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This paper presents numerical techniques for evaluating integrals of the form
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These integrals arise during the application of the Hankel transform to pass the
displacements of a layered soil profile from the wave number domain to the spatial domain
in three-dimensional problems of elastodynamics. The objective here is to obtain solutions
with an adequate accuracy from the engineering point of view to the integrals that arise in
a first order formulation of a wave propagation model widely used for layered soils.
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1. Introduction

The integrals considered here arise after expressing the flexibility matrix of a stratified soil profile layer as function of
modal parameters of first order in the wave number domain [1]:
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where k represents the wave number, s and ¢ are the eigenvalues and eigenvector components of different wave propagation
modes, i and j represent two generic interfaces of the layered soil, p, 6 and z are the radial, azimuthal and vertical cylindrical
coordinates, respectively, while r and I refer to the Rayleigh and Love waves, respectively. The flexibility matrix of a layer
thus expressed represents a variant of first order as an alternative to the second order formulation presented for Kausel [2]
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and Kausel and Roesset [3], where this matrix is also described as a combination of different propagation modes of Rayleigh
wave (coupled coordinates p and z) and Love waves (coordinate 6). The application of uniform loads or loads with linear
variation on circular areas of radius R at the interfaces of the layered profile generates the Bessel function of the 1st kind
J, (kR) in the expressions of displacements in the wave number domain, while the application of inverse Hankel transform
to return to the spatial domain produces the Bessel function of the 1st kind Jg (kp).

2. Integrals to solve

The integrals to solve have the following general form

[ Jskp) ], (kR)
Vaﬁ)/(p’ R,s) = /(; 7]@[ k—s) dk (2)

using a similar nomenclature to that used by Hemsley [4]. The values adopted by the parameters «, § and y are the integer
numbers 0, 1 and 2. The parameters p and R are nonnegative real numbers, while the eigenvalue s is in general a complex
number. The integral in (2) does not have closed analytic solution, with exceptions such as for s = 0 that corresponds to the
static solution to the elastodynamic problem, and for R = 0 that it is related to point loads in this type of problems.

The numerical technique proposed in this paper is explicitly used for the evaluation of the integral (2) for 9i(s) < 0(2nd
and 3rd quadrants of the complex plane), where the denominator of the integrand does not vanish for any value of k, so
that the integrals become non-oscillating in function of the coordinate p. For 9%i(s) > 0 (1st and 4th quadrants) the solution
is expressed as the sum of an integral with analytic solution and other integral with numerical solution that is obtained by
changing the sign of s and using the technique for i (s) < 0. To this end, the denominator of the integrand in (2) is replaced
by

1 _ 2s + 1 (3)
k—s k2—s> k+s
for odd values of (o« + 8 + y ), while this denominator is replaced by
1 _ 2k 1 4)
k—s kK —s2 k+s
for even values of (@ + B + y ). Thus, evaluation of the integral for 91(s) > 0 is performed as
Vos, (p.R.5) = 25 > Jp(kp)], (kR) dk + > Jp(kp)], (kR)
A A ) s ke(k+s)
= 2sWqypy (0, R, ) + Vup, (0, R, —5) (5)
for odd values of (o« + B + y), or as
 Jg(k kR  Jg(k kR
Vagy (0. Ros) =2 [ 28R KO )dk—/ Jp o)y (R)
o k¥ 1(k? —s2) 0 k*(k + s)
= ZW(()(*])ﬁy (p7 R’ S) - Votﬁy (p7 Rv _S) (6)
for even values of (@ + B + y ). The application of this procedure is due to the fact that the integral
[o.¢]
Jp(kp)], (kR)
W ,R,s) = — 7
ok = [ IS )

possesses an analytic solution only for odd values of (@ + 8 4 y) as in cases analyzed by Kausel [2], who presents solutions
for values of s in the 4th quadrant of the complex plane. For the 1st quadrant it is required to replace the Hankel function
of the 2nd kind for that of the 1st kind (as originally proposed by Watson [5]). The nature of the integrals (5) and (6) is
oscillating due to the integral in (7), while the other integral of non-oscillating nature is solved by numerical techniques as
proposed for 9i(s) < 0.

The conditions to be satisfied by parameters «, § and y so that the integral becomes finite are given below. The integrand
in (2) for k — Oresults in

Jpkp), (R) | pPRY  KFHre @
ke(k—s) |,o 28T7Blyl(k—s)
from which it follows that
B+y—a=>0. (9)
The integrand in (2) for k — oo yields
Jp(kp)], (kR)
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k=5 | = /R cos (kp - Z(Zﬂ + 1)) cos (kR - Z(2)/ + 1)) iz (10)
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from which it can be shown that

o> —2 forp #R, (1)
a>—1 forp=R.

In some cases, the transformation of the load function to the wave number domain generates the function (1 — Jo(kR)), so
that the transformation to the spatial domain for obtaining the displacement takes the form

- ® Jg(kp) (1 — Jo(kR
Tosloo R 5) = / Jp(ko) (1 = Jo(kR) . 1)
0 k*(k —s)
Expanding the term in parentheses, this integral can be expressed as
Vap(p, R, 5) = Vipo(p, 0, 5) = Vapo(p, R, 3) (13)

which not always satisfies the condition for k — 0. In such cases, the integral in (12) must be solved jointly, for which it is
required to know the solution of integrals of the form

* Jpkp) (1 —Jo(kR))dk
0 ke (k? — s2) ’
The integral taken as a starting point in this paper is Vp11(p, R, s). The evaluation of the remaining integrals is performed

decomposing the integrands in a similar way to that used for (3) and (4) and/or applying repeated differentiation on the
integrands [4] as

Waﬂ(p’ R,s) =

(14)

1
Vii1(o, R, s) = E(Hon(p’ R) — Vo11(p, R, 5)) (15)
1
Va(o, R, ) = E(Hm(p, R) — Vi11(p, R, 5)) (16)
0 1
Voo1(p, R, 5) = ﬁvm(/h R,s) + ;Vm(P, R,s) (17)
0 1
Voio(p, R, s) = ﬁvm(p, R,s) + ﬁVm(,O, R,s) (18)
0 1
Vio1(p, R, s) = gvzn(/), R,s) + ;Vzn(p, R,s) (19)
0 1
Viwo(o, R, s) = avazn(ﬂ,Ra S)+§V211(P,Ra s) (20)
0 1
Vooo(0, R, S) = —Vi01(p, R, s) + =Vip1(0, R, 5)
¥ $
= —Vi0(p, R, s) + =Vi10(p, R, 5) (21)
ar r
where it has been resorted to the following auxiliary integrals that possess analytic solutions

© k kR
Hupy (01 ) = Vagsy (p, R, 0) = / Ip oy UR) 4 (22)

0 ka1

Although the integral Vygo(p, R, s) can be solved through the expressions given in (21), it is convenient to solve it
independently following the same strategy as that used for Vp11(p, R, s) since simpler and more efficient numerical
expressions are obtained.

Moreover, the following relationships

2
J2(kp) = r]] (ko) — Jo(kp)
kp

N (23)
J2(kR) = ,*Jl (kR) — Jo(kR)
kR
allow to use the solved integrals to obtain the following ones
2
Vooz(p, R, $) = =V101(p, R, s) — Vooo (0, R, 5) (24)

R

2
Vo2o(p, R, 5) = ;Vllo(,O, R,s) — Vooo(0, R, 5) (25)
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Table 1
Integrals evaluated in this paper.
Wocﬁy(pv R, S) Vaﬁy (P»R» S) Waﬁ(p: R7 5) Vaﬁ(pv R, S)
W_100(p, R, 5) Vooo (0, R, 5) Voo2(p, R, ) W_10(p, R, 5)* Voo(p, R, 9)°
W_111(p, R, 5) Voi1(p, R, s) Vo (0, R, 5) Wo1(p, R, 5)* Vii(p, R, 5)°
Wi (o, R, s) Vii(o, R, 5) Voi2(p, R, ) Wio(p, R, 5) Vio(p, R, 5)
Woo1(p, R, s) Va1 (p, R, s) Vo21(p, R, S) Wa1(p, R, s) Va1(p, R, S)
Woio(p, R, S) Voo1 (o, R, s) Vina(p, R, s)
Voro(o, R, 5) Vi21(p, R, )
Vio1(p, R, 5) Voo1(p, R, 5)
Viio(p, R, ) Voo(p, R, s)

2 Integrals can be solved by developing the parentheses in the numerator of (12) and (14), but they are evaluated explicitly
because they are required as an intermediate step for the calculation of the remaining integrals of the corresponding column.

2

Voi2(0, R, 5) = §V111(/0, R,s) — Voio(p, R, 5) (26)
2

Vo21(p, R, s) = ;Vm(p, R,s) — Vooi(p, R, 5) (27)
2

Vinz(p, R, s) = §V211(P, R,s) — Vio(p, R, S) (28)
2

Vi2i(p, R, s) = Evzn(p, R,s) — Vio1(p, R, 5). (29)

Other composed integrals arising in elastodynamic problems that may be convenient to solve jointly from the computational
point of view are

_ 1
Voo1 (0, R, s) = Vgo1(p, R, s) — ;Vm(,O, R,s) (30)

i} 1
Voio(p, R, $) = Vo10(p, R, 5) — §V111(,0, R, s). (31)

The complete list of integrals evaluated in this paper is shown in Table 1.
An approximation to the integral (2) was proposed by Hemsley [4] for 3 values of s as an intermediate step to solve the
following integral

k4 (kp)J, (kR)

dk. 32
k3+1 (32)

Gaﬁy(pv R) = /
0

This integral arises during the evaluation of bending stresses in an infinite plate on a half-space subjected to an axial-
symmetrical load. The denominator of the integrand in (32) may be decomposed into partial fractions as follows

1 1 1 * 1 3
( + ¢ + ¢ ) Wherec:—5+i£ and (33)

k3+l:§ k+1 k+c k+c* 2

c* is the complex conjugate of c. Thus, the 3 values of s for which the integral in (2) was solved are —1, —c y — c*. Note
that the term k* is in the denominator of (2) instead of keeping it in the numerator of (32) as proposed by Hemsley. This is
to the effect that the values of @ do not take negative values for most cases of interest here.

The technique proposed by Hemsley produces accurate results only for relatively low values of p, R and s. Therefore, an
efficient alternative technique even for values of p and s that tend to infinity is presented in what follows. On the other hand,
integrals of type (12) appearing in some elastodynamic problems and which have not been found in the literature are also
solved. Some integrals similar to those shown in this paper have also been solved by Van Deun and Cools [6].

3. Integrals of type W,z,(p, R, 5)

These integrals can be solved analytically. In fact, the work of Kausel [2] includes the solutions of the following integrals
which are then used in solving the integrals of type Vg, (0, R, 5) for 9i(s) >0:

W_100(p. R, 5) = :E%TJo(Eﬁ)Hém) @ (34)

W_111(p. R.S) = i%h GHH? E) (35)
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iT __ _ p
Win(p,R,s) = +— HM @) - 5 36
111(o, R, s) 25211 (Sp)H; "7 (5) 252 (36)
T __ _ 1
£ JoGOH Y E) — = p <R
Woo1(p, R, s) = in . (37)
+—Ji5PHy? () p>R
2s
i __ _
+- i GRHS? (5) p <R
Woio(p, R, s) = i . 1 (38)
£ JoGH G — = p =R
s ss
where the following dimensionless variables are used
__= SR forp <R and __= 5P forp > R (39)
p=p/R - p=R/p '

In these expressions it should be used positive sign and Hankel function of the 1st kind H§1>(§) for J(s) > 0, and negative
sign and Hankel function of the 2nd kind H® () for 3(s) < 0.

Note that these integrals produce complex results even for real values of s, since a discontinuity is presented respect to
the positive axis of 9i(s), and in such case one should adopt the value corresponding to J(s) — 0.

4. Integrals of type V., (o, R, 5)

4.1. Integral Vooo(p, R, S)

The form that the integral takes in this case is

Vooo(p, R, S) = /mwdk

k—s (40)
0 _

A suitable replacement for the product of the cylindrical functions suggested by Hemsley [4] is based on the following
expression given by Watson [5]

‘l b1
Jo(kp)Jo(kR) = ;/ Jo(kr)do (41)
0
where
r=+/p2+R> — 2pRcosb. (42)
By introducing (41) and (42) in (40), and changing the integration order, the following expression is obtained
1 (7 [*Jok
Vooo(p. R.5) = = f Tt 4y, (43)
T Jo 0 k—s

The integration of variable k for 9i(s) < 0 produces [5]

‘l T
Vano(p. Ro5) = - [ (3 [Ha(-s1) ~ Yo(-sr) ao (4
T Jo 2

where Yy (—sr) is the Bessel function of the 2nd kind and Hy(—sr) is the Struve function. Note that for p = Oresultsr = R
becoming the integrand independent of 6

b4
Vooo(0, R, s) = 3 [Ho(—sR) — Yo(—sR)]. (45)
A convenient form to express the integral in (44) involves replacing the argument of the cylindrical functions as follows
1 (7 /m
Vooo(p, R5) = — | (% IHo@) — Yo(2)1) do (46)
T Jo 2
where

Z=—-Sr=—-ST=2zf zZ=-5 T=+/p*+1—2pcosd (47)

with the dimensionless variables defined in (39).
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Relative error
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Fig. 1. Relative error for both approximations for (7 /2 [Ho(z) — Yo(2)]).

The extreme values of parameter z are

z1=z(1—p) for6d =0,

48

zu=z(1+p) forf=m. (48)
Then, it follows that

zz=z and zy=2z forp=0(p =0), (49)

z1=0 and zy =2z forp=1(p =R).

Cylindrical functions in (46) are expressed through the series expansion presented by Abramowitz & Stegun [7]. The
approximation used for low values of the arguments is

(5 @ - Yo@)1),

N 2n+1 ZZn
—D—) ((2 e~ W@/ +y ) ) (50)

22np12

where the summation extends to a finite number of terms Nj. In this expansion,

n

1
) =Y - wherey(0)=0 (51)
v ; , v
y is Euler’s constant and (. . .)!! represents double factorial.

On the other hand, the approximation used for high values of the arguments is

Ny
(5 Ho@ — Yo@1) = (=10 — ! (52)
n=0

where the summation extends to a finite number of terms Ny.

Fig. 1 shows the relative error for both approximations as a function of the modulus of the argument of the cylindrical
functions, considering double precision (1e—16) and taking the maximum value for phase angles of z ranging from —90° to
90° with steps of 0.5°. The reference values of the cylindrical functions for estimating the relative error were calculated using
Maple. The maximum number of terms for the upper approximation is set at Ny = 8 since from this value the approximation
begins to diverge in an oscillating manner. It is noted that the maximum relative error considering in both approximations
is about 1e—7, which is considered acceptable from the engineering point of view. It also suggests that a suitable value for
separating the lower and upper approximations is |z| = 18.

Fig. 2 shows the number of terms required to achieve an accuracy of 1e—8 adopting a maximum of N, = 30 for the
lower approximation and maintaining Ny = 8 for the upper approximation. In this way, errors slightly higher than 1e—8
are recognized and accepted in a range between approximately |z| = 15 and |z| = 20.
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Fig. 2. Number of terms to achieve an accuracy of 1e—8 for (/2 [Hy(z) — Yo(2)]).

By introducing the expressions (50) and (52) in (46) one obtains

22n+l 0
/ an_Hd@ .
0

@n+ DI
Ny N Z2n 0
YD S / In(7) 7"do — - - +oo
1 n=0 22np! 0
Vooo (0, R, 8) = - zm b (53)
= _ - =2n
(In@z/2) +y — ¥ (n) P /0 r"do
Ny g
> o (=1t@en— iz / P2 de
n=0 0
where integration limits between both approximations depend on the extreme values of z
lzy| < 18 = @ = (complete lower solution)
|z| > 18 = 6 =0 (complete upper solution) (54)

lzi] <18 < |zyl = 6 =acos((p>+1— (18/Iz])*)/ (2p)) (mixed solution).

The integrals in (53) can be solved using numerical integration techniques of Gauss-Kronrod type since they do not have
singularities, except the following for n = 0 which is solved as indicated

0 b4 b4
/ In(r) do = / In(r) d6 — / In(r) do (55)
0 0 o

where the 1st term of the 2nd member is null (Gradshteyn & Ryzhik, [8]).
Assessing the integral in (40) for 9%(s) > 0 is performed using (6)

Vooo (0, R, s) = 2W_100(0, R, 5) — Vooo (0, R, —5) (56)

where W_100(p, R, s) is presented in Eq. (34). An identical expression is obtained through the following analytic continuation
relations [5,9]

Hy(—sr) = —Hy(sr) (57)
Yo(—sr) = Yo(sr) F 2iJo(sr) = —Yo(sr) F 2 HY"? (s1).
Introducing these expressions in (44) one obtains
1 (T . (1,2)
Vooo (0, R, s) = — 0} —Hy(sr) + Yo(sr) £2iH, ' (sr) | ) do
T Jo
= +inJo(SP)H"? 5) — Vooo(p, R, —$) (58)
where [8]

/ Hél,Z)(Sr) dg — JTJO(.E,(_))H(()LZ)(g) (59)
0
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4.2. Integral Vo11(p, R, 5)

The form that the integral takes in this case is

* J1(k kR
Vor(p,Rs) = [ LEOIUIR) (60)
0 k—s
A suitable replacement for the product of the cylindrical functions suggested by Hemsley [4] is based on the following
expression given by Watson [5]

koR 7™ sin?(8)
ooy = 22 [ sy 2o (61)
0
where r is defined in (42). By introducing (61) in (60) and changing the integration order one obtains
K (kr S in?(®
Van(p. R = 2 [ [T B0 g D g (62)
The integration of variable k for 9i(s) < 0 produces [5]
spR [T /7 sin?(0)
Vor(o. Ros) = "= | (5 (Hoa(=sr) = Yoa(=sm])
T Jo \2 r
spR ™ sin®(8
— (5 [Hy(—sr) — Yy(—sr)] — 1) © o (63)
b 0 2 r

which vanishes for p = 0. A convenient form to express the integral in (63) involves replacing the argument of the cylindrical
functions as follows

- T 12 0
Vot k) = 2 [ (T i@ - v - 1) T (64)
0

where the dimensionless variables involved are defined in (39) and (47).
Cylindrical functions in (64) are expressed through the series expansion presented by Abramowitz & Stegun [7]. The
approximation used for low arguments is

T 1 Ny B (2/2)2n71 ZZn
—Hz—Yz—l)zf—l " ((n@/2) +y — -
(2 (@ —n@1=1) (z )J’;( ) <( /2y =) T T @n = Dien+ D
(65)
where the summation extends to a finite number of terms Nj. In this expansion,
Jm=>y 11 (66)
n) = - — —
~' 1l 2n
while (.. .)!! represents double factorial.
On the other hand, the approximation used for high arguments is
T all
(5 1@ - n@1-1) =3 (D"@n—DiEn+ Dz 2 (67)
2 v

where the summation extends to a finite number of terms Ny.

Fig. 3 shows the relative error for both approximations as a function of the modulus of the argument of the cylindrical
functions, considering double precision (1e—16) and taking the maximum value for phase angles of z ranging from —90° to
90° with steps of 0.5°. The reference values of the cylindrical functions for estimating the relative error were calculated using
Maple. The maximum number of terms for the upper approximation is set at Ny = 8 since from this value the approximation
begins to diverge in an oscillating manner. It is noted that the maximum relative error considering in both approximations
is about 1e—38. It also suggests that a suitable value for separating the lower and upper approximations is |z| = 18.

Fig. 4 shows the number of terms required to achieve an accuracy of 1e—8 adopting a maximum of N, = 30 for the
lower approximation and maintaining Ny = 8 for the upper approximation. Anyway, the limit of |z| = 18 between both
approximations leads to a maximum number of terms for the upper approximation that does not exceed Ny = 5.
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Introducing the expressions (65) and (67) in (64) one obtains:

Zp
Vou(o,R,s) = —
T

1 0 0
f/ F_zsinzede—/ F'sin?0do + ---
0 0

zZ

InGz/2) +y — )z [?

(e /22:17(/11 ﬁ)(?n)? / P 2sin? 0 do + - - -
N 2211—1 6
2 2201 1)'7/ In(F) F*"~*sin® 6dg — - -- +o
=1 “(n—1)n! Jy

2211 0
72" 1sin? 6 do

@n—DN@n+ DI J,
Ny i
Z(—l)"(Zn —DNRn + 1)!!2—2"—2ﬁ F2"35in% 0 do
n=0 0

363

(68)

where integration limits between both approximations depend on the extreme values of z given in (54). The integrals in

(68) do not have singularities and can be solved using numerical integration techniques of Gauss-Kronrod type.

The evaluation of the integral in (60) for 9t(s) > 0 is performed using (6)
Vo11(p, R, s) = 2W_111(p, R, 5) — Vo11(p, R, —5)
where W_111(p, R, s) is presented in Eq. (35). An identical expression is obtained through the following analytic continuation

relations [5,9]

Hq(—sr) = Hy(sr)
Yi(=sr) = —Y;(sr) % 2iJ1(sr) = Yy(sr) & 2iH\"? (s7).

(69)

(70)
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Introducing these expressions in (63) one obtains

R (™ in*(6
Vorr(p, Ro9) = =22 O (3 [msn = vitsn 5 2im"6r) — 1]) Smr( Lao
= +in);3p)H"? ) — Vo1 (p, R, —5) 71
where [8]
2
/ H(l 2 )sm(é’) d@:ljl(Eﬁ)Hil’z)G). (72)
0 spR

4.3. Integral V111(p, R, S)

The form that the integral takes in this case is

Vin(p.R,$) = whf{"")ﬂdk (73)
0 (k—s)

The argument of this integral can be expressed as

Jikp)ikB) 1 (Ji(ko)1(kR) — J1 (kp)J1 (KR) (74)
kk—s) s (k—5s) k ’
Thereby
1
Vin(p, R, s) = g(Von(/O,R, s) — Ho11(p, R)) (75)
where the auxiliary integral possessing the form defined in (22) is
 J1(k kR 0
Ho11(p, R) :/ Mdk =L (76)
0 K 2
A more efficient alternative to solve the integral in (73) is by introducing (61) into (76) and changing the integration order
sin (9) PR [T sin?(6)
Hp11(p, R) = / / Ji(kr)dk do = — S—do. (77)
T 0 r
Introducing (63) and (77) into (75) one arrives for N(s) < 0 at
sin (0)
Vit(p, R, ) = —— = [H1( sr) — Yi(=sr)] =1 + . (78)
Using the dimensionless varlables defined in (39) and (47) one obtains
zp [T (m sin (0)
Vit (p, R, s) = */ (* [Hi(2) —-Y1(2)] = 1~— *) (79)
st Jo 2 z r
Introducing (65) and (67) into (79) one arrives at
7 1 7
—/ r~'sin®0 do — j/ F2sin*0do + - -
0 z Jo i
InGz/2 _ s2n—1 0
(In/2) +y — y(m)2 / P2 sin 0 do + -
22n=1(n — 1)!n! 0
1% LR, 5) = — - _ In(r) r*"“sin“ 0 do — - - - + - 80
11(0, R, 5) o | = 2010 — 1)In! /(; (r) (80)

2211 0
72"~ 1sin% 6 do
@n—DN2n+ D! Jo

Ny T
> o (=1"@n—nien + 1)!!2—2"—2/ 723 5in? 0 do
n=0

0

where integration limits between both approximations depend on the extreme values of z given in (54). Once again, the
integrals in (80) do not have singularities and can be solved using numerical integration techniques of Gauss-Kronrod type.
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The evaluation of the integral for %(s) > 0 is performed using (5)
Vii(p, R, s) = 2s Wi (o, R, 5) + Vi1 (o, R, —s)
where W111(p, R, s) is presented in Eq. (36). In this way

i 12) P
Vin(e,R,s) = i?fl(SP)Iﬂ 5 — 5 + Vi11(p, R, —s).

An identical expression may be obtained through analytic continuation relations.

4.4. Integral Vo11(p, R, S)

The form that the integral takes in this case is

[ Ji(kp)]1 (kR)
V211(/0»R75)—/0 k-5 dk

The argument of this integral can be expressed as
Jitkp)J1(kR) 1 (Ja(kp)J1(kR) — J1(kp)]1(kR)
KRk—s) s\ k(k—s) k2 '
Thereby

1
Va1 (o, R, s) = E(Vm(p» R,s) —Hi11(p, R))
where the auxiliary integral defined in (22) is

* J1 (k kR 2 s
— [ MR a— 22 (@ + 0EG) + 7 - DK )
0

Hi11(o, R) 37 5h

365

(81)

(82)

(83)

(85)

(86)

where E(...) and K(...) represent complete elliptic integrals of 1st and 2nd kind, respectively (these functions usually

appear in static solutions for s = 0).

A more efficient alternative to solve the integral in (83) is by introducing (61) into (86) and changing the integration

order
R [T (™ Ji(kr) . sin®(® R [™ sin’(0
Hy1(p, R) = ‘L/ / Jukr) 3y SINO) gy _ PR ©) 4o,
T Jo 0 k r T Jo r
Introducing (78) and (87) into (85) one arrives for 9i(s) < 0 at

sin?(8)
r

do.

pR (7 (n 1
Va11(p, R, 8) = o f (5 [Hi(—sr) — Yi(=sr)] + )
0

Na

Using the dimensionless variables defined in (47) one obtains

Zp (" 1) sin®(0
Van(p,R ) = o / (% (H,(2) - Y:(2)] - ;) S‘“F( ) 6.
0

Introducing (65) and (67) into (89) one arrives at

T -l b1
[Wsinzede—tf F2sin?0do + - -
0 0

z
In(z/2 7 s2n—1 0
( n(Z/ ) + Y w(”))z / F2n—2 Sin2 0 do + ...
22n=1(n — N!n! 0
__ N 52n—1 o
_ AP =" 27/ In(F) F" 2 sin 6 df — - - -
Vau(p, R, s) = oy ; 22-1(n — 1ln! J, )
22n 0

0
/ 72"~1sin% 6 do
@n—D"2n+ D J,

Ny b
Z(—l)"(Zn — DIE@n + Hhz—2"2 / 723 sin? 0 d
n=0 0

(87)

(88)

where integration limits between both approximations depend on the extreme values of z given in (54). The integrals in

(90) do not have singularities and can be solved using numerical integration techniques of Gauss-Kronrod type.
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The evaluation of the integral for 3(s) > 0 is performed using (6)
Va11(p, R, 8) = 2Wi11(p, R, $) — Va11(p, R, —5)

where W111(p, R, s) is presented in Eq. (36). In this way

_ i 1,2) = o
Va11(p, R, s) = isjh(S;O)Hl ) — i Va11(p, R, —9).

An identical expression is obtained through analytic continuation relations.

4.5. Integrals Voo1(p, R, s) and Vy10(p, R, 5)

The form taken by the first of these integrals is

0 —S

This integral can be expressed as

0 1
Voo1(0, R, ) = —Vi11(p, R, $) + —Vi11(0, R, 5).
ap P

The derivative of V111(p, R, s) is obtained by differentiation of the integrand in (78) as follows

2 p2 o g2
SR(p” —R"+17) (% [Ho(—sr) — Yo(—sr)] + &) 4o

E)V (0. R.5) 1/’” 2r2 in(6) do
i RS = — sin .
ap M P 7Jo | RG> —R® (m 1
2 (5 Hi(=sr) = Yi(=sn)] = 14 —
r 2 sr
Hence, for M (s) < 0Eq. (94) yields
sR(p? —R*+71%) (7 1
1 (7 % (5 [Ho(—sr) — Yo(—sr)] + ;) +e
Voo1(p, R, 5) = —/ sin®(6) do.
7Jo | RW*—R =1 (7 1
(S (=) = Yi(=sn)] = 1+ —
r 2 sr

Using dimensionless variables one obtains for p < R

(pcost — p2) (z% [Ho(2) = Yo@)] = 1) + -

1 (7 sin 6
Voo1(p, R, s) = — . 1 ——do

TJo \2(pcosh —1) (E[Hl(l)—yl(z)]—l—*> r

z
while for p > R
- T

o (Peost = 1) (25 Ho@) — Yo@I = 1) 4+ |

0 2 sin“ @
Voo1(p, R, 8) = — ——do.

7 Jo

2(5cos6 — ) (% (H:(2) — 1(2)] — 1 - ;) P

(91)

(92)

(93)

(94)

(95)

(97)

(98)

The function (zrr /2 [Hy(z) — Yo(z)] — 1) should be assessed eliminating the first term in (52) for the purpose of avoiding

numerical problems.
The solution is divided into two parts

Voo1(p, R, 5) = Vo1 (0, R, S) + Vg, (0, R, S).

(99)
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Using the adequate approximations for low and high arguments the following expressions are obtained

6
—/ fo(@)73sin?0do + - - -
0

2n+2
m/ fo(®) 7" 'sin?6 do — -
1 Ny |z
Voor (0, R.5) = — 2D . ,2/ fo0) In(®) P*"2sin* 0do —--- |+
n=0
fa@) 22" -2 2
W/(; fo®) T sin“ 0 d6

Ny T
Z(—l)”(Zn - 1)!!22*2"[ fo(8)72"3sin 6 do
n=1 6

7 1 [~
—/ f1(0)F_3sin29d9—:/ fO) T 4sin0do + - -
0 Z Jo

fy@) 2!
22n=1(n — 1)!n!
2n

g
/ fO) T 4sin0do + - -

\/3
1 z
Voor (0, R $) = — Z(_l)n m/ [1(8) In(F) " *sin 0 do — - -

22n

@2n— D2+ D!

/ f1(0) 73 sin? 6 do
0

Ny T
Z(—l)”(Zn — DN@2n+ HNz—22 / f1(0) 772" 5 sin? 6 do
n=0 %

where

@ =In@E/2)+y — ¥ )
fo(0) = pcost — p°
[8)=2(peost — 1] P =R
fo®) =p(pcost — 1)
e _ R.
f10) =2p (pcoso —p*) | ©~
The evaluation of this integral for 3(s) > 0 is performed using (5)
Voo1 (0, R, s) = 2s Woo1(p, R, s) + Voo1(p, R, —5)
where Wyo1(p, R, s) is obtained from (37). In this way

fa@) =In@z/2) +y - 1//(71)}

2
+inJoGp)H? () — = + Voor1(p, R, —s) p <R
Voo1(p, R, s) = ! S

+in)15B)Hg > () + Voor (p. R, —s) p >R
The remaining integral is solved considering that

Voio(p, R, s) = Voo1 (R, p, 5).

4.6. Integrals Vio1(p, R, s) and V119(p, R, 5)

The form taken by the first of these integrals is

Vio1(p,R,s) = /mwdk.
0 k(k — s)

This integral can be expressed as

0 1
Vio1(o, R, s) = —Van(p, R, s) + —Va11(0, R, 5).
ap p

367

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)
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The derivative of V511 (p, R, s) is obtained by differentiation of the integrand in (88) as follows

R RZ 2
) y e (PR (T by - vo-s) +
afvzn(p, R, s) = ;f R(p> —R?) (7 1 sin 6 do.
P L (— [Hy(—s1) — Y1(=s1)] + —)
sr 2 sr

Hence, for M(s) < 0 Eq. (107) yields
R(p? — R +71?%)
o [T (5 Ho(=sn) = Yo(=s)1) +
1 2r2 .2
Vioi(o, R, s) = — R(p? — R — 2 sin“ 0 dé.
T _R_
C\—— (*[Hl( sr) — Y1(—Sr)]+§>

sr3

Using dimensionless variables one obtains for p < R

(pcosd — p%) (% [Ho(z) — YO(Z)]) +

z [T sin® 0
Vioi(p, R, s) = */ 2 e 1 7‘19
st Jo \ Z(pcost — 1) (— [H1(Z)—Y1(Z)]—*) r
z 2 z
while for p > R
5cost — 1) (= [H Y,
55 o (Be0st =1 (5 Ho@ —%o@]) + "y
Vo ks =2 [ ) N s
ST Jo ~(pcost — 5% (5 [H:(2) — Y1(2)] — ;) r

The solution is divided into two parts

Vioi(p, R, $) = Vip; (0, R, S) + Vo, (0, R, ).

Using the adequate approximations for low and high arguments the following expressions are obtained

2n+1 _— )
fo(@) " sin“6do — ---
2n+1 "2/
" ( )
DG ST '2/ fo(0) In(®) " sin*6df — -+ | + -
‘;Znn'z f fo(0) 7" 2 sin% 6 do
. 0
Ny T
Z(—l)"(Zn— 1)!!22*2“*1ﬁ fo(0) 72" sin 6 do
n=0 0
1 (7 P ) (" . )
- f1(0) r sin Gdé—q fi(@)r“sin“60do + - --
Z Jp z° Jo
7) 72n—2 0 B
722&5(31 1)'n'/ Fi(6) P sin® 6.do + - - -
_ N 7
z _ 1\ 2n—4
me(p,R,s)zg n;( D m/ fi(®) In(®) P *sin*0do — - | +
ZZn 1 3 5
o3
(2n—1)!!(2n+1)!!/0 [T sin6 df
Ny T
Z(—l)”(Zn —DI@2n + 1)!!2*2"*3ﬁ f1(0) 772" sin 0 db
n=0 6

where the expressions in (102) and (103) remain applicable.
The evaluation of this integral for 9%(s) > 0 is performed using (6)

Vio1(p, R, s) = 2 Wyo1(p, R, 5) — Vi01(0, R, —5)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)
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where Wyo1(p0, R, s) is obtained from (37). In this way

i __ 1,2) = 2
i?Jo(S,O)Hl ) - s Vioi(p,R,—s) p <R
Vio1(o, R, s) = i .
i GBIHS"? (5) — Vio1(p, R, —5) p >R

The remaining integral is solved considering that

Vio(p, R, 8) = Vioi(R, p, 5).

4.7. Integrals Voo2(p, R, s) and Vyo(p0, R, 5)

The form taken by the first of these integrals in this case is

* Jo(kp)J2(kR) i
————dk.
(k—y5s)

This integral can be expressed as

Voo2(0, R, 5) =

2
Voo2(0, R, 5) = §V101(,0, R,s) — Vooo (0, R, 5).

Hence, for 9i(s) < 0 Eq.(119) yields

2 P2 42y cin?
((,0 R ;i;r )sin“6 1) (% (Ho(—sr) —Yo(—ST)]> ‘..

2(p* — R* —1?)sin? 0 <n 1 )

1 b
Vooz2(0, R, 5) = */‘
T Jo

- = [Hy(=sr) — Yi(=sr)] + —

sr 2 sr

Using dimensionless variables one obtains for p < R

sin®
F

(2 (p* — pcosf)—— — 1) (% [Ho(2) — YO(Z)]> +o

1 T
Vooz (p, R, 5) = — do
002(0: R, ) 71/0 4 _ sin?6 (7 1
~(1=pcost)—— (= [Hi(@) —=V1(2)] — =
z r 2 z
while for p > R
~ sin® 6 T
1 o 2(1_,0(:059)'_‘72_1 (E [HO(Z)_YO(Z)])‘i‘o..
Vonz(p, R, 5) = */ . dé.
7 Jo sin“ 6

4 5, _ b4 1
—(p* = pcost)—— | - [Hi(2) —Y1(2)] — -
z r 2 z
The solution is divided into two parts

Vooz(p, R, 5) = Voo (0, R, S) + Voo (0, R, $).

Using the adequate approximations for low and high arguments one obtains

Z2n+1 o
ey RO
13 0
N n 22:1 0
. 2= Jon / fo®) In(®)P"do — - |+
0 n=0 ! 0
Vooz(p:R,S)Z; L@ (0 )
=an
YT /0 fo(6) 7"do
Ny 7
Z(—U"(zn—nnzz—z"—l[ fo(0) T2 'do
n=0 0

de.
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(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)
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%fﬂﬁw)f—‘d@— —/ f10)F2d0 + -
0

fb(z) ZZn 2 f -2n—2
_ 9)r"°do + - -
22”—1(11 1)‘n‘ f[@er +
1§ zn
_ 1\ =2n-2
Vooa (0, R, 5) = p ;( R 22-1(n — 1)n 1/ f1(9) In(r) r™"do — +
-2n 1

@n— Dll@n + DY f @ Fdo

Ny
Z(—])"(Zn —DN2n+ 1)112*2"*3ﬁ f1(6) F2"3dp
n=0 0

where the expressions in (102) remain applicable, while

fo(0) = 2 (p? — pcosO)sin® 0/ — 1 —x
f1(0) = 4 (1 — pcosH)sin® 0 /7> p=
fo(@) =2(1 — pcosf)sin?0/7 — 1 g
f1(0) = 4 (p? — p cos @) sin® 0 /7> P .

The evaluation of this integral for N(s) > 0 is performed as

. . _ 4
+inJo(3p)HS" (5) — 5 —Vo2(p. R =) p <R

+in,p)Hg"? () — Vooa (p. R, =) p>R

Vooz(0, R, s) =

The remaining integral is solved considering that

Vo2o(p, R, s) = Vo2 (R, p, 9).

4.8. Integrals Vy12(p, R, s) and Vy1(p, R, 5)

The form taken by the first of these integrals in this case is

sz('o’R’ S) = /oo]l(kp)ﬂdk
0 (k—s)

This integral can be expressed as
2
Vo12(p, R, s) = ﬁvlll(ps R,s) — Voio(po, R, 5).
Hence, for i (s) < 0 Eq. (130) yields

—sp(R* — p? +1?)

1
(7[H0( sT) — Yo(—Sr)]—f——) — ...
Ssr

Vo12(p, R, 5) 1/7[ 2 in® 0 do
012 ,0’ ,8) = — 2 2 sSin .
T R- — +r 1

° %(—[Hﬂ sr) — Y1<—sr>1—1+§)

Using dimensionless variables one obtains for p < R

o [T
Voiz(p, R, s) = */
0

T

_ s
(1= pcos) (23 [Ho@) —Yo@I = 1) =\ o

‘l —
2(1— j cos0) (%[m(z) V@] - 1- ;) P
while for p > R

(p* — pcosB) (z% [Ho(z) — Yo(2)] — 1) -

1
V012(P,R,5)=*/ o 7 10\ | =
T Jo \2(p* —pcosh) <E[H1(Z)—Y1(Z)]—1—;> r

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)
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The solution is divided into two parts

Voi2(p, R, 5) = Vi, (0, R, S) — V1o (p, R, $).

Using the adequate approximations for low and high arguments one obtains

6
—/ fo(0)73sin0do + - - -
0

2n+2
m/ fo(@)fzn lSll‘l 60do —---
B Ny | oz
Voo (p. R, s) = - > (=1 T ‘2/ fo(0) In(F) 7" %sin0do — - |+
n=0
2n+1
fa(zlz)nl 2 / fo(0) 72 sin® 6 do
n! 0
Ny T
Z(—l)”(Zn - 1)!!22*2"[ fo(8) 723 sin 6 do
n=1 6
é 1 T
—/ f1(9)F‘3sin29d9—f/ f1(©)F *sin0do + - - -
0 Z Jo
2 2211—1 0 _
%/ f1(®) "4 sin*0.do + - - -
/-) Ny n Z2n—1 0 - R
! ==t D' —m 0) In(F) 7" sin? 6 do —
Vol ko9 = 1 [ 20" | e fo £1(6) InF) P~ sin

22)1

@n— DN2n+ D!

where the expressions in (102) remain applicable, while

fo(®) = 5 (1— pcos)
£16) = 26,6) } p=R

fo(0) = p*> — pcoso
£1(8) = 2fo(8) } > R

The evaluation of this integral for 3 (s) > 0 is performed as

= i GOHS P @) — 22 + Vora(p. R. —5)
Voi12(0, R, 8) = . s
+in),SHH;"? (5) + Vora(p. R, —5)
The remaining integral is solved considering that

Vo21(p, R, s) = Voo (R, p, 5).

4.9. Integrals Vi12(p, R, s) and V131(p, R, 5)

The form taken by the first of these integrals is

Vin(p, R, 5) = /wwdk
0 k(k — s)

This integral can be expressed as

2
Viiz(p, R, s) = ﬁvzn(/), R,s) — Viio(p, R, $).

7
f f1(0) 73 sin? 6 do
0

Ny i
Z(—l)”(Zn —DIE2n4 Nz~ / f1(0) 72" sin% 0 do
n=0 0

P =R

p > R.
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(136)

(137)

(138)

(139)

(140)

(141)

(142)
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Hence, for M (s) < 0Eq. (141) yields

RZ_ 2
PR 2D (T g (sr) = Yo(—sr) +

1 (7 . 9
=—— 0deo.
Vinlo.R.5) =2 /o p(R? —p* +1%) (7 [Hy(—sr) — Yy(=sr)] + l) N
Sr

sr3

Using dimensionless variables one obtains for p < R

(1—pcosh) <% [Ho(z) — Yo(Z)]> -

Zp [T sin 6
Vina(p, R, s) = — 2 T 1 ——do
St Jo \ Z(1 - pcosh) ([Hl(z)—Y1(Z)]—> '
z 2 z
while for p > R
_ _ big
o (PP = peoso) (S [Ho@ = Yo@]) =\ o,
Viiz(p, R, s) = po 2 ., T 1 ) do.
T Jo |\ =(p* — pcos) <f[H1(2)—Y1(Z)]—f)
z 2 z
The solution is divided into two parts
Via(p,R,s) =V, u(psR s) — fu(P,R,Sl
Using the adequate approximations for low and high arguments one arrives at:
2n+1 on1
_— 0) " 'sin?6 do —
(z +1)H2/ fo®
NL
—1 2n—2 e
, ;( ) — .zf fo(®) In(F) P2 sin*0do — --- | +
Vm(p R,s) = — on
i L&) f 6) 7" sin” 60 do
22np |2 0
Ny
D o (=1"@n— 11z 1f fo(®)F 2" 3sin® 0 do
n=0
1 [7 1 (7
:[ f1(9)F‘3sin29d9—;/ f1(0)F*sin 0 do + - - -
Zz Ja z° Jo
h@Z"2 7 e
m Of](G)T sin“6db + ---
_ N =2n—2 [
| E2 DYk 27/ 0) In(F) P" 4 sin? 0 df — - | + -
Vig(o,R.5) = — ; 221 (n = Dint J, f10) In(@) 7"~ * sin’
Z2n—1 7
/ f1(0) 7" 3 sin 6 do
@n—DNC2n+ D! J,
Ny b4
> (=1"2n— 1)!!(2n+1)!!z—2"—3ﬁ f1(0) T2 sin® 0 do
n=0 0

where the expressions in (102) and (138) remain applicable.
The evaluation of this integral for i (s) > 0 is performed as

1! . T GHHM? G) — ? —Vin(o,R, —s) p <R
Viz(p, R, s) = i 1
i?Jz(Eb)Hf 2(E) = Vina(p, R, —5) p >R

The remaining integral is solved considering that

Vi21(0, R, ) = Viz(R, p, 3).

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)
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4.10. Integrals Vooi (p, R, s) and \7010(p, R, s)

The form taken by the first of these integrals is defined in (30), resulting for 9i(s) < 0in
sR(p?> —R? 4+1?)

— 1 T 2r2
Voo1(p, R, 5) = ;/0 R(p? — R?) [ 1
4——;—7<4{Hd—v)—ﬂ0ﬂ0]—l+4J

r 2 sr

( [Ho(—sr) — Yo(—sr)] + slr> 4.
sin?(0) dé. (151)

Using dimensionless variables one obtains for p < R
_ _ b4
_ | e [(@eost =) (25 @ — Yo@] = 1)+ (oo
Voo1 (0, R, s) = —f . . 1 5 do (152)
TJo \(p*—1) (5[H1(Z)—Y1(Z)]—1—;>

while for p > R

_ T
ﬂ<mwhnéjm®—mm—0+ sin?(9)

= do. (153)

Vooi(p, R, s) =

|

(T 1
0 \A=p) |5 H@-Y1@D)]-1--
2 z

The solution is divided into two parts

‘_/001(,0,R, s) = _(?01(,07 R,s) +‘_/0101(P,R, s). (154)
Using the adequate approximations for low and high arguments one obtains

7
—/ fo@) 7 3sin0do + - -
0

Z2n+42
m/ fo(0) 7" 'sin® 6 do —
\/3
‘_/O R = l Z(_l)n s f(9) 1 (—)—Zn—z . zedg_ L. -
001(0, R, S) T 22012 0 n(r)r sin ( |
n=0 12 J,
5\ 52n+1 0
: 0
Ny 3
Z(_l)n(zn — 1)!!22_2”ﬁ fo(6) =23 6in2 9 do
n=1 f

é -l b g
—/ f1(9)F‘3sin29d9—§ﬁ f(O)F4sin?0do + - -
0 6

>\ 52n—1 4
%/ f1@®) P *sin*0do + - - -
— 1 L n 2211 1 _
Vooi (0, R, 5) = p Z(_l) m/ f1(0) In(F) " “*sin0do —--- | + -+ (156)
2 F2n-3 G2
(2n—1)”(2n+1)H/ f1(0) """ sin” 0 dO
Ny
Z(—l)“(Zn —DN@2n+ 1)!!2‘2“_2ﬁ f1(0) 72" sin? 0 do
n=0 0

where the expressions in (102) remain applicable, while

_ = _ =2

Jo(6) = p cost p} b <R
fi@0) =p~ -1

fo(6) = p (P cosd — 1)
f0) =5 (1- %) } p=Fk

(157)
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The evaluation of this integral for N (s) > 0 is performed as

1 1 _
+im <Jo(§ﬁ) —5 @3)) H? () — < +Vooi(p. R =) p =R

Voo1(0, R, s) = _ (158)
. 2= 1,02 - P 5
Tinf1(5p) | Hy ™ (5) — $H 6|+ Al Voo1(p, R, =s) p>R.
The remaining integral defined in (31) is solved considering that
Voio(o, R, $) = Vo1 (R, p, 5). (159)

5. Integrals of type W,4(p, R, s)

5.1. Integral W_19(p, R, 5)

This integral can be solved without problems developing the parentheses in the numerator of (14) and using expression
(34)

W_10(p, R, 5)

/OO kjo(kp) (1 — Jo(kR)) dk
0 (k2 — s2)
= W_100(p, 0,5) — W_100(0, R, 5) (160)

that results in

=7 (2 6P) ~oGPHS V@) p <R

W_10(p, R, s) = ,'72-[ (12) N (161)
= Hy' Y 6) (1~ JoGp)) p>R.
5.2. Integral Wo;(p, R, 5)
This integral can also be solved developing the parentheses in the numerator of (14) and using expression (38)
- ® J1(kp) (1 — Jo(kR
Wor(o.R.5) — / Diko) (1= JokR)
0 (k? — s%)
= Woi0(p, 0,5) — Woio(0, R, s) (162)
resulting in
i 1
) o= (B 60) —hEDHP®) - — p <R
Woi(p,Rys) =1 2 ssp (163)

L2 HIDE) (1 JoGp) p>R

5.3. Integral Wig(p, R, 5)

This integral cannot be solved by developing the parentheses in the numerator of (14) since the condition (9) is not
satisfied

* Jo(kp) (1 = Jo(kR))
k(k? — s2)

Anyway, the parenthesis in the numerator of the integrand can be expressed as

Wio(p, R, s) = dk. (164)

R
(1 —Jo(kR)) = k/ Ji(ka)da. (165)
0

By introducing (165) in (164), and changing the integration order, the following expression is obtained

: [ ko (k)
Wl()(p,R, S) = A /0‘ de da (166)
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in which the following integral, whose solution is given in (37), can be identified
% Jo(kp)J1 (ka)
(k% — s2)

Thus, the integral in (164) can be computed as

Wooi1(p, a,s) = dk.

p R
/ Woo1(p, a, S)afpda"f‘/ Woo1(p, a,S)a=pda p <R
Wio(p, R, s) = 0 £

R
/ Woo1(p, a, $)a<pda o >R
0

resulting in

i __ __ _ In(p)
] =5 (HS"6p) —hGPH®)) + =7~ p =R
Wio(p.R.s) =1 <° s

1T 1,2) /= __
:l:?HO () (1 =Jo(sp)) p >R

5.4. Integral Wy1(p, R, s)

This integral cannot be solved by developing the parentheses in the numerator of (14)
oo
= Ji(kp) (1 — Jo(kR))
Ws1(p, R, s) = —————dk.
21(p ) /o K2 (k2 — 52
However, introducing (165) in (170) and changing the integration order one obtains
R 00
- J1(kp)J1 (ka)
Ws1(p, R, s) = —_—
21(0, R, s) fo k(R — )

in which the following integral, whose solution is given in (36), can be identified

% Ji(kp)J1(ka) dk

k(k% — s2)

Thus, the integral in (170) can be computed as

dkda
Wini(p, a,s) = /
0

P R
/ Wi (p, a, S)agpda+/ Wiii(p, a,8)q>pda  p <R
0 o

Wa1(p, R, 5) = R
/ Wi (p, @, S)a<pda o >R
0
resulting in
i __ __ _
o (H'* @) — 1 GPHS P ) — -+
- 1 5p p =R
= — — — (1-=2In(p
Wa1(0, R, 5) s as ( ()
i <A2
in _ __ 5p
£oSH 6 (= JoGP) — 5 p >R

6. Integrals of type ‘_/a,g(p, R, s)

6.1. Integral Voo(p, R, s)

This integral can be solved by developing the parentheses in the numerator of (12)

_ * Jo(k 1—Jo(kR
Voo(o, R, s) = / JO(IO)(E{—SJ)O({))dk = Vooo (0, 0,5) — Voo (0, R, 5).
o —

375

(167)

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)
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For N (s) < 0is used (53) together with

|
Vooo(p, 0, 5) = ]0((,0)

% [Ho(—sp) — Yo(—sp)]

% [Ho(Zp) — YoZP)] p <R
ZIH@ —Yo@]  p>R
while for 9i(s) > 0 according to (4) and (14) results in
Voo(p, R, 5) = 2W_19(p, R, s) — Voo (p, R, —5)
tix (Hy'? G5) — JoGPH™”®)) — Voo(o. R =) p <R
+irHg"? () (1 - Jo(55)) — Voo(p, R, =) p>R

6.2. Integral V11(p, R, s)

This integral can also be solved by developing the parentheses in the numerator of (12)

_ I (k 1—Jo(kR
Vii(p,R,s) = / Mpi(—h())dk = V110(p, 0,5) — Vi10(0, R, 5).
0 (k—s)

For 9i(s) < O are used (113)-(115) considering (118), together with

o / 1 1
Vo, 0.9 = [ A ae— (% (Hy(=sp) — Yi(=sp)) + Sp)

1 /7w o _ 1

—= <* (Hi1(zp) — Y1(zp)) — :) o <R
s\ 2 zZp
1 /7w _ _ 1

—= <f (Hl(Z)—Yl(Z))—f> o >R
s\ 2 z

while for 9i(s) > 0 according to (4) and (14) results in

Vii(p, R, s) = 2Woi(p, R, 5) — Vi1(p, R, —s)
i __ __ _ 2 ~
£ (H"? 65) —h GDHS @) — 55~ R =9 =K

j:inH(l’z) _ _ _
< () (1 —JoGp)) — Vir(p, R, —s) p >R

6.3. Integral Vio(p, R, s)

(176)

(177)

(178)

(179)

(180)

This integral cannot be solved by developing the parentheses in the numerator of (12) since the condition (9) is not

satisfied

R
0 (k—s)

However, this integral can be expressed as

- 1 - _
Vio(p, R, 5) = < (Voo(p. R, 5) — Hoo(p. R)) .
For M(s) < 0is used (175) together with (see expression (22))

/wjo(kp) (1 —Jo(kR)) dk = {—ln(,a) p <R

Hoo(p, R) =
o k 0 p >R

(181)

(182)

(183)
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Fig. 5. Relative error for integral Voo (0, R, S).
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Fig. 6. Relative error for integral Vp11(p, R, 5).

results in

while for 91(s) > 0 according to (3) and (14)

s) + Vio(p, R, —s)

R5

Vio(p, R, 5) = 2s Wyp(p,

(184)

))+...) >
p > R.

g

\/
wvy
|
o
N p7
8 =
CTo i
T +
s = 2
o | 1Q
= - )
| 2 =)
Y . —=
s 3
~— =) \
& > =
L+ e
o
=3 I,
W;S,m\ »w I
H .mis
SNS————  H
[ ——

6.4. Integral Vo1 (p, R, s)

This integral cannot be solved by developing the parentheses in the numerator of (12)

(185)

k.

d

* Jikp) (1 — Jo(kR))
kZ(k —s)

J
However, this integral can be expressed as

Va1(o, R, s)

(186)

).

Vii(o, R, s) —Hy1(p, R)

~(

N

Va1(p, R, s)
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o

[
.

10F
-40

Re( 5)

=0.5.

Fig. 9. Imaginary part of Vyq; for p

For 9i(s) < Ois used (178) together with

(187)
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Fig. 10. Modulus of Vj; for p = 0.5.
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while for 91(s) > 0 according to (3) and (14) results in

Va1(p, R, s) = 2sW31(p, R, $) + V21(0, R, —5)

(188)

=
p > R.
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Fig. 15. Real part of Vy;o for p = 0.5.

7. Accuracy assessment for some integrals

For the purpose to estimate the accuracy of some of the described integral ADVANPIX [10] has been used. This toolbox
equips MATLAB [11] with a multiple precision floating-point numeric type and extensive set of mathematical functions that
are capable of computing with arbitrary precision.

Figs. 5 and 6 show relative errors for Voo and Vpq; integrals that arise from the comparison of results obtained with
standard functions using double precision and with the ADVANPIX toolbox using 90 digits of precision. The maximum
values for phase angles of zZ ranging from —180° and 180° each 2° were taken. The calculations for p — 0 were made
with p = 0.001 while those for p — 1 were made with p = 0.999. In both figures it can be seen that relative errors for
p — 0 matches those of Figs. 1 and 3 since the integrands of the involved integrals become independent of 6. In fact, the
values of Voo for p = 0 are obtained through (45). Relative errors for p = 0.5and p — 1 can be sensitive to the parameters
defined for numerical integration through techniques of Gauss-Kronrod type. For the figures of this section quadgk MATLAB
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Fig. 18. Real part of V1 for p = 1.

toolbox has been used with the following relative tolerances: RelTol = 1e — 13 for double precision and RelTol = 1e — 20
for 90 digits of precision.

8. Graphical representation of some integrals

By way of example Fig. 7 shows the values of the integral Vj1; through contour lines for real and negative values of s (in
this case, the integral becomes real). The values of this integral for complex values of s and p = 0.5 are shown in Figs. 8-10,
while Figs. 11-13 show the corresponding values for p = 1. Graphs with the same characteristics to those already described
but for the case of integral Vyo for p < R are shown in Figs. 14-20.
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Fig. 20. Modulus of Vg1 for p = 1.
9. Conclusions

The basic integrals that are solved in this paper involve the product of two Bessel functions as argument. The
representation of this product through definite integrals, together with the change of the integration order, provide an
efficient way of solving these integrals that are essential for the implementation of a first order thin layers formulation. This
formulation can be used both for the study of the dynamic response of systems with soil-structure interaction and for the
site characterization by wave propagation methods.
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