based on the fitting parameters to the NICA model (i.e., bimodal
Sips distribution), for Pb2+ binding to purified Aldrich HA at a fixed
ionic strength of 0.1 M and several pH values. The CAS curves
found show broadening and a shift to higher logKM values as the
pH increases. These curves are considerably broader than those
found here, and interpreted in terms of two contributions: carbox-
ylic at lower logKM values, having higher area, and phenolic, at
higher logKM values but having smaller area. This interpretation
could be consistent with that given above if the phenolic types
were mainly involved in bidentate binding, in salicylate-type
groups.

In Fig. 12 the results found for Cu(II) binding to PPHA at two pHs
are shown. Unfortunately, from the data at pH 6 reliable results for
the affinity distribution could not be obtained. Here, the behavior
is more complex. Also, changing the value of r did not show impor-
tant differences in the results, only the peaks are better defined
with r = 1.5. This value was used because Kinniburgh et al. [6] mea-
sured the exchange ratio during the titration, finding values close
to 1.5. As Cu(II) is known to bind more strongly that Pb(II) or Cd(II),
and in a multidentate way, a more complex behavior is to be ex-
pected. There is an important number of studies on Cu(II) binding
to HS [9,19,56,59,76,84–86]. In particular, spectroscopic studies
show evidence of chelate structures. Senesi and Calderoni [9] stud-
ied copper binding to paleosol humic acids; in ESR studies, the
spectral parameters are consistent with Cu(II) ions present as in-
ner-sphere complexes of tetragonal—or Jahn-Teller distorted octa-
hedral—configuration, the coordinating sites involving on average
three oxygen and one nitrogen atoms. Xia et al. [76] in X-ray
absorption studies of Cu(II) binding to HS in the pH range 4–6
found the Cu ions in a tetragonally distorted octahedral environ-
ment with four O atoms in the first coordination shell at
0.194 nm and four C atoms at an average distance of 0.313 nm
forming the second coordination shell. Karlsson et al. [56] found
EXAFS evidence of chelate structures in Cu(II) complexation to soil
and natural dissolved organic matter, finding four O/N atoms at
about 0.193 nm, a second coordination shell with an average of
2–3.8 C atoms at about 0.28 nm, and a third coordination shell
with 2–3.8 O/C atoms at about 0.4 nm. They suggested that Cu(II)
is forming one or two 5-membered chelate rings. It should be taken
into account in analyzing those results that part of the O atoms
found in the first coordination shell could belong to water mole-
cules or, as pointed out by Alvarez-Puebla et al. [84,87], OH� ions.
In the CONTIN analysis results of Fig. 12a 3–4 modal distribution is
observed, depending on pH; because the complexity of the spectra,
and that the above spectroscopic results are for different HS, an
assignment is more difficult. However, the affinity spectra show
that the more complex behavior of Cu(II) binding, including mono-
and multidentate binding, is reflected.

3.3. Concluding remarks

Conditional affinity distributions were obtained from experi-
mental titration data using a regularization numerical procedure.
The results found for proton binding in some cases agree with
the bimodal distribution usually assumed, but in several cases,
especially for fulvic acids, a third Gaussian peak at pH 6–7 is found.
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This is attributed to the presence of carboxylic acid groups on adja-
cent C atoms. Because electrostatic effects, which are not consid-
ered here, should also be present, coupling the present treatment
with a suitable electrostatic model is required to separate the ef-
fect. Nevertheless, the observed behavior is consistently found at
the different ionic strengths examined.

Analysis of cation–HA titration data for PPHA binding Cd(II),
Pb(II), and Cu(II) at a relatively high ionic strength, separating
the H+ affinity spectrum deduced at the same ionic strength, shows
results which are, in principle, consistent with literature spectro-
scopic studies of similar systems. Comparison between titration
data analysis and spectroscopic measurements for the same cat-
ion–HS system is required for a better understanding of cation
binding and confirmation of the affinity distributions found. Again,
including a suitable electrostatic model will allow a more quantita-
tive treatment of such distributions.

The regularized regression analysis of CONTIN has been found
as a useful tool in the study of binding to humic substances, and
suggested the presence of more complex affinity spectra than usu-
ally considered for proton and metal cation binding. Coupled with
spectroscopic studies and including electrostatic modeling could
bring more insight into these important processes in natural sys-
tems. Work is in progress in that direction.
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