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Abstract  

This work addresses the evaluation of the stiffness of fiber-reinforced composite laminates, by 

means of a computational meso-mechanic model, considering two non-uniformly spaced 

transverse matrix cracks. Laminates with [0n/908]S and [908/0n]S, with n = 1 and 8, have been 

studied. The meso-mechanic model includes a three dimensional Finite Element continuum 

model at meso-scale and the macro-scale contains a classical thin laminated plate model. 

Periodic boundary conditions were used and the stress resultants were evaluated accounting for 

the equivalence of mechanical power between scales (Hill-Mandel principle). The results 

obtained with the present model showed good agreement with numerical and experimental data 

reported in the literature. A parametric analysis allowed identifying the stiffness components 

which are more influenced by a non-uniform crack distribution. The results suggest that the 

model with uniformly distributed cracks underestimates the in-plane and bending stiffness, 

while the bending-extension coupling stiffness components are overestimated. 
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Polymer-matrix laminated composites are important structural components in engineering 

structures, for that reason there is an increasing interest in understanding their behavior under 

different loads during manufacturing and service. One of the first damage modes that takes place in 

a laminate is the appearance of matrix cracks in lamina spanning the complete ply thickness and 

running parallel to the fibers; they are also known as ply cracks, intra-laminar cracks, or transverse 

matrix cracks. Transverse matrix cracks are generated by tensile and shear stresses in a lamina of 

the laminate following the growth of microscopic defects into meso-scale cracks [1]. Transverse 

matrix cracks leave the fibers unprotected from chemical gas or liquid agents. These transverse 

matrix cracks seldom produce a catastrophic failure of the composite component but the reduction 

in plate stiffness can affect the structure functionality and can also trigger other failure modes as 

delamination, fiber breakage, and fatigue life reduction ([1] - [3]). Therefore, understanding 

stiffness reduction in laminates is a critical aspect in structural functionality and failure. 

Experimental studies are crucial for discovering underlying failure and deformation 

mechanisms but they are always costly and time-consuming, making computational models a 

proper powerful tool to exploit experimental evidence and reduce the number of laboratory tests. 

Models with various levels of complexity have been reported in the literature for the prediction of 

laminate stiffness reduction due to transverse matrix cracks, starting from the basic Ply Discount 

method ([4], [5]), then models based in continuum or discrete damage mechanics ([6], [7]), Crack 

Opening Displacement (COD) methods ([3]), variational methods ([8] - [10]), synergistic damage 

mechanics ([16], [17]), and two-scale numerical models ([2], [3], [18] - [21]). Two-scale models 

have the advantage of presenting a minimum of approximations and having the possibility to 

account for more details than other approaches. 

Models for flexural stiffness reduction due to transverse matrix cracks confront more 

difficulties than the models for in-plane stiffness reduction. Also, as unsymmetrical laminates 

present extension-bending coupling, modeling such laminates demands specific formulations. 

Therefore, just a limited number of works can be found on flexure deformations compared with 
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those on in-plane deformations (see for example [1], [3], [5], [20], [22]). Earlier works on flexural 

deformations and transverse cracks such as [11] based on a self-consistent model for lamina 

properties [12] can be found. In the last two years, the procedure reported by Makins and Adali [11] 

to obtain the reduced flexure stiffness was used in [13] - [15] for structural analysis. Recently, 

Hajikazemi et al. [10], while presenting a new variational approach, summarized the contributions 

available in the literature about modeling flexure stiffness reduction due to transverse matrix cracks, 

highlighting limitations and concepts involved in each approach covering 19 articles published 

between 1994 [23] and 2016 [22]; the interested reader can refer to Hajikazemi et al. [10] and works 

cited therein. Among others, the works by Adumitroaie and Barbero [16] and Hajikazemi et al. ([9], 

[10]) can address general in-plane and out-of-plane bending deformations in unsymmetrical 

laminates. Adumitroaie and Barbero [16] have presented a synergistic damage mechanic model 

merging COD and continuum damage mechanics concepts. Hajikazemi et al. [9] have used a stress-

based variational approach for the analysis of general symmetric or unsymmetric cross-ply 

laminates subjected to out-of-plane bending and biaxial loads; this formulation was extended to 

account for in-plane shear loads, torsional moments and temperature change [10]. Both 

formulations in [9] and [10] use the ply-refinement technique obtaining similar results when 

comparing with numerical models based on Finite Elements or Boundary Elements. 

Most single-scale models, as those mentioned above, were developed for practical use 

demanding a low computer cost which required some simplifications but, at the same time, these 

simplifications impose restrictions in the range of application of those approximated models. For 

example, some approaches are restricted to symmetric or balanced laminates and others are limited 

to in-plane loads as pointed out in [16], among others. A common approximation involves 

considering uniformly spaced cracks; this provides a reasonable estimate as the crack density 

grows, but the actual crack distribution is always non-uniform, as experimental studies report ([20], 

[24]). 
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A limited number of studies can be found in which the crack distribution is considered non-

uniform. Silberschmidt [25] evaluated the changes in stresses redistributions among laminas of 

cross-ply laminates and Wang et al. [26] and Silberschmidt [27] discuss the evolution of transverse 

cracks with non-uniformly distributed transverse matrix cracks. But, just a few works reported on 

the stiffness degradation due to non-uniformly located transverse matrix cracks: McCartney and 

Schoeppner [28] analyzed the in-plane elastic modulus of multi-ply cross-ply symmetric laminates 

with non-uniformly spaced cracks by means of an approximate analytical model. Loukil et al. [29] 

evaluated the in-plane modulus of cross-ply laminates with transverse cracks in internal and 

external laminas, called internal and external cracks, by means of a two-dimensional Finite Element 

model considering a non-uniform crack distribution. Thus, there is a void in the assessment of the 

complete stiffness matrix in laminates with non-uniform transverse crack distributions. 

This work presents the evaluation of the reduced in-plane, bending, and bending-extension 

coupling stiffness of a fiber-reinforced laminated composite considering a non-uniform distribution 

of transverse matrix cracks. Only cross-ply laminates are analyzed using a meso-mechanic model. 

The meso-scale includes a three-dimensional Finite Element continuum solid to model the stress 

state in the laminate, with the domain comprising the complete laminate thickness and incorporating 

two transverse matrix cracks, while the macro-scale contains a classical thin laminated plate model. 

2 Methodology 

The model presented in this work makes use of two scales of analysis: one is the meso-

scale, which considers the laminate as a three-dimensional continuum which is discretized using 

Finite Elements; and the second scale, called macro-scale, uses the classical model for thin 

laminated plates under small deformations. Each lamina was considered to be made of a linear 

elastic transversely isotropic material. Similar models were presented in the literature allowing for 

membrane (in-plane) deformations ([2], [30], [31], [18], [19]) or both membrane and bending 

deformations ([3], [32], [20], [33] - [35]). The meso-scale and the macro-scale are connected by the 
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boundary conditions used in the meso-scale and by the equations to obtain the stress resultants of 

the macro-scale; those connections are presented in detail in the next sections. 

The three-dimensional domain of analysis in the meso-scale, called Representative Volume 

Element (RVE), spans the complete laminate thickness h (Figure 1 and 2a) and contains two 

transverse matrix cracks in each cracked lamina. In order to study the influence of non-uniformly 

located cracks, they were distributed as shown in Figure 1. A non-uniformity parameter k, ranging 

from zero to unity 0 ≤ k ≤ 1, was defined as 

 

/ 2

/ 2

k

k

d t
k

L t





 (1) 

where tk is the cracked-ply thickness, d is the distance between cracks, and L is half the length of the 

RVE in x direction, as shown in Figure 1. All laminates in Figure 1 have a crack density  = 1/L.  

In order to model crack closure, which occurs under flexure deformations, contact without 

friction was assumed and it was implemented using a penalty approach available in ABAQUS [36]. 

The contact between crack surfaces includes only normal compressive stresses between surfaces. 

 
Figure 1: Example of a RVE of a laminate [0/90]S and the corresponding value of the non-

uniformity parameter k. 

2.1 Periodic boundary conditions 

In this work, Periodic Boundary Conditions (PBC) in the form presented by Piezel et al. 

[32] are used at the RVE boundary. This form of PBC connects the kinematics of a three-
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dimensional first order continuum in the meso-scale and the kinematics of a thin flat plate at the 

macro-scale as follows 

 
   0

r r r ru u z x x       ε κ
 (2) 

  
1

:
2

z z r r r ru u x x x x        κ  (3) 

where 

 and  are the small strain tensor and curvature tensor in the middle plane of the laminate 

model, respectively; andr zu u  are the in-plane (directions x and y) and out-of-plane (direction z) 

projections of the meso-scale displacement of a point at the RVE boundary; z is the out-of-plane 

coordinate, and rx are the coordinates in directions x and y of points at the RVE boundary. Upper 

indexes “+” or “-”, in equations (2) and (3), refer to pairs of points placed on a pair of faces “Fr - 

Po”, “R - Le” or edges “E2 - E1”, “E3 - E1” and “E4 - E1”, as shown in Figure 2b. 

 
 a) b) c) 

Figure 2: Representative volume element: a) Dimensions, b) Faces and edges identification and c) 

Control nodes (C1, C2 and C3) and associated degrees of freedom. 

In this work, the PBCs were implemented using the Elimination of Redundant Unknowns 

(ERU) technique [37]. Six degrees of freedom are added to the Finite Element model and the 

associated nodes are known as “control nodes”, as shown in Figure 2c (points C1, C2 and C3). 

Notice that the location of control nodes is not relevant. The ERU technique implements equations 

(2) and (3) by relating the displacements of two points at the RVE boundary with the degrees of 

freedom of control nodes by means of the following equations 
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and then the following boundary conditions are applied to the degrees of freedom of such 

control nodes 

 

0 0 0

2 2 2

; ;

; ;

Nx u xx Ny u yy Nxy u xy
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  
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 (7) 

where 
0 0 0, , , , ,xx yy xy xx yy     and xy  are the components of the small strain tensor and 

curvature in the middle plane of the laminate. Equations (4) - (7) include a unitary factor u 

with units of length to achieve dimensional consistency. Equations (4) - (6) were implemented 

for faces and edges identified in Figure 2b using the ABAQUS [36] command *EQUATION, 

which allows the user to implement linear combinations of degrees of freedom in the Finite 

Element model. In this way, as boundary conditions (7) are imposed at control nodes, the Finite 

Element model returns a force in each degree of freedom. The displacements and forces at these 

control nodes are used next to obtain the stress resultants on the macro-scale. 

2.2 Evaluation of stress resultants  

Considering a thin laminated plate at the macro-scale with middle plane area S, and using 

the Classical Lamination Theory (CLT; [4]), the developed internal power at time t, Pint(t), is given 

by [38] 

 
 0 0 0( ) 2 2int x x y y xy xy x x y y xy xyP t S N N N M M M          

 (8) 
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where Nx, Ny and Nxy are the forces per unit length and Mx, My and Mxy are moments per unit length 

at the middle surface of the laminate. The dot above a variable stands for derivative with respect to 

time. Such forces and moments are identified as stress resultants in CLT. As stated by the balance 

of mechanical energy [39], in the meso-scale, containing a three-dimensional Finite Element model 

with control nodes in a quasi-static problem, the internal power developed by the three-dimensional 

stress state is equal to the external power Pext. Notice that if the problem is quasi-static, variables 

can still change with time. This external power Pext at time t is developed by the forces acting at 

control nodes and can be expressed as 

 
( )ext Nx Nx Ny Ny Nxy Nxy Mx Mx My My Mxy MxyP t R u R u R u R u R u R u     

 (9) 

where RNx, RNy, RNxy, RMx, RMy, and RMxy are the forces acting on control nodes and they correspond 

to the degrees of freedom uNx, uNy, uNxy, uMx, uMy, and uMxy, respectively, shown in Figure 2c. Then, 

taking into account the implementation of the PBC, through equations (4) - (7), the external power 

becomes 

 
   0 0 0 2( )ext u Nx x Ny y Nxy xy u Mx x My y Mxy xyP t R R R R R R            

 (10) 

Following the Hill-Mandel principle, the internal power Pint at macro-scale must be equal to the 

power developed in the meso-scale [40]. Therefore, the next equation holds at time t 

 
( ) ( )int extP t P t

 (11) 

Then, using equations (8) and (10) into equation (11), and taking derivatives with respect to the 

deformation rates, 
0 ,x

0 ,y and 
0

xy ; and with respect to the curvature rates ,x ,y and xy , a set 

of equations arises for the evaluation of stress resultants 
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Equations (12) are based on equivalence of powers in both scales (Hill-Mandel principle) and have 

the advantage that numerical integration at the RVE is avoided. A similar procedure to obtain the 

macroscopic stress resultants have been presented by other authors ([3], [32], [20], [34]). 

2.3 Evaluation of laminate stiffness matrix 

The constitutive equations for the thin laminated plate of the macro-scale are given by [4] 
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The 6×6 laminate stiffness matrix [S], in equation (13), is often considered to be composed 

by 3×3 matrices: in-plane stiffness [A], bending-extension coupling [B] and [B’], and the bending 

stiffness matrices [D]. In order to obtain the coefficients of [S], six strain states were applied 

throughout equations (7). The applied strain states, as is usually done in the homogenization field, 

have a unique nonzero strain component and, using stress resultants given by (12), the stiffness 

matrix coefficients are obtained from (13). Notice that for a given strain state the complete 

corresponding column in matrix [S] can be obtained. 

3 Results 

This section presents a convergence study, then a comparison with numerical and 

experimental data, followed by a parametric study in cross-ply laminates. The laminate 

analyzed for the convergence test is conformed by transversely isotropic laminas with Laminate 

Stacking Sequence (LSS) [0/902/01/2]S and material properties given by Smith and Ogin [41] as: 

E1 = 45.6 GPa, E2 = 16.2 GPa, G12 = 5.83 GPa, 12 = 0.278, 23 = 0.4, with ply thickness tk = 

0.125 mm. The convergence study was performed for the bending stiffness coefficient D11 of a 
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laminate with crack density  = 4 mm
-1

 in one of the 90 degree laminas. Up to four layers of 

Finite Elements in the y direction were included in the mesh, but just one layer of elements was 

sufficent. A percent error is defined as 

 

11 11

11

100
Max

Max

D D
Error

D


 

 (14) 

where D11 is the obtained coefficient for a given number of elements and D11Max = 1.8806 [GPa 

mm
3
] is the value of the coefficient corresponding to the maximum number of elements used in 

the analysis, with one layer of Finite Elements in y direction. Figure 3 shows the percent error 

as a function of the number of elements in the Finite Element mesh using quadratic 20-noded 

brick elements. Acceptable errors can be seen for a small number of elements and convergence 

is also identified. 

 
Figure 3: Percentage error as a function of the number of elements for coefficient D11 of a laminate 

with [0/902/01/2]S and crack density  = 4 mm
-1

 in the bottom 90 degree lamina. 

3.1 Model verification  

In order to verify results of the present model, the laminate stiffness matrix [S] in 

equation (13) is obtained and compared with results from the literature for an undamaged and a 

damaged cross-ply laminate with the laminate data used for the convergence study. In this 

section, only uniform crack distributions were considered. 

The CLT was used to compare results for the laminate without damage; Table 1 shows 
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the values obtained for the non-zero coefficients in equation (13). The results obtained by the 

present methodology showed an excellent agreement with CLT results, since all digits shown 

for the coefficients in Table 1 are the same for both methodologies. Also, for both approaches, 

the coefficients A16, A26, D16, D26, and all elements of [B] and [B’] matrices resulted in small 

numbers approaching zero, according with a symmetric cross-ply laminate. 

Table 1. Stiffness matrix coefficients using CLT for an intact laminate. 

A11 [GPa mm] 25.9114  D11 [GPa mm3] 2.0075 

A22 [GPa mm] 29.6902  D22 [GPa mm3] 1.5400 

A12 [GPa mm] 4.0519  D12 [GPa mm3] 0.2585 

A66 [GPa mm] 5.1013  D66 [GPa mm3] 0.3255 

 

Further, to verify the model results for a damaged laminate, the same LSS [0/902/01/2]S 

is considered in which one of the 90 degree laminas has a crack density  and bending 

curvatures are applied. Figure 4 shows the results for coefficient D11 of the laminate as a 

function of the crack density  in the cracking 90 degree lamina obtained by the present 

methodology, CLT, Smith and Ogin [41], and the Ply Discount method. A good agreement can 

be seen for a wide range of crack densities. 

 
 

Figure 4: Coefficient D11 normalized with respect to Classical Lamination Theory (CLT) results as 

a function of crack density  in the 90 degree lamina located on the traction side of the laminate. 

3.2 Comparison with experimental results 
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This section presents a comparison between the model described in Section 2, 

accounting for uniform and non-uniform crack distributions, and experimental data presented 

by Varna et al., [42]. The material properties correspond to a glass/epoxy transversely isotropic 

unidirectional composite with E1 = 44.7 GPa, E2 = 12.7 GPa, G12 = 5.8 GPa G23 = 4.5 GPa, 12 

= 0.297 and tk = 0.144 mm. The laminate has a staking sequence [0/908/01/2]S and the applied 

tensile loads generated cracks in both 90 degree laminas with a crack density . 

Varna et al. [42] reported the equivalent in-plane modulus Ex under tensile loads and 

the equivalent in-plane Poisson ratio xy; the relationship among stiffness coefficients and 

equivalent laminate properties is given by [4] 

 

2

11 22 12 12

22 22

;x xy

A A A A
E

hA A



 

 (15) 

where h is the laminate thickness. Figure 5a and 5b show the results for Ex and xy obtained 

from the present model for uniform (k = 1) and non-uniform (k = 0) crack distributions and the 

experimental results reported by Varna et al. [42]. 

(a) 
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(b) 

 

Figure 5: Comparison of results for uniform (k = 1), non-uniform (k = 0) crack distributions and 

experimental data from Varna et al. [42]: the laminate staking sequence [0/908/01/2]S with a crack 

density  only in the 90 degree laminas. a) Equivalent in-plane modulus Ex and; b) Equivalent in-

plane Poisson ratio xy. 

For reference, a quadratic and a linear function for Ex and xy were fitted to 

experimental data using the Least Square Method. The functions resulted in fEx = 1 -

0.7481×+0.2909×
2
 and fxy = 1 -0.7095×. Figure 6 shows the difference between the values 

of the fitted equations and those of the model for a uniform (k = 1) and a non-uniform (k = 0) 

crack distributions expressed as a percentage of the initial (intact) results. It is clearly seen that 

the model with non-uniform crack distribution (k = 0) has a better agreement with experimental 

data than the model with uniform crack distribution (k = 1) in both properties, suggesting that 

there is an influence of the actual crack distribution on those properties. 
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Figure 6: Difference between predictions of the present model (uniform, k = 1; and non-uniform, k 

= 0) and fitting functions of the experimental data given by Varna et al. [42]. Results for the 

equivalent in-plane Poisson ratio xy and equivalent in-plane modulus Ex are expressed as a 

percentage respect to the initial values. The laminate staking sequence is [0/908/01/2]S with a crack 

density  only in the 90 degree laminas. 

Varna et al. [42] only presented results for Ex and xy, therefore, in the following, the 

remaining laminated plate properties are analyzed for the same laminate and crack 

configuration by comparing the predictions for uniform and non-uniform crack distributions. 

In-plane shear stiffness A66 for the uniform crack distribution was reduced down to 47% 

percent of the initial (intact) value given by CLT, but the differences between uniform and non-

uniform crack distributions were below 1.2%, showing that this stiffness component does not 

suffer a significant influence due to the crack distribution, despite it suffers a considerable 

reduction. 

The values of D11, D12, D22, and D66 for  = 0.9 mm
-1

 and a uniform crack distribution 

reached 84.3%, 73.0%, 99.15% and 61.2% of its initial values, respectively. These reductions 

are not high because the top and bottom layers offer a high stiffness to bending and torsion.  The 

maximum differences between uniform and non-uniform crack distributions reached 2.15%, 

3.69%, 0.12%, and 3.4%, respectively. 
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If the laminate is subjected to curvatures, a coupling is generated among curvatures and 

in-plane forces, since cracks in one of the 90 degree laminas would be closed. Figure 7a shows 

the values of 11, 12 and 22 entries of the [B] matrix and Figure 7b shows the differences 

between uniform and non-uniform crack distributions normalized respect to the Ply Discount 

results; the remaining coefficients of the bending-extension coupling matrix are zero. It can be 

seen that there is a considerable influence of the crack distribution in those coefficients, 

reaching a difference of about 12%. 

(a) 

(b) 

Figure 7: Results for bending-extension coupling components of a laminate with [0/908/01/2]S and a 

crack density  only in the 90 degree laminas. a) Bending-extension components Bij for uniform (k 
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= 1) and non-uniform (k = 0) crack distributions. b) Difference in results of Bij between uniform and 

non-uniform crack distributions expressed as a percentage respect to Ply Discount results. 

3.3 Parametric study 

This section presents a parametric study considering only cross-ply laminates with LSS 

[0n/908]S and [908/0n]S, with n = 1 and 8, built in two material systems taken from Barbero et al. 

[19]: glass/epoxy (HyE 9082Af/Fiberite) with transversely isotropic lamina properties E1 = 44.7 

GPa, E2 = 12.7 GPa, G12 = 5.8 GPa G23 = 4.5 GPa, 12 = 0.297; and carbon/epoxy (IM6/Avimid 

K polymer) with E1 = 134.0 GPa, E2 = 9.8 GPa, G12 = 5.5 GPa G23 = 3.6 GPa, 12 = 0.30; the 

ply thickness is tk = 0.144 mm. Six laminates were analyzed and, in each laminate, one or two 

90 degrees plies were considered having transverse cracks, as shown in Table 2. All laminates 

were damaged up to saturation defined by a crack density equal to the inverse of the thickness 

of the cracked ply; the laminates number 1 and 2 were damaged up to  = 0.434 [mm
-1

], while 

the remaining laminates have a maximum crack density  = 0.868 [mm
-1

]. 

Table 2. Laminate staking sequence (LSS) and 90 degree damaged laminas for the 

analyzed cross-ply laminates. 

Laminate number LSS 90 degree damaged lamina 

L1 [0/908]S Middle ply 

L2 [08/908]S Middle ply 

L3 [908/0]S Bottom ply 

L4 [908/08]S Bottom ply 

L5 [908/0]S Bottom and top plies 

L6 [908/08]S Bottom and top plies 

 

From the results of the above presented model and according to any symmetric cross-

ply laminate, the initial (intact) [B] and [B’] bending-extension coupling matrices are zero as 

well as coefficients A16, A26, D16 and D26. 

For all damaged laminates, material systems (glass/epoxy and carbon/epoxy) and, for 

uniform and non-uniform crack distributions, the entries 16 and 26 in matrices [A], [B], [B’], 



  

17 

 

and [D], resulted equal to zero. This characteristic is expected since all analyzed laminates are 

cross-ply. In addition, the obtained sub-matrices [A], [B], [B’] and [D] were all symmetric. Also 

for all laminates, constants A22 and D22 did not suffer considerable reductions, since the cracked 

90 degree laminas provided the stiffness in these load directions, therefore, no significant 

differences exist between results for uniform and non-uniform crack distributions in these 

constants. 

Figure 8 shows the values for the non-zero entries of [A] matrix in laminates L1 and L2, 

with LSS [0/908]S and [08/908]S (carbon/epoxy) for uniform (k = 1) and non-uniform (k = 0) 

crack distributions. It can be seen that L1 has higher reductions in its coefficients than those of 

L2. Some differences can be seen between results for uniform and non-uniform crack 

distributions. The variables ΔAij, defined as 

 

0 1

100

k k

ij ij

Aij CLT

ij

A A

A

 
  

 (16) 

are the differences between coefficients of uniform and non-uniform crack distributions 

expressed as a percentage of CLT results. 

In Figure 9, ΔAij are plotted as a function of the crack density for the same laminates L1 

and L2 as in Figure 8. It can be seen that, as the crack density grows from zero, the predictions 

of the uniform (k = 1) and non-uniform (k = 0) crack distribution models gradually separate 

from each other finding a maximum in the differences ΔAij and then, they tend to approach each 

other again as the crack density reaches saturation. Figure 9 shows that the higher differences 

are in A12 exceeding 12% and 7% for laminates L1 and L2, respectively. A11 show a smaller 

maximum difference of about 5% in L1, whereas the other constants have a difference lower 

than 5%. An important comment can be done on constant A66: it suffers considerable reductions 

but is not significantly modified by a non-uniform crack distribution, presenting a maximum 

difference smaller than 2.5%. 
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(a) 

(b) 

 

Figure 8: Values for coefficients Aij normalized respect to CLT results for a carbon/epoxy material 

system for uniform (k = 1) and non-uniform (k = 0) crack distributions. The middle 90 degree 

lamina has a crack density . (a) [0/908]S laminate L1, (b) [08/908]S laminate L2. 

(a) 
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(b) 

 

Figure 9: Difference in results of Aij between uniform (k = 1) and non-uniform (k = 0) crack 

distributions expressed as a percentage respect to CLT results for a carbon/epoxy material system. 

(a) [0/908]S laminate L1, (b) [08/908]S laminate L2. The middle 90 degree lamina has a crack density 

. 

Table 3 reports the values of stiffness coefficients Aij, Dij and Bij for uniform crack 

distribution (k = 1), corresponding to the saturation crack density from laminates L1 to L6 and 

both carbon/epoxy and glass/epoxy material systems. The results of Aij and Dij are normalized 

with respect to CLT values, while the Bij are normalized with respect to Ply Discount values. 

The maximum values of ΔAij found in each laminate are reported in Table 4, together with the 

differences ΔDij and ΔBij defined as 

 

0 1 1 0

100; 100

k k k k

ij ij ij ij

Dij BijCLT Ply Discount

ij ij

D D B B

D B

    
       (17) 

Notice that these maximum values of ΔAij, ΔDij and ΔBij do not correspond to saturation but 

smaller crack densities, as can be seen in Figure 9 for ΔAij. 

Among all cases for in-plane stiffness matrix [A], it is seen that A12 presented the 

highest differences due to non-uniformly distributed cracks exceeding 5% in all cases except in 

L4, and reaching about 15% in L5 built in carbon/epoxy. Constant A11 was less affected by a 

non-uniform crack distribution showing ΔA11 greater than 5% only for laminates L1 and L5 in 
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both material systems. Finally, constant A66 was reduced down to 30% in L5 and 80% in L4 but, 

regardless of the high or low reduction, the differences in A66 between uniform and non-

uniform crack distributions were smaller than 5% in all cases. This shows A66 as a constant that 

could be highly reduced by transverse cracks but such reduction does not depend on the actual 

crack distribution. 

Table 3.  Coefficients of matrices [A], [B] and [D] for the saturation crack density in laminates L1 - 

L6 with a uniform crack distribution (k = 1). The results of [A] and [D] are normalized with respect 

to CLT values, while the results for [B] are normalized respect to Ply Discount values. 

 carbon/epoxy  glass/epoxy 

 

L1 L2 L3 L4 L5 L6 
 

L1 L2 L3 L4 L5 L6 

A11 0.704 0.947 0.835 0.970 0.673 0.939  0.430 0.824 0.687 0.900 0.380 0.801 

A12 0.288 0.612 0.604 0.777 0.212 0.554  0.271 0.603 0.600 0.775 0.207 0.550 

A22 0.995 0.995 0.997 0.997 0.994 0.995  0.980 0.985 0.989 0.991 0.978 0.982 

A66 0.445 0.703 0.651 0.804 0.297 0.608  0.447 0.705 0.653 0.805 0.299 0.609 

 
             

B11 0.603 0.588 0.968 0.923 0.967 0.922  0.630 0.612 0.972 0.930 0.970 0.927 

B12 0.603 0.588 0.968 0.923 0.967 0.922  0.630 0.612 0.972 0.930 0.970 0.927 

B22 0.603 0.588 0.968 0.923 0.967 0.922  0.630 0.612 0.972 0.930 0.970 0.927 

B66 - - 0.863 0.817 - -  - - 0.861 0.815 - - 
              

D11 0.964 0.998 0.515 0.840 0.515 0.840  0.897 0.990 0.508 0.683 0.507 0.683 

D12 0.830 0.970 0.507 0.586 0.507 0.585  0.819 0.969 0.506 0.584 0.505 0.583 

D22 0.998 0.999 0.997 0.997 0.997 0.997  0.994 0.998 0.988 0.989 0.988 0.989 

D66 0.787 0.964 0.574 0.635 0.151 0.269  0.788 0.964 0.575 0.636 0.152 0.271 

 

Table 4. Higher values of the differences in constants between uniform (k = 1) and non-uniform (k 

= 0) crack distributions (ΔAij, ΔBij, and ΔDij). The differences ΔAij and ΔDij are expressed as a 

percentage of CLT results, and ΔBij are expressed as a percentage of Ply Discount values. The 

values greater than 5% are expressed in bold type. 

 carbon/epoxy  glass/epoxy 

 

L1 L2 L3 L4 L5 L6 
 

L1 L2 L3 L4 L5 L6 

ΔA11 5.129 0.965 2.653 0.644 6.491 1.403  6.429 3.128 3.999 1.929 9.299 4.384 

ΔA12 12.36 7.080 6.389 4.724 15.63 10.30  8.228 7.069 5.119 4.359 11.90 9.908 
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ΔA22 0.091 0.087 0.047 0.058 0.115 0.126  0.224 0.276 0.139 0.170 0.324 0.387 

ΔA66 0.907 2.251 4.427 2.447 3.287 4.676  0.901 2.224 4.417 2.486 3.268 4.701 

 
                   

ΔB11 6.907 7.183 17.49 20.56 16.97 20.56  4.733 7.270 14.09 18.99 13.37 18.97 

ΔB12 6.905 7.179 17.49 20.56 16.97 20.56  4.732 7.271 14.09 18.99 13.38 18.97 

ΔB22 6.905 7.179 17.49 20.56 16.97 20.56  4.732 7.271 14.09 18.99 13.38 18.97 

ΔB66 0.000 0.000 11.76 10.55 0.000 0.000  0.000 0.000 11.75 10.72 0.000 0.000 
              

ΔD11 0.308 0.023 8.920 3.686 8.665 3.684  0.568 0.090 7.408 6.678 7.063 6.671 

ΔD12 1.472 0.278 9.075 9.525 8.816 9.521  0.993 0.287 7.434 8.782 7.087 8.773 

ΔD22 0.013 0.010 0.060 0.071 0.058 0.071  0.032 0.019 0.186 0.242 0.178 0.241 

ΔD66 1.175 0.173 5.858 4.824 15.11 10.03  1.165 0.166 5.863 4.898 15.17 10.27 

 

Figure 10 shows the values of constants Dij for laminates L5 and L6, with LSS [908/0]S 

[908/08]S, and glass/epoxy material system. There are appreciable reductions in coefficients D11 

and D12 and high reductions in D66. Laminate L6 presents smaller reductions than L5 because of 

the thicker 0 (zero) degree lamina provides a higher stiffness in L6. Values of ΔDij are shown in 

Figure 11 and, as found for Aij, the differences ΔDij depend on the crack density presenting a 

local maximum before reaching saturation. For L5 and L6, the maximum values of the 

differences ΔDij exceeded 5%, with exception of ΔD22, reaching about 15% and 10% in ΔD66. 

Table 3 shows that the highest reductions in [D] happened in D66 for laminates L5 and 

L6. Laminates L1 and L2 did not suffer high reductions in the bending stiffness matrix [D] 

because of the undamaged 0 (zero) degree laminas located at the top and at the bottom. On the 

other hand, laminates L3 - L6, which have external cracks, suffered a notable influence of crack 

distribution, as shown in Table 4. The difference ΔD11 presented values greater than 5% in 

laminates L3 - L6 except for L4 and L6 with a carbon/epoxy system. Finally, D66 was 

significantly influenced by the crack distribution when the laminate has external cracks, as in 

L5 and L6. 
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(a) 

(b) 

Figure 10: Values for coefficients Dij normalized respect to CLT results for a glass/epoxy material 

system for uniform (k = 1) and non-uniform (k = 0) crack distributions. (a) [908/0]S laminate L5, (b) 

[908/08]S laminate L6. The top and bottom laminas have a crack density . 

(a) 
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(b) 

Figure 11: Difference in results of Dij between uniform (k = 1) and non-uniform (k = 0) crack 

distributions normalized respect to CLT results for a glass/epoxy material system. (a) [908/0]S 

laminate L5, (b) [908/08]S laminate L6. The top and bottom 90 degree laminas have a crack density 

. 

Laminates 3 and 4, when damaged, presented bending-extension coupling; specifically 

entries 11, 12, 22 and 66 from [B’] and [B] matrices were non-zero and this is because these 

laminates are non-symmetrically damaged. Obtained values of [B] and [B’] are equal. In Figure 

12, the [B] components are plotted with values normalized respect to the Ply Discount results 

for L3 and L4 with a glass/epoxy material system. The trends in normalized values of Bij are the 

same for entries 11, 12, and 22. The differences ΔBij are plotted in Figure 13 in which it can be 

seen that the differences also depend on the crack densities and, as for ΔAij and ΔDij, differences 

ΔBij present a local maximum. This Figure shows that all differences ΔBij exceeded 5% in a wide 

range on crack densities in L3 and L4 (Figure 13). 

Table 4 shows that all [B] entries reported were significantly influenced by non-

uniformly distributed cracks, with exception in L1 glass/epoxy laminate which showed a 

difference less than 5%. 

Laminates 1, 2, 5, and 6 are symmetrically damaged and consequently, when subjected 

to membrane deformations or torsion curvatures, the bending-extension coupling matrix [B’] 
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had only zero elements and also B66 was null. However, when those laminates are subjected to 

bending curvatures, x or y, at least some part of the crack or, the entire crack, will close and 

therefore the laminates behave like non-symmetrically damaged ones presenting non-zero 

values of entries 11, 12, and 22 of the [B] matrix, making [B] different to [B’]. This is showing 

that the laminate stiffness depends on the interaction between the crack surfaces (crack closure) 

dictated by the acting strain state. 

(a) 

(b) 

Figure 12: Values for coefficients Bij normalized respect to Ply Discount results for a glass/epoxy 

material system for uniform (k = 1) and non-uniform (k = 0) crack distributions. (a) [908/0]S 

laminate L3, (b) [908/08]S laminate L4. The bottom 90 degree lamina has a crack density . 
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(a) 

(b) 

 

Figure 13: Difference in results of Bij between uniform (k = 1) and non-uniform (k = 0) crack 

distributions expressed as a percentage respect to Ply Discount results for a glass/epoxy material 

system. (a) [908/0]S laminate L3, (b) [908/08]S laminate L4. The bottom 90 degree lamina has a crack 

density . 

 

In Figures 14 to 17, some values of [A], [D], and [B] are plotted as a function of the 

non-uniformity parameter k for selected laminates. As the parameter k approaches unity, the 

constants approaches the values for uniformly distributed cracks with the derivative of 

components Sij respect to k approaching zero but without changing sign. Therefore, the higher 

changes in each constant Sij are located near k = 0. 
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Figure 14: Influence of non-uniformity coefficient k on A11 and A12 for laminate L3 [908/0]S with a 

crack density  = 0.347 mm
-1

; results normalized respect to CLT values. 

 

Figure 15: Influence of non-uniformity coefficient k on coefficients D11 and D12 for laminate L5 

[908/0]S with a crack density  = 0.26 mm
-1

; results normalized respect to CLT values. 

 



  

27 

 

Figure 16: Influence of non-uniformity coefficient k on coefficient D66 for laminate L3 and L5 

[908/0]S with a crack density  = 0.608 mm
-1

; results normalized respect to CLT values. 

 

Figure 17: Influence of non-uniformity coefficient k on coefficients B11, B12, and B22 for laminate 

L4 [908/08]S with a crack density  = 0.26 mm
-1

; results normalized respect to Ply Discount values. 

 

In Figure 8 for Aij, and in Figure 10 for Dij, the values given by a model with uniformly 

distributed cracks (k = 1) are always below the values for the non-uniform crack distribution 

model (k = 0). Also, in Figures 14, 15, and 16, with an increment in parameter k, the values of 

Aij and Dij always decrease. In contraposition, Figures 7a and 12, for the Bij constants, show that 

the uniformly distributed crack model (k = 1) always give higher predictions than those of the 

model with non-uniform crack distribution (k = 0). Moreover, Figure 17 shows increasing 

values of Bij with increasing values of k. These results are suggesting that for the elements of 

matrices [A] and [D] the uniform crack distribution model gives an underestimation; this was 

pointed out by Loukil et al. [29] for the equivalent in-plane laminate modulus Ex. On the other 

hand, the uniform crack distribution model gives overestimations for the bending-extension 

coupling matrices [B] and [B’]. 

 

5 Conclusions 
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In this work, a computational meso-mechanic model was applied for the evaluation of 

plate stiffness in cross-ply fiber-reinforced composite laminates of the type [0n/908]S and 

[908/0n]S, with n = 1 and 8, including non-uniformly distributed transverse matrix cracks. The 

meso-scale includes a three-dimensional domain with an elastic Finite Element first order 

continuum model, called Representative Volume Element (RVE) and spanning the complete 

laminate thickness, while the domain at the macro-scale corresponds to a classical thin 

laminated plate. This study considers two fiber reinforced composites: glass/epoxy and 

carbon/epoxy. Periodic boundary conditions were used in the domain of the meso-scale, 

allowing the RVE to undergo membrane and bending infinitesimal deformations. For the 

implementation of boundary conditions, the technique of Elimination of Redundant Unknowns 

was applied using control nodes. Then, the forces on these control nodes were used for the 

evaluation of the stress resultants with equations obtained from the equivalence of mechanical 

power in the meso-scale and the macro-scale (Hill-Mandel principle). 

The results obtained with the present model showed good agreement with both 

numerical and experimental data from the literature. Also, the model with a non-uniform crack 

distribution presented better agreement with experimental data than the model with uniformly 

distributed cracks, suggesting the existence of an influence of the non-uniformity of crack 

distribution on laminate stiffness. 

In a parametric study, it is shown that the in-plane stiffness coefficients presents 

differences between uniform and non-uniform configurations that can reach about 12% of the 

initial undamaged results. However, the in-plane shear stiffness is not influenced by the crack 

distribution although it can be highly reduced by transverse matrix cracks. The bending 

stiffness is significantly influenced only in laminates with external cracks and, specifically, the 

torsional stiffness suffers a notable influence by the non-uniform crack distribution in those 

laminates. The highest influence of non-uniformly distributed cracks was found on the bending-

extension coupling matrix which showed differences between uniform and non-uniformly 
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located cracks of about 20% respect to the values of Ply Discount approach. 

The results suggest that, for initially symmetric cross-ply laminates, the predictions for 

the elements of the in-plane and bending stiffness matrices given by the model with uniformly 

distributed cracks are always underestimations, whereas the same model with uniform crack 

distribution overestimates the values of the bending-extension coupling matrices. 
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