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A B S T R A C T

This paper presents a new methodology to evaluate the Cauchy stress tensor at the macro level in computational
micromechanics models. The use of control nodes to specify boundary conditions of a Representative Volume
Element (RVE) allows deriving equations for the Cauchy stress components, with the consequence that nu-
merical integration in the RVE is not performed. The proposed method allows use of computational micro-
mechanics in commercial Finite Element software for a RVE subjected to general infinitesimal or finite strains.
Because this methodology is obtained from the equivalence of power in the microscopic and macroscopic scales
(Hill–Mandel principle) in a quasi-static problem, it is capable of dealing with micro-constituents under several
constitutive laws. Numerical examples presented include simulations of elastic, hyper-elastic, and elasto-plastic
fiber composite materials and a honeycomb microstructure. The present methodology can be used in multi-scale
models to analyze non-linear structures made of heterogeneous materials.

1. Introduction

Multi-scale methods have proven to be useful techniques for mod-
eling the loading process of structures made of heterogeneous materials
(Nguyen et al., 2016). Such methods usually consider two scales with
different characteristic lengths: In the smallest scale of analysis, known
as the microscopic scale, the behavior of the heterogeneous micro-
structure is represented by explicitly simulating the interaction of
components in a domain called Representative Volume Element (RVE).
Boundary conditions have to be used not only to provide a way for the
RVE to interact with the surrounding heterogeneous material but also
to link microscopic and macroscopic kinematic relations (Nemat-
Nasser and Hori, 1999). The structure is represented at the macroscopic
scale, which is the largest scale of the analysis, whereas material be-
havior is obtained from the results at the microscopic scale.

Multi-scale approaches take advantage of numerical methods, such
as the Finite Element Method (FEM), to simulate the evolution of
complex microstructures under strain. In-time multi-scale schemes
perform the calculations at the micro and the macro scales simulta-
neously (Nguyen et al., 2011), while off-line schemes collect results at
the micro scale by solving a set of cases of interest, and then use these
results for macroscopic scale simulations (Ghayour et al., 2016). Al-
though the calculations for micro and macro scales are not carried out

in the same sequence for both schemes, the general procedure at the
microscopic scale used for in-time and off-line schemes is basically the
same, and requires computation of the macroscopic stress tensor from
an RVE boundary value problem for a given deformation state specified
at the macroscopic scale.

Numerical integration algorithms are commonly used to obtain such
stresses at the macroscopic scale for RVEs under infinitesimal or finite
strains (see, for example, Barbero, 2013). The usual definition of the
macroscopic Cauchy stress tensor σ at the macro scale as a function of
the microscopic stress σm is given by

∫=σ
v

σ dv1
v

m
(1)

in which v is the volume of the RVE in the deformed configuration.
Numerical integration of Eq. (1) is performed using the stress tensor σij

k

at a Gauss integration point k and the corresponding weight factor for
numerical integration vk as

∑=
=

σ
v

σ v1
ij

k

N

ij
k

k
1 (2)

Abadi (2010), Zahr-Viñuela and Pérez-Castellanos (2011), and
Guo et al. (2014), among others, used Eq. (2) in their work, whereas
Caporale et al. (2006), Barbero et al. (2013), and Barbero (2013)
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employed a similar equation for infinitesimal strains. Although this is a
well-established way to obtain the Cauchy stress tensor, it requires
having data at every Gauss point, which is an amount of information
that grows with the mesh size. To decrease this computational cost,
some authors use a numerical approximation of the integral expressed
at the RVE boundary (Caporale et al., 2006). Bonora and Rugiero
(2006a, 2006b) and Rudykh and deBotton (2012) obtained a resultant
force by averaging the forces at the boundary and then obtained a
macroscopic stress by dividing such resultant by an area.

Some authors proposed methods in which the stresses at macro-
scopic scale are obtained in a post-process procedure embedded in the
boundary value problem of the RVE. Michel et al. (1999) assigned the
macroscopic strain to the degree of freedom of an additional node on
each finite element at microscopic scale. Then, in the complete Finite
Element model in such small scale, the assembled force vector contains
the macroscopic stresses. This method was applied by Daxner et al.
(2006), Rasool and Böhm (2012), and Böhm and Rasool (2016).
van Dijk (2016) presented a method in which macroscopic stresses arise
as macroscopic strain reactions; such formulation used Lagrange mul-
tipliers, periodic boundary condition, and was based on the Hill–-
Mandel principle. These methods (Michel et al., 1999; van Dijk, 2016)
need for special Finite Element software and often this constitutes a
disadvantage.

Other authors employ three additional nodes, known as control
nodes, to obtain the Cauchy stress. Control nodes are often used to
implement the boundary conditions and the associated forces divided
by the transverse deformed area have been interpreted as macroscopic
Cauchy stresses (Zahr-Viñuela and Pérez-Castellanos, 2011). This same
idea has been used to obtain the behavior of a homogenized shell em-
ploying forces and moments per unit length as macroscopic quantities
(Adolfsson and Gudmundson, 1997; Piezel et al., 2012). Rather than
postulate an equation for the macroscopic stress based on intuition,
Li and Wongsto (2004) obtained a set of equations in terms of the forces
at control nodes to compute the stress component corresponding to
uniaxial or shear strain states. A similar approach based on the
equivalence of energy between microscopic and macroscopic scales has
been proposed by Sun and Vaidya (1996) under infinitesimal strains,
and by Barulich et al. (2016) for simple shear and uniaxial strain cases
under finite strains.

This paper presents a new methodology (hereafter designated as
MCT for Methodology for Complete Tensor) to calculate the complete
Cauchy stress tensor for RVEs subjected to general infinitesimal or finite
strain states. This methodology does not need to perform numerical
integrations, thus avoiding complexity during its implementation. The
developed equations are based on the Hill–Mandel principle and can be
implemented in general purpose Finite Element software. The metho-
dology presented can deal with quasi-static RVE problems including
geometric and/or material non-linear behavior.

This work is organized as follows: In the next section the unit cells
and periodic boundary conditions are detailed; then, the formulation of
MCT is presented showing that it is a general technique that comprises
results available in the literature for specific strain states. Numerical
examples are presented to illustrate the procedure and verify the
methodology.

2. Post-processing methodology

2.1. Geometry of unit cells considered

Three types of unit cells (UC), illustrated in Fig. 1, were used in this
paper: A prism having a parallelogram with equal sides at the base; a
truncated octahedron; and a hollow hexagonal prism. The first two UC
were used here to represent a periodic fiber reinforced composite ma-
terial, while the hollow hexagonal prism represents a honeycomb mi-
crostructure (van Dijk, 2016).

In order to simulate a material with periodic microstructure,

periodicity vectors were employed as explained by Oller et al. (2005).
The periodicity vectors used for prism and truncated octahedron UCs
are described in Barulich et al. (2016), while those for the honeycomb
UC are shown in Fig. 2 and can be expressed as
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where the UC dimensions are

=
+ − + −

a
t t V t V r V π r

V
6 36 36 36 6 3

6
w w fo w fo fo

fo

2 2 2 2

(4)

=l a2
3

3e (5)

In these equations, the values of the apothem a and the side length le
are obtained from the assumed values of the half wall thickness tw, the
inner radius r, and the honeycomb volume fraction Vfo. Notice that the
UC height h, shown in Fig. 2, is independent of other dimensions.

2.2. Periodic boundary conditions under finite strains

The methodology presented in this article makes use of forces and
displacements at control nodes; therefore, in order to explain this
technique, periodic boundary conditions employing control nodes are
next given in detail, although they have been recently reported in the
literature (see for example Zahr-Viñuela and Pérez-Castellanos, 2011;
Barulich et al., 2016).

To express the periodic boundary conditions it is useful to employ
the concept of “corresponding points” (see Zahr-Viñuela and Pérez-
Castellanos, 2011), which implies that the subtraction of the position
X+ and X− of two corresponding points gives a linear combination of
the periodicity vectors with integer coefficients, Pv:

= −+ −P X Xv (6)

Periodic boundary conditions involve relations between traction
vectors t+ and t− at every pair of corresponding points in the UC
boundary (Guo et al., 2007, 2014):

= −+ −t t (7)

and relations between positions x+ and x− of such corresponding
points in the deformed configuration

− = −+ − + −x x F X X( ) (8)

where F is the known macroscopic deformation gradient tensor which is
to be imposed at UC. The expression linking F and the macroscopic
displacement gradient ∇U in the reference configuration is
(Holzapfel, 2000)

= ∇ +F U I (9)

where I is the identity tensor and the components of operator ∇ are

∇ = ∂
∂X

[ (·)] (·)
ij

i

j (10)

Using (9) and (6), the Eq. (8) can be expressed in terms of dis-
placements of corresponding nodes u+ and u− as

− = ∇+ −u u U Pv (11)

In this work, conditions (11) were implemented by means of mul-
tipoint linear constraints (using *EQUATION command in software
ABAQUS, 2009) writing equations in the form

− − − − =+ −u u
α

u P
α

u P
α

u P1 1 1 0i i i v x i v y i v z1 2 3 (12)

where i=1, 2, 3; uij are the displacement components in direction i of
control node j. Three control nodes were added in this work in order to
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get nine additional degrees of freedom (DOF). Then, the components of
the macroscopic displacement gradient are used to impose such DOF as:

= ∇u α U[ ]ij ij (13)

Dimensional consistency in Eqs. (12) and (13) is achieved using a
unit factor α with length units.

When using linear multi-point constrains, equations for each pair of
corresponding points should be carefully selected, as was pointed out
by Barbero (2013), among others. For the honeycomb unit cell, a pos-
sible set of equations of type (12) can be obtained from Tables 1 to 3 in
which the first and second DOF in such equation are shown for each
face, edge and vertices pair, together with the corresponding Pv vector.
Fig. 3 shows identification of faces, edges and vertices. Eqs. (12) for the
truncated octahedron and prismatic unit cells have been published by
Barulich et al. (2016).

2.3. Evaluation of stress tensor at macro level

2.3.1. Internal mechanical power
Under a given macroscopic strain state, a stress field is induced at a

RVE. The stress power, or rate of internal mechanical work, identified
as Pint(t), is a scalar associated with the stress field acting on the RVE in
the reference configuration V at time t. Following Holzapfel (2000), Pint
is given by

∫=P t dVP F( ) : ˙int V
m m

(14)

where Pm is the first Piola–Kirchhoff stress tensor; and Ḟm is the rate of
deformation gradient Fm at microscopic scale. Units of Pint(t) are work

per time unit.
The first Piola–Kirchhoff stress tensor satisfies the condition

= −JσP F( )T1 (15)

where J= det(F) is the Jacobian of F. Next, consider

= ∇ tF V X˙ ( ( , ))RC (16)

where VRC is the velocity and is written in terms of reference config-
uration X at a time t.

For an RVE, the Hill–Mandel condition may be written as given by
de Souza Neto and Feijóo (2008)

∫=
V

dVP F P F: ˙ 1 : ˙
V

m m
(17)

where Pm and P are the first Piola–Kirchhoff stress tensor at the micro
and the macro scales, respectively; Ḟm and Ḟ are the rates of

 
(a) (b) (c) 

Fig. 1. Front view of unit cells: (a) truncated octahedron; (b) prism; (c) hollow hexagonal prism.

 
(a) (b) 

Fig. 2. Hollow hexagonal prism as unit cell for the honeycomb microstructure: (a)
perspective of the UC; (b) external boundary of UC with periodicity vectors.

Table 1
Pv vectors of different pairs of faces for honeycomb UC.

1st DOF 2nd DOF Pv

Fr Po P3
S I P2–P1
RI LS P1
RS LI P2

Table 2
Pv vectors of different pairs of edges for honeycomb UC.

1st DOF 2nd DOF Pv 1st DOF 2nd DOF Pv

E3 E1 P2–P1 E10 E9 P3
E2 E1 P3 E11 E9 P1
E4 E1 P2–P1+P3 E12 E9 P1+P3
E6 E5 P3 E14 E13 P2
E7 E5 P2 E15 E13 P1
E8 E5 P2+P3 E17 E16 P2–P1

E18 E16 P2

Table 3
Pv vectors of different pairs of vertices for honeycomb UC.

1st DOF 2nd DOF Pv 1st DOF 2nd DOF Pv

V2 V1 P2 V8 V7 P2
V3 V1 P1 V9 V7 P3
V4 V1 P3 V10 V7 P2–P1
V5 V1 P2+P3 V11 V7 P2+P3
V6 V1 P1+P3 V12 V7 P2–P1+P3
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deformation gradient again at micro and macro scales. Body force and
inertia have not been included in this work, but these effects have been
taken into account by de Souza Neto et al. (2015).

Thus, the stress power results in

=P t V P F( ) : ˙int (18)

or

= + + +…
+ + + +…
+ + +

P t V P F P F P F
P F P F P F
P F P F P F

( ) ( ˙ ˙ ˙
˙ ˙ ˙
˙ ˙ ˙ )

int 11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33 (19)

2.3.2. External mechanical power
In a domain of volume V undergoing deformation, the external

mechanical power Pext(t) is defined as the power due to external forces
at time t. If the kinetic energy change in the domain V is zero, then the
problem may be classified as quasi-static, in which the variables may
still be time-dependent. Therefore, the energy balance (see
Holzapfel, 2000, Eq. (4.102)) results in

=P t P t( ) ( )ext int (20)

In a finite element model of a RVE with control nodes, external work
is only done through forces acting on such control nodes. Thus, the
external power is the summation of products between forces and ve-
locities in the direction of each force. For a general strain state Pext(t)
can be written as

= + + +…
+ + + +…
+ + +

P t R u R u R u
R u R u R u
R u R u R u

( ) ˙ ˙ ˙
˙ ˙ ˙
˙ ˙ ˙

ext 11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33 (21)

where Rij and u̇ij are the force and velocity in direction i at control node
j, respectively. Considering boundary conditions (13) and Eq. (9), u̇ij
can be expressed as

=u αF˙ ˙ij ij (22)

then, Pext takes the form

= + + +…
+ + + +…
+ + +

P t α R F R F R F
R F R F R F
R F R F R F

( ) ( ˙ ˙ ˙
˙ ˙ ˙
˙ ˙ ˙ )

ext 11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33 (23)

2.3.3. Equation for the macroscopic Cauchy stress tensor
Taking into account the expressions for the internal and external

power in Eqs. (23) and (19), the energy balance, Eq. (20), can be de-
rived respect to Ḟij giving

=αR V Pij ij (24)

as a consequence, the first Piola–Kirchhoff stress tensor P can be ob-
tained as

=P
αR
Vij

ij

(25)

Following Eq. (3.9) in Holzapfel (2000)

= −σ J PFT1 (26)

an expression to evaluate the macroscopic Cauchy stress tensor is ob-
tained:

= −σ J F αR
Vij jk

ik1
(27)

The Eq. (27) holds for a general finite strain state in quasi-static
problems and it is expressed as a function of the forces at control nodes
and the deformation gradient at time t.

Specific deformation states give particular and useful forms of the
last equation. In the following, reduced forms of (27) are presented for
specific deformation states. When the deformation gradient has the
principal stretches λi in its diagonal, the Eq. (27) reduces to

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

σ α
J V

R λ R λ R λ
R λ R λ R λ
R λ R λ R λ

[ ]
11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3 (28)

with J= λ1 λ2 λ3. If a deformation gradient corresponding to a simple
shear state is imposed on the RVE, with a unique varying component
F21, then J=1 and the Eq. (27) takes the form

=
⎡

⎣
⎢
⎢

+
+
+

⎤

⎦
⎥
⎥

σ α
V

R R F R R
R R F R R
R R F R R

[ ]
11 11 21 12 13

21 21 21 22 23

31 31 21 32 33 (29)

The results for the components in the diagonal of (28) and the
component σ21 in Eq. (29) coincide with the formulas presented by
Barulich et al. (2016) for uniaxial and simple shear cases but here,
Eqs. (28) and (29), allow obtaining the complete stress tensor for such
deformation states.

A pure shear deformation state includes a deformation gradient such
as

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

F
FF
1 0

1 0
0 0 1

12

21
(30)

which makes (27) reduce to

=
⎡

⎣
⎢
⎢

+ +
+ +
+ +

⎤

⎦
⎥
⎥

σ α
J V

R R F R F R R
R R F R F R R
R R F R F R R

[ ]
11 12 12 11 21 12 13

21 22 12 21 21 22 23

31 32 12 31 21 32 33 (31)

where the Jacobian of F is J=1− F12F21.
For small strains the deformation gradient F tends to identity and its

Jacobian J tends to unity, therefore (27) reduces to

=σ
αR
Vij

ij

(32)

Fig. 3. Identifications of faces edges and vertices in the honeycomb UC.
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Li and Wongsto (2004) reported similar scalar formulas to obtain
the Cauchy stress components related to uniaxial stress or shear states,
while in this work, the Eq. (32) holds for any small strain state. Notice
that any other specific equation for the Cauchy stress tensor can be
derived from (27) by using the corresponding deformation gradient.

The methodology to evaluate the Cauchy stress tensor, presented in
this work, can be summarized as follows: (i) Obtain the reaction forces
Rij at control nodes by solving the FEM problem at the micro level for a
given macroscopic deformation gradient F, (ii) Use general Eq. (27) or
particular Eqs. (28), (29), (31) or (32) depending on the applied strain
state to compute the Cauchy stress tensor.

This procedure does not require performing numerical integration,
and an important consequence is that less complexity in implementa-
tion and less information and computer time are needed during the
post-process. Because the method is based on mechanical energy bal-
ance in quasi-static problems, the range of application includes material
or kinematic nonlinearities. Further, the methodology is not only ap-
propriate for PBC but also for any boundary condition that could be
implemented by means of control nodes.

3. Results

In this section, the MCT is validated by means of comparisons with a
procedure using numerical integration. The simulations were done
using the general purpose finite element program ABAQUS (2009).

3.1. Linear elastic composite

Barbero presented two examples (see Sections 6.2 and 6.3 in
Barbero, 2013), in which the elastic properties of a composite lamina
are obtained using computational micromechanics; these results are
next used to verify the MCT in an elastic small-strain problem. The
strategy in this section is to reconstruct the macroscopic elastic con-
stitutive matrix employing results reported by Barbero, to apply a given
small strain state, selected in this work for this particular example, and
to compare the obtained stresses with the results of MCT through
Eqs. (32).

The composite material includes elastic carbon fibers with Young
modulus Ef=241 GPa, Poisson ratio νf=0.2, and elastic epoxy matrix
with Em=3.12 GPa and νm=0.38. The fibers have a hexagonal fiber
arrangement, which makes the macroscopic material to be transversely
isotropic. The fiber volume fraction is Vf=40% and the results for the
elastic constants computed by Barbero (2013) are: G12= 2,579MPa,
E1= 98,197MPa, E2= 7,472MPa, ν12= 0.299, ν23= 0.540. The cor-
responding compliance matrix is given by

=

⎡

⎣

⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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12
1

23
2 2

2
23

12

12 (33)

The Cauchy stress in vector form {σ} is obtained as

=σ C{ } [ ] {ɛ} (34)

where the stiffness matrix is [C]= [S]−1. The strains are given in the
form

= γ γ γ{ɛ} {ɛ ɛ ɛ }11 22 33 23 13 12
T (35)

As an illustrative example, the applied strain is {ε}= {6 −7 −4 5 8
−6}T× 10−5. Notice that {ε} is an arbitrary small strain vector, and it
was selected here to obtain non-zero Cauchy stress components in the
composite. Barbero used a UC with a parallelepiped shape; here, a
truncated octahedra was employed as a UC with up to 16,000 quadratic
finite elements (Fig. 4). Tetrahedral and wedge-shaped Finite Elements
were selected given that they easily generate a periodic mesh for this
UC. Results for the Cauchy stress tensor obtained with Eqs. (34) with
elastic constants taken from Barbero (2013) and Eq. (32) of the MCT,
for two meshes with a number of elements Nel, are given in Table 4 and
they show a good agreement. This example also shows that the pre-
sented methodology, without modification, is capable to analyze UCs
with non-conventional shapes, such as the truncated octahedra.

3.2. Elastic–plastic composite

This section shows the results for the Cauchy stress tensor obtained
by means of Eq. (32) and numerical integration in an elastic–perfectly
plastic fiber composite under small strains. Fiber and matrix properties
are Em= Ef=100 GPa, νm= νf=0.25 for the Young moduli and
Poisson ratios; von Mises plasticity with an associative rule were used,
with yield stresses σm

0 = 100MPa and σ f
0 = 500MPa. Fiber volume

fraction of 56.25% was assumed in a prismatic UC with a hexagonal
arrangement. The imposed macroscopic deformation gradient is

=
⎡

⎣
⎢
⎢ −

⎤

⎦
⎥
⎥

F
F

0 0
0.001 0.999 0

0.0005 0.001 1.001

11

(36)

where F11 is obtained from the numerical solution of the UC problem
such as P11= 0; this zero value is obtained by imposing no displace-
ment on the first DOF in control node 1 which implies zero reaction
force (R11= 0) and, following Eq. (25), P11= 0 is obtained. The de-
formation gradient for this example was chosen to initiate the plastic
flow and to reach a plateau in the Cauchy stress components, and also
to generate different values among such components. Two meshes were
used in this example with 7570 and 19,430 quadratic wedge-shaped
elements providing an accurate representation of the fiber and matrix
behavior while conforming a periodic mesh in the UC. The maximum
differences among stresses obtained with those meshes are smaller than

 
Fig. 4. Finite Element mesh with 15,974 quadratic elements for the truncated octahedral
UC.

Table 4
Cauchy stress components [MPa] in a transversely isotropic linear elastic CFRP under a
three-axial small strain state.

σ11 σ22 σ33 σ23 σ13 σ12

MCT Eq. (32), Nel=1,984 5.527 −0.694 −0.549 0.121 0.207 −0.155
MCT Eq. (32),

Nel=15,974
5.527 −0.695 −0.549 0.121 0.207 −0.155

Eq. (34) 5.521 −0.693 −0.548 0.121 0.206 −0.155
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0.06% with respect to the maximum value obtained for the σ33,
showing convergence has been reached.

Results for the Cauchy stress components obtained by the metho-
dology presented in this paper (MCT) and numerical integration
through Eq. (2) are shown in Fig. 5 as a function of a load factor; when
such load factor is zero, the deformation gradient F is equal to identity
tensor, while if the load factor is equal to unity, the deformation gra-
dient F will be given by (36). It can be seen that results are very similar
showing the good performance of MCT for elastic-plastic problems
under small strains.

3.3. Hyper-elastic composite

In this section, the MCT has been applied to a composite with
continuous fibers in hexagonal configuration (prismatic UC), having
Vf=50%. Isotropic hyper-elastic incompressible behavior is assumed
for fiber and matrix; a Neo-Hookean model was assumed for the fibers
whose strain energy density W is given by

= −W C I( 3)10 1 (37)

where C10 is a material parameter and the first invariant I1 is defined as

=I F Ftr( )T
1 (38)

An Ogden model was used for the matrix and its strain energy
density W is

∑= + + −
=

W
μ

α
λ λ λ

2
[ 3]

i

N
i

i

α α α

1
2 1 2 3

i i i

(39)

where μi and αi are material parameters; N is the number of terms used
in the model; λi are the principal stretching of the deformation gradient
acting in the material. The initial shear modulus for the assumed Neo-
Hookean material is given by

=μ C2f
0 10 (40)

while for the Ogden material, the initial shear modulus is

∑=
=

μ μm

i

N

i0
1 (41)

The material parameters assumed for the Ogden material are
μ1= 630 kPa, μ2= 1.2 kPa, μ3=−10 kPa, α1= 1.3, α2= 5, α3=−2
and, for the Neo-Hookean material, C10= 2.1125MPa. The ratio of
initial shear moduli of fiber and matrix is 6.8.

Since the applied deformation gradient can have arbitrary values,

the following F was chosen so that the Cauchy stress components have
different values among them

=
⎡

⎣
⎢

− −

⎤

⎦
⎥FF

2 0 0
1 0

1 0.7 1
22

(42)

in which F22 is obtained from the numerical solution of the UC such as
P22= 0. The general Eq. (27) was used to evaluate Cauchy stress. A
mesh with 420 linear wedge-shaped elements was used in a hybrid
formulation. Such formulation is appropriate for modeling in-
compressible materials. The mesh provides a good approximation of the
composite behavior since, when the amount of elements was increased
up to 762, the model showed changes smaller than 0.7% with respect to
the maximum value for σ11. Results of the present post-processing
method are compared in Fig. 6 with those obtained by numerical in-
tegration, Eq. (2), and excellent agreement is found between them.

3.4. Hyper-elastic honeycomb microstructure

A honeycomb microstructure made of a hyper-elastic material is
considered in this section to show that MCT can be used to compute
stresses in microstructures with large changes in shape. The Finite
Element mesh is shown in Fig. 7 and it has 4200 hybrid formulation
brick elements having quadratic shape functions and 20 nodes
(C3D20H, in ABAQUS nomenclature). The mesh shown in Fig. 7 is an
adequate discretization for the microstructure since a more refined
mesh with 9060 elements led to differences in stress components that
did not exceed 0.01% with respect to the maximum compressive value
obtained for σ22 with the finer mesh. The inner edges have a fillet radius
r equal to half the wall thickness tw=1 m−6 and the honeycomb vo-
lume fraction is Vfo=15%; the height h was chosen for the model to
have a unique layer of elements in the direction 3. The material is in-
compressible of Neo-Hookean type with C10= 2.1125MPa. The mi-
crostructure is compressed in the direction of the axis 1 with a de-
formation gradient given by

= ⎡

⎣
⎢

⎤

⎦
⎥F

0.5 0 0
0 1 0
0 0 1 (43)

This compressive deformation gradient was chosen because it
causes an unstable behavior of the microstructure with notable changes
in shape (van Dijk, 2016).

Fig. 8 shows the values for the Cauchy stress components for the
MCT and numerical integration, Eq. (2), and they are in good

 

Fig. 5. Cauchy stress components for an elastic–plastic composite: Comparison be-
tween the present method (MCT) and numerical integration, Eq. (2).
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agreement. In Eq. (27), it is important to use the complete volume of
the initial configuration V which is equal to the volume of the material
plus the hollow part of the unit cell. Finally, in Fig. 9a quarter of the UC
is shown in the initial and deformed states corresponding to F11= 0.75
and F11= 0.5. The Cauchy stress component σ11 is also shown in the UC
domain. The trends of the stress curves and deformed states are similar
to the ones reported by van Dijk (2016).

4. Conclusions

A new methodology for calculation of the Cauchy stress tensor at
the macroscopic level in computational micro-mechanics models has
been presented in this work. The formulation accounts for general
strain states and it is restricted to quasi-static problems. Numerical
integration at the microscopic domain is not performed in the present
approach; thus, the methodology avoids complexities in implementa-
tion and uses less information than numerically integrated approaches.
Because the present formulation is derived from the Hill–Mandel
principle, the approach may also be employed for other boundary
conditions which could be implemented by means of control nodes.

Verification has been presented by comparison with numerical in-
tegration in a truncated octahedron, prismatic, and honeycomb

 

Fig. 6. Cauchy stress for a hyper-elastic composite with hexagonal fiber ar-
rangement: Comparison between the present method (MCT) and numerical in-
tegration, Eq. (2).

   

a) b) 
Fig. 7. (a) Finite Element mesh for the honeycomb microstructure. (b) Detail in a corner of the unit cell.

 
Fig. 8. Cauchy stress for a hyper-elastic honeycomb microstructure: Comparison between
the present method (MCT) and numerical integration of Eq. (2).
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microscopic domains; cases consider elastic, elastic-plastic, and hyper-
elastic materials models at microscopic scale. Moreover, it is shown that
the developed general equations can reproduce specific results already
presented in the literature for uniaxial and shear cases under small or
finite strains, thus showing that this methodology is a general one.

Finally, the present approach is a good candidate for multi-scale in-
time simulations, in which the calculations at the micro and macro level
are performed simultaneously.
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F11= 0.5.
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