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Abstract The shuttling serine/arginine rich (SR) protein SRSF1 (previously known as SF2/ASF) is  
a splicing regulator that also activates translation in the cytoplasm. In order to dissect the gene 
network that is translationally regulated by SRSF1, we performed a high-throughput deep 
sequencing analysis of polysomal fractions in cells overexpressing SRSF1. We identified 
approximately 1500 mRNAs that are translational targets of SRSF1. These include mRNAs encoding 
proteins involved in cell cycle regulation, such as spindle, kinetochore, and M phase proteins, which 
are essential for accurate chromosome segregation. Indeed, we show that translational activity of 
SRSF1 is required for normal mitotic progression. Furthermore, we found that mRNAs that display 
alternative splicing changes upon SRSF1 overexpression are also its translational targets, strongly 
suggesting that SRSF1 couples pre-mRNA splicing and translation. These data provide insights on 
the complex role of SRSF1 in the control of gene expression at multiple levels and its implications 
in cancer.
DOI: 10.7554/eLife.02028.001

Introduction
Alternative splicing is a central mechanism for the regulation of gene expression allowing increased 
proteomic complexity in higher eukaryotes (Smith and Valcárcel, 2000; Braunschweig et al., 2013; 
Kornblihtt et al., 2013). It is regulated at many different levels, mainly by the binding of protein factors 
to enhancers and silencers in the pre-mRNA. The importance of chromatin structure and histone modifi-
cations in alternative splicing regulation has only begun to emerge recently (Schwartz et al., 2009; 
Tilgner et al., 2009; Luco et al., 2010, 2011; Pradeepa et al., 2012).

The SR proteins are a well-characterized family of splicing factors with a role in both constitutive 
and alternative splicing (reviewed by Lin and Fu, 2007). They have a modular structure consisting of 
one or two N-terminal RNA recognition motifs (RRMs), which determine their RNA-binding specificity 
and a C-terminal domain rich in arginine and serine residues (RS domain) (Shepard and Hertel, 2009). 
An extended family of RS domain-containing proteins present in metazoans, termed SR-like or 
SR-related proteins, are structurally and functionally distinct from canonical SR proteins and have roles 
not exclusively related to splicing but participate in other cellular functions as well, including transcrip-
tion and cell cycle progression (Boucher et al., 2001). The activity of SR proteins in alternative splicing 
is defined by the location of their binding sites, generally displaying a stimulatory role in splicing when 
bound to exons and an inhibitory role when bound to introns (Han et al., 2011; Erkelenz et al., 2013; 
Zhou and Fu, 2013). Their function in alternative splicing can be antagonized by the activity of hnRNP A/B 
proteins in a concentration-dependent manner, in such a way that the relative ratios of these antagonists 
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can influence patterns of regulated splicing in a tissue-specific or developmentally regulated manner 
(Eperon et al., 2000; Zhu et al., 2001). Although initially the RS domain was proposed to solely act 
as a protein–protein interaction domain, it was later revealed that it also acts to contact the pre-mRNA 
(Shen and Green, 2004; Shen et al., 2004; Hertel and Graveley, 2005). The RS domain has also been 
shown to determine the localization and nucleo-cytoplasmic shuttling properties of SR proteins 
(Cáceres et al., 1997, 1998; Allemand et al., 2001).

A role for SR proteins and their natural antagonists, hnRNP proteins, in deregulated alternative 
splicing during cancer progression has been extensively documented (reviewed by Venables, 2004 
and David and Manley, 2010). For instance, three hnRNP proteins, hnRNP A1, hnRNP A2 and PTB, 
control the alternative splicing of pyruvate kinase (PK-M) pre-mRNA giving rise to an isoform that is 
required for aerobic glycolysis used by rapidly growing tumor cells (Clower et al., 2010; David et al., 
2010; Chen et al., 2012). The SR protein SRSF3 (previously known as SRp20) antagonizes the function 
of the reported hnRNP proteins in PK-M alternative splicing (Wang et al., 2012). The antagonistic 
activities of SRSF1 and hnRNP A1 also control the epithelial-to-mesenchymal transition (EMT) and its 
reversal (MET) through production of two different alternatively spliced isoforms of the Ron proto-
oncogene (Ghigna et al., 2005; Bonomi et al., 2013). The levels of SRSF1 are regulated during EMT/
MET via alternative splicing associated with the nonsense-mediated mRNA decay pathway (AS-NMD), 
which is regulated by the splicing factor Sam68 (Valacca et al., 2010). SRSF1 has been identified as an 
oncogenic protein with altered expression in several tumors (Karni et al., 2007). Its increased expres-
sion leads, in cooperation with MYC, to the transformation of mammary epithelial cells (Anczuków  
et al., 2012). SRSF3 has also been proposed to be a proto-oncogene critical for cell proliferation 
and tumor induction and maintenance (Jia et al., 2010), whereas SRSF6 (SRp55) is amplified and is 
an oncoprotein in lung and colon cancers (Cohen-Eliav et al., 2013). Recently, a cellular defense 
mechanism to deal with the oncogenic potential of increased SRSF1 expression has been described, 
whereby SRSF1 stabilizes the tumor suppressor protein p53 by blocking its MDM2-dependent pro-
teasomal degradation, which ultimately leads to oncogene-induced senescence (OIS) (Fregoso et al., 
2013). Interestingly, other splicing factors, such as hnRNP A2/B1, are also overexpressed in some 
types of cancers, such as glioblastomas, where they are correlated with poor prognosis (Golan-Gerstl 
et al., 2011).

A subset of the SR protein family members shuttle from the nucleus to the cytoplasm, including 
SRSF1 (SF2/ASF), SRSF3 (SRp20), SRSF4 (SRp75), SRSF6 (SRp55), SRSF7 (9G8), and SRSF10 (SRp38) 

eLife digest Genes contain the instructions to make proteins. These instructions are first 
transcribed to produce an intermediate molecule called a messenger RNA (mRNA), which is then 
translated to produce the protein. However, gene sequences are often interrupted by ‘introns’, 
sections of DNA that do not code for protein, and these introns must be removed from the mRNA 
molecules via a process called ‘splicing’ before the protein is produced.

Splicing can also be used to ‘mix and match’ sections of gene sequences to produce slightly 
different versions of the same protein in a process called ‘alternative splicing’. SRSF1 is one of a 
family of proteins that control both types of gene splicing but also promotes the translation of 
specific mRNAs. To date only a few of the genes whose translation is regulated by SRSF1 have been 
identified.

Here, Maslon, Heras et al. have used human cells that artificially produce more SRSF1 protein 
than normal to identify those genes whose translation is regulated by SRSF1. Over 1500 ‘target 
genes’ were found; many of which encoded proteins that are involved in cell division—and cells 
with less SRSF1 than normal failed to divide properly. Maslon, Heras et al. also found a link 
between alternative splicing and protein translation: many of the mRNAs that were spliced 
differently in cells that over-produced SRSF1 were also genes whose translation was affected by 
SRSF1.

Since uncontrolled cell division, or defects in mRNA splicing or protein synthesis are all often 
linked to cancer, these discoveries might provide new insights into the mechanisms underlying this 
disease.
DOI: 10.7554/eLife.02028.002
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(Cáceres et al., 1998; Cowper et al., 2001; Cazalla et al., 2002; Sapra et al., 2009). Importantly, 
shuttling SR proteins have been shown to participate in a wide range of post-splicing activities, 
including mRNA nuclear export, nonsense-mediated mRNA decay, and mRNA translation (reviewed 
by Long and Caceres, 2009 and Twyffels et al., 2011). As an example, several studies have revealed 
that three shuttling SR proteins, SRSF1, SRSF3, and SRSF7, can act as mRNA export adaptors via 
their interaction with the cellular export factor TAP (Huang and Steitz, 2001; Huang et al., 2003; 
Hargous et al., 2006). Furthermore, increased concentration of SRSF1 promotes nonsense-medi-
ated decay (NMD) (Zhang and Krainer, 2004; Sato et al., 2008). A number of SR protein family 
members were found to have a role in translation. We have previously shown that hypophosphorylated 
SRSF1 protein is associated with polyribosomes in cytoplasmic extracts and enhances translation in 
HeLa cells both in vitro and in vivo (Sanford et al., 2004, 2005). Furthermore, we also uncovered the 
molecular mechanism by which SRSF1 promotes translation by showing that it promotes translation 
initiation of bound mRNAs by suppressing the activity of 4E-BP, a competitive inhibitor of cap-dependent 
translation. This activity is mediated by interactions of SRSF1 with components of the mTOR signaling 
pathway (Michlewski et al., 2008). In agreement with this, it was also shown that SRSF1 activates the 
mTORC1 branch of the pathway, as measured by S6K and 4E-BP1 phosphorylation (Karni et al., 
2008). These findings suggest a model whereby SRSF1 acts as an adaptor protein that recruits the 
signaling molecules responsible for regulation of cap-dependent translation of specific mRNAs. 
Another shuttling SR protein, SRSF7, has also been shown to promote translation of unspliced MMPV 
retroviral transcripts (Swartz et al., 2007), whereas SRSF5 and SRFS6 increase the rate of Gag translation 
in the HIV virus (Swanson et al., 2010). SRSF3 functions as a trans-acting factor for the internal ribosome 
entry site (IRES)-mediated translation of poliovirus, which requires its cytoplasmic relocalization 
during viral infection (Bedard et al., 2007; Fitzgerald and Semler, 2011, 2013). Despite the presence 
of growing evidence for a role for shuttling SR proteins in the regulation of mRNA translation, only very 
few physiological targets have been identified. This raises the issue whether this activity of SR 
proteins has an important role in gene expression and/or whether it is associated with a particular 
cellular pathway.

Here, we have focused on the identification of the mRNA translational targets of the SRSF1 protein. 
We carried out high-throughput deep sequencing analysis of polysomal fractions in mammalian cells 
overexpressing SRSF1. This resulted in the identification of a large number of mRNAs that are transla-
tionally regulated by SRSF1. These mRNAs encode proteins involved in cell cycle regulation, such as 
spindle, kinetochore, and M phase proteins, which are essential for accurate chromosome segregation. 
Interestingly, we also observed that in many cases SRSF1 affects the alternative splicing of a subset of 
mRNAs and also influences translation of these isoforms, suggesting a role for SRSF1 in the coupling 
of pre-mRNA splicing and translation. Altogether, the finding that SRSF1 promotes the increased 
translation of genes associated with cell division could partially explain the oncogenic role of SRSF1. 
In summary, these data provide insights on the complex role of SRSF1 in the control of gene expression 
and its implications in cancer.

Results
Identification of SRSF1 translational targets
In order to identify SRSF1 translational mRNA targets, we performed a polysomal shift analysis to 
follow mRNAs that move from the subpolysomal fraction to the heavier polysomal fractions in HEK 
293T cells upon increased SRSF1 expression. Maintaining proper levels of SRSF1 could be critical for 
cell function. As such, SRSF1 expression is subjected to negative autoregulation in order to maintain 
homeostatic levels, which involves multiple layers of post-transcriptional and translational control 
(Sun et al., 2010). Thus, in order to avoid cellular mechanisms that could limit an increased SRSF1 
expression, we relied on transient overexpression of an epitope-tagged SR protein cDNA encoding 
wild-type SRSF1 protein. We used two different concentrations of the SRSF1 expression vector and 
obtained a maximum of a threefold increase in the levels of transfected SRSF1 protein over endogenous 
protein in HEK 293T cells that displayed approximately 80–90% transfection efficiency (Figure 1—figure 
supplement 1). We chose the highest concentration of transfected SRSF1 protein since this resulted 
in maximum activation of a luciferase reporter harboring an SRSF1 binding site (Sanford et al., 2004) 
(Figure 1—figure supplement 2, left panel). The translational activation of the luciferase reporter 
induced by SRSF1 correlated well with a threefold increase in the polysomal/subpolysomal ratio of the 
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reporter RNA (Figure 1—figure supplement 2, right panel). The expression of SRSF1 varies widely in 
a tissue-specific manner and differences of up to 20-fold between different tissues have been reported 
(Zahler et al., 1993; Hanamura et al., 1998). Thus, this level of overexpression is within physiological 
levels and correlates well with the maximum activation of a translational reporter (Figure 1—figure 
supplements 1 and 2). We proceeded to fractionate cell cytoplasm across 10–45% sucrose gradients 
and isolated RNA from the subpolysomal and heavy polysomal fractions from control cells and from 
cells transiently overexpressing SRSF1.

Next, we identified by high-throughput sequencing analysis those mRNAs that shifted to the poly-
somal fractions upon SRSF1 increased expression (Figure 1A). It has been shown that calculating 
mRNA translation levels as log ratios of actively translated mRNAs divided by the corresponding cyto-
plasmic mRNA results in a significant number of false positives and false negatives (Larsson et al., 
2010). Therefore, to precisely identify those mRNAs whose translation is responsive to increased levels 
of SRSF1, we used for normalization the log ratios of polysomal mRNAs versus RNAs in subpolysomal 
plus polysomal fractions. The resulting polysome index measures the proportion/density of each tran-
script that is present in the polysomal fractions. We compared empty vector-transfected to SRSF1-
transfected cells by calculating the distribution of the log2 ratios of their respective polysome index, 
which we defined as the polysome shift ratio (PSR) (Figure 1B). This allowed for the scoring of an 
increase in translational efficiency independently of the cellular abundance of the corresponding tran-
script. A cut off of 0.889 (p<0.01), corresponding to a 1.85-fold increase in the proportion of polyso-
mal-associated transcripts, resulted in the identification of 1576 mRNAs that shifted to heavier 
polysomal fractions upon SRSF1 overexpression (Figure 1B and data in Supplementary file 1 at Dryad: 
Maslon et al. (2014)). Gene Ontology analyses showed that a large proportion of those mRNAs iden-
tified in the polysomal shift analysis encode for proteins involved in cell cycle regulation, mitosis, tran-
scription, and post-translational protein modification (based on analysis with DAVID [Dennis et al., 
2003]) (Figure 2—figure supplement 1A). Among the RNA targets that displayed a polysomal shift 
are mRNAs encoding proteins related to cancer, such as NRAS, the Ras-related protein R-Ras2, and 
those related to cell cycle, such as CDC27, the retinoblastoma binding protein RBBP8, and retinoblas-
toma-like 1 (RBL1). (A list of all SRSF1 translational targets is provided in Supplementary file 1 at Dryad: 
Maslon et al. (2014).) The SRSF1 translational targets may represent indirect as well as direct events. 
In the first scenario, increased expression of SRSF1 could lead to general changes in gene expression, 
which could result indirectly in the translational upregulation of a subset of mRNAs. Conversely, direct 
events would represent events whereby SRSF1 binds to its mRNA targets and activates their transla-
tion. Interestingly, we observed that 41% of all mRNAs identified in the polysomal shift experiment 
upon SRSF1 overexpression were previously identified as bona fide RNA targets of this SR protein by 
CLIP-seq (Sanford et al., 2009) (Figure 2—figure supplement 1B). This strongly suggests that these 
are direct mRNA translational targets of SRSF1. We combined k-mer enrichment analysis (the enrichment 
of every 5-mer within the RNA sequences) with motif discovery to search for over-represented sequences 
in SRSF1 mRNA translational targets. MEME was used to retrieve a motif logo from mRNA regions con-
taining the over-represented 5-mers (Bailey and Elkan, 1994, 1995). This resulted in the identification 
of a purine-rich motif very similar to the one obtained when identifying genome-wide targets of SRSF1 
(Figure 2A) (Sanford et al., 2008, 2009). Interestingly, the frequency of this motif showed a clear 
gradient, being more predominant in CLIP-positive translational targets than in CLIP-negative transla-
tional targets and was even more reduced in both the CLIP-positive and CLIP-negative subset of 
mRNAs that did not shift to polysomes following SRSF1 overexpression (Figure 2B). In fact, statistical 
analysis showed a significant enrichment of the CLIP-positive mRNAs containing the identified consen-
sus motif (CM) in the SRSF1 translational targets (Fisher’s exact test: OR 1.686, p<2.2E-16) (Figure 2C). 
We further refer to these 505 mRNAs as SRSF1 direct translational targets. Next we analyzed whether 
there was any position bias with respect to the SRSF1 consensus motif in SRSF1 translational targets. 
We observed that this motif is preferentially located in the coding DNA sequence (CDS) and to a lesser 
extent in the 5′UTR of SRSF1 translational targets, when compared with those mRNAs whose transla-
tion is unaffected by increased SRSF1 expression (referred to as null [PSR∼0]) (Figure 2—figure sup-
plement 2). Gene Ontology analysis of direct SRSF1 translational targets revealed an enrichment in 
mRNAs associated with cell cycle and chromosome organization, as previously seen when analyzing all 
targets or CLIP-positive targets (compare Figure 2D and Figure 2—figure supplement 1A,C) as well 
as an enrichment in mRNAs linked with transcription and RNA metabolism (Figure 2D,E, Figure 2—
figure supplement 1C).

http://dx.doi.org/10.7554/eLife.02028
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Validation of SRSF1 translational 
targets
We proceeded to validate a subset of SRSF1 tar-
gets that were identified in the experiment 
described above. These experiments were per-
formed in polysomal/subpolysomal fractions 
obtained independently from the samples used in 
the RNA-seq experiment (Figure 1). We selected 
mRNAs encoding for proteins involved in cancer-
related pathways such as cell cycle and apoptosis, 
as well as other targets involved in processes such 
as transcription, translation, RNA processing, and 
proteolysis. Moreover, the selected mRNAs cov-
ered a wide range of values for PSR, from 
0.9186 to 2.95 (data in Supplementary file 1 at 
Dryad: Maslon et al. (2014)). As a negative con-
trol we used the AVEN and ALAS1 mRNAs, as 
their distribution along the polysome profile did 
not change upon SRSF1 overexpression (PSR = 0) 
and its cellular abundance was comparable to 
those mRNAs selected for the validation (data in 
Supplementary file 1 at Dryad: Maslon et al. 
(2014)). Importantly, we observed a significant 
increase in the polysomal to subpolysomal ratio 
for 70% of those mRNAs upon SRSF1 overex-
pression, as analyzed by RT-qPCR (Figure 3A), 
confirming a role for SRSF1 in regulating transla-
tion of these targets. Notably, we observed the 
highest fold change in the polysome to subpoly-
some ratio for mRNAs involved in cell cycle regu-
lation and RNA processing.

We sought to further explore a role for SRSF1 
in mediating the translational regulation of pro-
teins involved in different aspects of RNA metab-
olism, such as splicing, NMD, and translation. As 
a control we included a chimeric SRSF1 protein 
harboring a nuclear retention signal (NRS), identi-
fied in the non-shuttling protein SRSF2, which 
was fused at its C-terminus. This protein, termed 
SRSF1-NRS, is constitutively retained in the nucleus 
and does not activate translation (Cazalla et al., 
2002; Sanford et al., 2004). In most cases, we 
confirmed that overexpression of SRSF1 protein, 
but not of the nuclear-retained SRSF1-NRS  
variant, results in a shift of the mRNAs encoding 
for the aforementioned proteins to polysomes 
(Figure 3B). For instance, we noticed that overex-
pression of SRSF1 results in increased translation 
of CWC22, an essential splicing factor that also 
has a role in exon junction complex deposition 
and NMD (Alexandrov et al., 2012; Barbosa 
et al., 2012; Steckelberg et al., 2012), as well as 
of PRPF18 that is required for the second step of 
pre-mRNA splicing (Horowitz and Krainer, 
1997). SRSF1 translational targets that were 

Figure 1. Identification of SRSF1 mRNA translational 
targets. (A) Experimental approach to identify SRSF1 mRNA 
translational targets. A characteristic fractionation 
profile of empty vector (pCG) and SRSF1 transfected-HEK 
293T cells (Figure 1—figure supplement 1) is depicted. 
Absorbance at 254 nm was monitored. (B) A plot showing 
the distribution of mRNAs from RNA-seq analysis according 
to the polysome shift ratio (PSR). The null distribution 
(comparing two control subsamples) is symmetric and 
sharply centered at 0. The PSR of SRSF1 versus empty 
vector shows an enrichment over the null distribution. 
The mRNAs with a p<0.01 (PSR>0.889) were considered 
SRSF1 translational targets (Supplementary file 1).
DOI: 10.7554/eLife.02028.003
The following figure supplements are available for figure 1:

Figure supplement 1. Optimization of SRSF1 transient 
transfection for polysomal shift analysis. 
DOI: 10.7554/eLife.02028.004

Figure supplement 2. Luciferase reporter containing 
an SRSF1 binding site. 
DOI: 10.7554/eLife.02028.005

http://dx.doi.org/10.7554/eLife.02028
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Figure 2. SRSF1 translational targets. (A) Motif identified on putative direct translational targets using 5-mers 
enrichment in combination with MEME algorithm (width = 10, sites = 508/508, E value = 1.5E-308, IC = 7.9 bits). 
Over-represented k-mers were obtained by double comparison CLIP+ versus CLIP− translational targets and CLIP+ 
translational targets versus null CLIP+. (B) Box plot showing the density of consensus motif (translational targets 
CLIP+ > translational targets CLIP− > null CLIP+ > null CLIP+). (C) Venn diagram showing the overlap (505 mRNAs) 
between translational targets (1576 mRNAs with p<0.01) and CLIP-tag mRNAs containing the consensus motif 
Figure 2. Continued on next page

http://dx.doi.org/10.7554/eLife.02028
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validated in this assay also include LSM3, which is a constituent of the Lsm1-7-Pat1 complex that func-
tions in the 5′-to-3′ mRNA decay pathway (Sharif and Conti, 2013), as well as proteins involved in 
the NMD pathway such as UPF2 and PNRC2 (data in Supplementary file 1 at Dryad: Maslon et al. 
(2014) and Figure 3B) (Nicholson et al., 2010). In particular, PNRC2 shows a drastic movement to 
polysomal fractions upon SRSF1 overexpression, but is not responsive to increased expression of the 
SRSF1-NRS variant (Figure 3B). Together, these observations are consistent with a role for SRSF1 in 
regulating the translation of mRNAs encoding components of the RNA processing pathway. Of in-
terest, we noticed that SRSF1 also promotes the translation of mRNAs encoding negative regulators 
of mRNA translation, such as EIF4E3 that recognizes and binds the 7-methylguanosine-containing 
mRNA cap during an early step in translation initiation (Osborne et al., 2013), as well as Paip2 that 
inhibits translation both in vitro and in vivo by displacing PABP from the poly(A) tail (Khaleghpour et 
al., 2001). This could represent a feedback mechanism that becomes activated in response to SRSF1 
overexpression to antagonize its role in translation. Alternatively it could suggest a role for SRSF1 in 
the negative regulation of translation of subsets of mRNAs that are targets of EIF4E3 and/or PAIP2. 
Indeed, we observed that 165 mRNAs are translationally repressed by increased expression of SRSF1 
(Figure 1B).

It is known that protein levels in the cell cannot be always predicted from the mRNA abundance, as 
other factors, such as post-translational modification and protein stability, contribute to steady-state 
levels of protein. Thus, we sought to determine whether the SRSF1-induced polysomal shift of target 
mRNAs correlated with higher protein abundance. Use of stable isotope labeling by amino acids in cell 
culture (SILAC) resulted in the identification of 2157 proteins in the three protein lysates used (untrans-
fected, empty vector, and SRSF1-transfected HEK 293T cells) (data in Supplementary file 2 at Dryad: 
Maslon et al. (2014)). Following normalization, we calculated for each of those proteins the log2 of the 
ratio between the levels of each individual protein in cells overexpressing SRSF1 versus control cells 
(SILAC index). Thus, a positive value of the SILAC index indicates an increase in protein abundance 
upon SRSF1 overexpression. As expected, we found the higher score for SRSF1 (data in Supplementary 
file 2 at Dryad: Maslon et al. (2014)). To establish a correlation with the PSR, the SILAC index for each 
protein was assigned to the mRNAs encoded by the corresponding gene (data in Supplementary files 
1 and 2 at Dryad: Maslon et al. (2014)). We found a positive correlation showing increased protein 
levels for SRSF1 direct translational targets (Figure 3C, third box). This correlation was even better for 
a subset of mRNAs that displayed a high polysome shift ratio (PSR>1) (Figure 3C, fourth box).

SRSF1 activates translation via the mTOR pathway
We previously showed that SRSF1 promotes translation initiation of bound mRNAs by suppressing the 
activity of 4E-BP, a competitive inhibitor of cap-dependent translation. This activity is mediated by inter-
actions of SRSF1 with components of the mTOR signaling pathway. This suggested a model whereby 
SRSF1 functions as an adaptor to recruit signaling molecules responsible for regulation of cap-depend-
ent translation of specific mRNAs (Michlewski et al., 2008). We sought to determine whether endoge-
nous SRSF1 translational targets responded to the same mechanism of translational activation, as we 
previously showed using reporter assays. For this, we treated cells transiently expressing SRSF1 (or con-
trol cells) with a specific inhibitor of the mTOR kinase, PP242 (Dowling et al., 2010), and then measured 

(CLIP+ CM) (6065) (Fisher’s exact test: OR 1.1686; p<2.2E-16. (D) The most representative classes of Gene Ontology 
terms enriched in direct translational targets (with CLIP-tag and consensus motif [CLIP+ CM]) relative to all the 
mRNAs detected in HEK 293T by RNA-seq. The number of genes observed in each category is indicated in the pie 
chart. Modified Fisher’s exact p value, EASE score is given for each category. In all cases, the Benjamini–Hochberg-
corrected EASE score was <0.1. (E) Table giving the gene names of SRSF1 translational targets related to cell cycle 
and RNA processing pathways.
DOI: 10.7554/eLife.02028.006
The following figure supplements are available for figure 2:

Figure supplement 1. Analysis of SRSF1 translational targets. 
DOI: 10.7554/eLife.02028.007

Figure supplement 2. The positional bias of the SRSF1 consensus motif in the 5′UTR, protein coding sequence 
(CDS), and 3′UTR of SRSF1 translational mRNA targets (red) was compared to the null population (blue, PSR∼0). 
DOI: 10.7554/eLife.02028.008

Figure 2. Continued

http://dx.doi.org/10.7554/eLife.02028
http://dx.doi.org/10.7554/eLife.02028.006
http://dx.doi.org/10.7554/eLife.02028.007
http://dx.doi.org/10.7554/eLife.02028.008
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Figure 3. Validation of SRSF1 translational targets. (A) RT-qPCR validation confirms an increased polysome to subpolysome ratio for selected SRSF1 
translational targets upon SRSF1 overexpression (CLIP+: green; CLIP+ and harboring an SRSF1 consensus motif (CLIP+ CM+): purple). The polysome to 
subpolysome ratio is relative to cells transfected with empty vector (pCG) and normalized to actin. Plotted data are the average of three biological 
Figure 3. Continued on next page
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polysomal to subpolysomal ratios of a subset of selected SRSF1 translational targets, including proteins 
related to RNA processing (Figure 3B). Interestingly, we found that inhibition of mTOR abrogated the 
stimulatory activity of SRSF1 on the translation of selected targets (Figure 3D). This demonstrates that 
the activity of SRSF1 in translational activation of endogenous targets requires the mTOR pathway.

Coupling of alternative splicing and translation
The function of shuttling SR proteins in both splicing and post-splicing activities raises the possibility 
that they may act to coordinate nuclear and cytoplasmic events for a subset of pre-mRNAs. Indeed, 
we previously showed by coupling CLIP with subcellular fractionation that mRNAs found associated 
with SRSF1 in the nucleus, were also found in the cytoplasm and in the actively translating pool of 
ribosomes, suggesting that splicing and translation of those mRNAs could be coordinated by SRSF1 
(Sanford et al., 2008). To assess a global effect of SRSF1 in coupling of pre-mRNA splicing with mRNA 
translation, we analyzed changes in alternative splicing in cells overexpressing SRSF1 using exon-
junction arrays. We identified 382 differentially regulated cassette exons: 209 events associated with 
skipping of an alternative exon and 173 events where overexpression of SRSF1 resulted in the inclu-
sion of an alternative exon (data in Supplementary file 3 at Dryad: Maslon et al. (2014)). In order to 
correlate the polysomal shift of SRSF1 translational targets with the alternative splicing of those 
mRNAs, the PSR for the isoforms generated by the changes in alternative splicing events upon SRSF1 
overexpression were analyzed (Figure 4A). Interestingly, we observed a statistically significant increase 
in the PSR of the isoforms generated by skipping as well as inclusion of a cassette exon (Figure 4A). 
This suggests that SRSF1 can influence both the alternative splicing as well as the translational effi-
ciency of subsets of mRNAs. As an example, we focused on the alternative splicing of the SR protein 
kinase Clk1 pre-mRNA, which is regulated through alternative splicing, giving rise to two isoforms 
encoding catalytically active and truncated inactive polypeptides (Clk1Ex4+ and Clk1Ex4−, respec-
tively) (Duncan et al., 1997). Indeed, we could confirm that SRSF1 overexpression caused increased 
inclusion of the alternatively spliced exon 4 of CLK1 mRNA, giving rise to the active Clk1 isoform 
(Figure 4B, left panel). Furthermore, an SRSF1 CLIP tag containing a consensus motif mapped to this 
cassette exon suggesting that it is bound directly by SRSF1 (data in Supplementary file 3 at Dryad: 
Maslon et al. (2014)). Interestingly, this isoform was also more translated (as measured by polysome 
to subpolysome ratio by RT-qPCR) upon SRSF1 overexpression (Figure 4B, right panel).

A role for SRSF1 translational activity in cell division
A large number of SRSF1 mRNA translational targets encode for proteins involved in cell cycle regula-
tion (data in Supplementary file 1 at Dryad: Maslon et al. (2014)). This is even more apparent when 
looking at the functional classification of direct translation targets containing the SRSF1 consensus 
binding motif (Figure 2D,E) that includes several redundant layers such as cell cycle (p = 3.35E-06), 
chromosome organization (p = 2.79E-07), and M phase (p = 3.61E-05), suggesting that SRSF1-
mediated translation may affect proper mitotic progression. In particular, many of these mRNAs 
encode for proteins with a role in mitotic spindle and kinetochore formation (data in Supplementary 
file 1 at Dryad: Maslon et al. (2014) and Figure 5A). The aforementioned group of proteins com-
prises, among others, a group of centrosomal proteins including CEP170, CEP70, and CEP57, proteins 
involved in kinetochore and spindle function, such as NDC80 and CCDC99, and proteins forming the 
condensin complex, including SMC2 and SMC4. NDC80, a core protein of the NDC80 complex, is 

replicates. The asterisks indicate statistical significance (p<0.05) Error bars, Gene Ontology terms and cancer relationship are indicated. (B) RT-qPCR 
validation of SRSF1 translational targets involved in RNA metabolic processes. The polysome to subpolysome ratio as measured by RT-qPCR in empty 
vector-transfected cells compared to cells overexpressing SRSF1 is indicated. Two different concentrations of pCGT7-SRSF1 plasmid were used. A mutant 
version of SRSF1 that is constitutively nuclear and does not activate translation was also included (SRSF1-NRS). (C) Box plot showing the values of the 
stable isotope labeling by amino acids in cell culture (SILAC) index, defined as log2 SRSF1 ratio/empty vector ratio. ‘All’ refers to mRNAs encoding for 
all the proteins found by SILAC (2471 mRNAs); ‘CLIP+’ refers to the SRSF1 translational targets (PSR>0.889536; p<0.01) harboring CLIP-tag (125 mRNAs); 
‘CLIP+CM’ is for direct translational targets (105 mRNAs); ‘PSR≥1, CLIP+CM’ refers to direct translational targets with a PSR≥1 (72 mRNAs) (p = 0.002487). 
(D) PP242-mediated mTOR inhibition suppresses SRSF1-dependent activation of translation of a subset of mRNA targets. Control and SRSF1-overexpressing 
cells were treated with PP242 for 90 min. The polysome to subpolysome ratio was measured by RT-qPCR in empty vector-transfected cells compared to 
cells overexpressing SRSF1 treated with or without PP242. mTOR inhibition was validated by Western blotting (data not shown).
DOI: 10.7554/eLife.02028.009

Figure 3. Continued
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required for stable microtubule binding in the outer plate of kinetochores (Wei et al., 2007), whereas 
CCDC99, also known as Spindly, is required for the dynein/dynactin localization to kinetochores 
(Barisic et al., 2010). Centrosomal proteins control cell cycle progression and spindle–kinetochore 
assembly (Kumar et al., 2013). In particular, CEP57 is involved in linking central spindle microtubules 
and is required for spindle integrity (He et al., 2013), CEP70 is necessary for the organization and 

Figure 4. Coupling of alternative splicing and translational regulation. (A) Correlation between SRSF1-induced 
changes in alternative splicing with polysomal distribution of those isoforms. Changes in alternative splicing 
induced by SRSF1 overexpression were determined by an exon-junction array. PSR: polysome shift ratio.  
(B) RT-qPCR analysis of the effect of SRSF1 on CLK1 alternative splicing and preferential polysomal association. The 
exon-intron structure of both isoforms is indicated (not to scale) and the CLK1 isoform that is an SRSF1 direct 
translational target is underlined. SRSF1-induced changes in CLK1 alternative splicing were determined and 
normalized to exon 7 (constitutive exon) levels (left panel). Two different concentrations of pCGT7-SRSF1 plasmid 
were used. Polysomal distribution of CLK1 mRNA isoforms upon SRSF1 overexpression normalized to exon 7 
(constitutive exon) levels (right panel).
DOI: 10.7554/eLife.02028.010
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Figure 5. SRSF1 translational targets involved in cell division. (A) List of cell cycle proteins regulated by SRSF1 at the 
translational level (left panel). The cartoon depicting their involvement in chromosome segregation during mitosis was 
adapted from Kitagawa and Hieter (2001). APC stands for (Anaphase-promoting complex) (B) Validation of cell cycle 
translational targets. The polysome to subpolysome ratio for a subset of cell cycle-related mRNAs was measured by 
RT-qPCR in empty vector-transfected cells compared to cells overexpressing SRSF1 or depleted of SRSF1. Two different 
concentrations of pCGT7-SRSF1 plasmid were used. A mutant version of SRSF1 that is constitutively nuclear and does 
not activate translation was also included (SRSF1-NRS). The asterisks indicate statistical significance (p<0.05). (C) Western 
Figure 5. Continued on next page
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orientation of a bipolar spindle in mitosis, and CEP170 is involved in microtubule organization and 
associates with spindle microtubules during mitosis (Shi et al., 2011). Finally, SMC2 and SMC4 proteins 
are part of the condensin I and II complexes, which, together with cohesin, restructure chromosomes 
to promote faithful chromosome segregation during mitosis (Losada and Hirano, 2005). Importantly, 
altered translational regulation of any of these proteins could have important implications for faithful 
chromosome segregation, as this depends on the formation of a bipolar spindle and the correct 
attachment of kinetochores to spindle microtubules. Notably, another identified SRSF1 translational 
target, CDK1, has also been shown to regulate the assembly of mitotic spindles as well as spindle 
positioning, stability, and elongation (Enserink and Kolodner, 2010).

Here, we focused on those SRSF1 translational targets that are related to chromosome segregation 
during mitosis (Figure 5A). We estimated their polysome to subpolysome ratio in HEK 293T cells over-
expressing SRSF1 using RT-qPCR. We observed a shift to the polysomal fraction upon increased SRSF1 
expression (note that both concentrations shown in Figure 1—figure supplement 1 were used here). 
By contrast, increased expression of the translationally inactive SRSF1-NRS variant did not cause a shift 
to the polysomal fraction in most cases. Also, as expected we observed a decrease in polysomal asso-
ciation of these mRNAs upon siRNA-mediated depletion of SRSF1 (Figure 5B). This analysis validated 
this subset of mRNAs as bona fide translational targets, suggesting a role for SRSF1 in the translational 
regulation of proteins that are required for cell cycle progression (Figure 5B). We also performed Western 
blotting analysis of some of these targets and were able to confirm that SRSF1 overexpression results in 
increased levels of CEP70, NDC80, and SMC4 (Figure 5C). Conversely, we observed decreased protein 
levels following SRSF1 depletion, in particular of NDC80, SMC4, and CEP57 (Figure 5D). Furthermore, 
SILAC analysis also showed that increased expression of SRSF1 resulted in increased levels of proteins 
related to cell cycle progression and chromosome segregation (Figure 3 and data in Supplementary 
file 2 at Dryad: Maslon et al. (2014)). In particular, CEP170, CBX3, and PDS5B protein abundance 
increased in response to SRSF1 overexpression, further validating the role of SRSF1 in regulating trans-
lation of these targets. In agreement with these observations, previous findings from the MitoCheck 
consortium have revealed that SRSF1 is involved in mitotic progression (Neumann et al., 2010).

A recent study has revealed a dynamic reprogramming of translation throughout the cell cycle 
(Stumpf et al., 2013). Since our studies were carried out for the most part in asynchronous cell popula-
tions, it remains possible that SRSF1 non-translational effects on cell cycle could be the cause of at 
least some of the observed changes in mRNA translation. Importantly, we observed that increased 
expression of SRSF1 does not grossly affect the cell cycle profile (Figure 5—figure supplement 1A), 
strongly suggesting that the observed increase in polysomal to subpolysomal ratios for these targets 
is primarily linked to SRSF1-mediated translation and not to an indirect effect on the cell cycle. 
Conversely, SRSF1 depletion led to major cell cycle aberrations (Figure 5—figure supplement 1B), 
with approximately 50% of SRSF1-depleted cells remaining arrested in the G2/M phase. This could be 
caused by a loss of SRSF1-dependent translation of targets required for cell cycle progression, as we 
observed decreased association of these mRNA targets with polysomes in SRSF1-depleted cells 
(Figure 5B), as well as decreased levels of the corresponding proteins (Figure 5D). Importantly, the 
levels of SRSF1 itself do not change significantly throughout the cell cycle, albeit there is a 1.2-fold 
increase in SRSF1 protein levels from the G1 to S phase (Ly et al., 2014). We cannot rule out, however, 
that the subcellular localization of SRSF1 is cell cycle regulated, which could potentially affect the 
translation of SRSF1 targets.

We proceeded to further assess the effect of SRSF1 depletion in mitotic progression. The protea-
some inhibitor MG132 was added for 2 hr to HeLa cells in culture and the cell cycle profile was evaluated 
at different times following MG132 release (Figure 6A). As previously demonstrated, proteasome 

blot validation of selected cell cycle SRSF1 translational targets in empty vector or SRSF1-transfected cells. β-Actin 
was used as a loading control. (D) Western blot validation of selected cell cycle SRSF1 translational targets in control or 
SRSF1-depleted cells in an asynchronous (A) or mitotic population (M). Tubulin was used as a loading control.
DOI: 10.7554/eLife.02028.011
The following figure supplements are available for figure 5:

Figure supplement 1. 
DOI: 10.7554/eLife.02028.012
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Figure 6. SRSF1 is required for cell cycle progression. (A) and (C) Schematic representation of the protocols used to assess mitotic progression.  
(B) HeLa cells were treated as in (A) and the number of cells at different stages of mitosis was determined by classification of images of fixed cells stained for 
DNA, tubulin, and pericentrin. (D) HeLa cells were treated as in (C) and time-lapse imaging of mCherry-H2B was performed. Images were captured every 
15 min over 24 hr at three different positions. Representative images of cells transfected with control siRNA and SRSF1 siRNA are shown. (E) The graph 
indicates the elapsed time (minutes) from nuclear envelope breakdown (NEBD) or chromatin condensation to the onset of anaphase/telophase or to 
mitotic cell death. (F) HT1080 cells stably expressing GFP-CENPA were transfected with control or SRSF1-specific siRNA, and 24 hr later cells were retransfected 
with either empty vector or SRSF1. The next day cells were seeded in six-well plates and time-lapse imaging of GFP-CENPA was performed as in (C). The 
graph indicates the elapsed time (minutes) from nuclear envelope breakdown (NEBD) or chromatin condensation to the onset of anaphase/telophase or 
to mitotic cell death. Scale bar is 10 μm. The asterisks indicate statistical significance (*p<0.05, **p<0.01, ***p<0.001).
DOI: 10.7554/eLife.02028.013
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inhibitors induce metaphase arrest (Wójcik et al., 1996) and indeed following drug treatment we 
observed accumulation of cells in the prometaphase/metaphase stage of the cell cycle (Figure 6B). 
Interestingly, while control cells proceeded through the normal stages of mitosis following MG132 
withdrawal, HeLa cells that were depleted of SRSF1 remained arrested in metaphase, indicating that 
SRSF1 was required for normal mitotic progression (Figure 6B). To confirm this, we co-transfected 
HeLa cells with epitope-tagged GFP-tubulin and mCherry-H2B and compared the cell cycle stage of 
control cells and SRSF1-depleted cells by time-lapse imaging (Figure 6C–E). The co-transfected pro-
teins were used as markers to follow the cell cycle stage (for simplicity only the mCherry-H2B is shown). 
This analysis confirmed that SRSF1 is indeed essential for proper cell cycle progression (Figure 6D,E). 
Specifically, control cells underwent mitosis in around 50 min, whereas cells depleted of SRSF1 
remained arrested in metaphase for several hours, and eventually either underwent cell division or 
apoptosis. We repeated this experiment in HT1080, a human fibrosarcoma cell line stably expressing 
GFP-centromere protein A (CENPA). CENPA is homologous to histone H3 and replaces canonical H3 
in the nucleosome core of centromeric chromatin. Thus, monitoring GFP-CENPA protein allows 
progression through mitosis to be followed. Similarly to what was observed in HeLa cells, SRSF1 deple-
tion in HT1080 resulted in a significant, albeit less severe, increase in the time these cells spent in mitosis. 
Interestingly, the mitotic delay was partially rescued by restoring normal levels of SRSF1 (Figure 6F).

The finding that SRSF1 translational targets are enriched for mRNAs implicated in mitotic spindle 
function could explain the observed mitotic defect. To explore this further, we followed spindle forma-
tion in control cells and in cells depleted of SRSF1. We noticed that upon depletion of SRSF1, HeLa 
cells displayed spindle defects, in particular a multipolar spindle phenotype (Figure 7A–C). SRSF1 
depletion also resulted in abnormal alignment and chromosome congression problems (Figure 7—figure 
supplement 1). Importantly, the multipolar spindle phenotype could be rescued by transient over-
expression of wild-type SRSF1 protein. By contrast, transient expression of the non-shuttling SRSF1-
NRS did not rescue this phenotype (Figure 7D). This strongly implies that normal levels of SRSF1 
protein are required to maintain a bipolar spindle and that the translational function of SRSF1 is necessary 
for this activity.

In summary, we have identified the translational targets of the shuttling SR protein SRSF1 and have 
found a particular enrichment in mRNAs that participate in cell cycle regulation and chromosome 
segregation. In particular, we identified a role for SRSF1 in translating mRNAs encoding for proteins 
involved in bipolar spindle formation. The translational regulation of SRSF1 targets could contribute 
partially to the role of this shuttling SR protein in tumorigenesis.

Discussion
There is extensive coupling among different steps in eukaryotic gene expression, as illustrated by the 
intimate connection between transcription and pre-mRNA splicing (Baurén and Wieslander, 1994; 
Neugebauer, 2002). Recent genome-wide analyses using the CLIP protocol have identified endoge-
nous RNA targets for several SR proteins (Sanford et al., 2009; Änkö et al., 2012; Pandit et al., 
2013). These studies revealed that individual mRNAs bind multiple SR proteins, as was also described 
in insect cells (Björk et al., 2009).

Protein synthesis is a tightly regulated process and its misregulation has been linked to the devel-
opment of cancer (Blagden and Willis, 2011). We had previously demonstrated that SRSF1 functions 
as an adaptor protein to recruit the signaling molecules responsible for the regulation of cap-dependent 
translation of specific mRNAs (Michlewski et al., 2008). Here, we present a transcriptome-wide view 
of the role of SRSF1 in mRNA translation. This analysis revealed that SRSF1 regulates the translation of 
mRNAs encoding proteins involved in many different cellular processes, including cell cycle progression, 
RNA processing, and mRNA translation itself (Figure 3A). For instance, SRSF1 promotes the transla-
tion of PABP-interacting protein 1 (PAIP1), a positive regulator of translation that binds to eIF3 and 
stabilizes the interaction between PABP and eIF4G (Martineau et al., 2008). The activity of SRSF1 in 
promoting the translation of endogenous targets is mTOR dependent; however, we did not find an 
effect of SRSF1 on the regulation of either 5′TOP mRNAs or pyrimidine rich translational element 
(PRTE) mRNAs, which have been previously shown to be mTOR sensitive (Hsieh et al., 2012; Thoreen 
et al., 2012). Interestingly, approximately one third of the SRSF1 translational target mRNAs identified 
here were previously shown to be bona fide RNA targets of this SR protein by CLIP-seq, suggesting 
that these are direct translational targets (Sanford et al., 2009). Recently, an interesting link between 
alternative splicing and the preferential association of alternative mRNA isoforms to the translational 
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machinery was reported (Sterne-Weiler et al., 
2013). Here, we have analyzed changes in alter-
native splicing in response to different levels of 
SRSF1 protein. Our previous results have sug-
gested that SRSF1 may act to coordinate the nu-
clear and cytoplasmic steps of post-transcriptional 
gene expression for a subset of pre-mRNAs 
(Sanford et al., 2008). Here, we observed that 
mRNAs that display alternative splicing changes 
upon increased SRSF1 concentration were also 
translationally regulated by SRSF1. This suggests 
that SRSF1 influences several steps of the mRNA 
life cycle acting to couple nuclear events with 
mRNA translation (Figure 4). Interestingly, it was 
recently shown that SRSF3 regulates the alterna-
tive splicing of programmed cell death 4 (PDCD4) 
mRNA, but also negatively regulates its transla-
tional efficiency in the cytoplasm (Kim et al., 
2014).

SRSF1 was previously reported to be required 
for the maintenance of genomic stability in 
chicken DT40 cells and its inactivation results in a 
G2-phase cell cycle arrest and subsequent pro-
grammed cell death (Li and Manley, 2005; Li 
et al., 2005).

In this study, we show that SRSF1 is required 
for normal mitotic progression and its depletion 
results in metaphase arrest (Figure 6) and the for-
mation of a multipolar spindle, which in general is 
not compatible with cell survival (Figure 7). Along 
the same lines, loss of another SR protein, SRSF2 
(SC35) in mouse embryonic fibroblasts also results 
in a G2/M cell cycle arrest and genomic instability 
(Xiao et al., 2007). SRSF1 and SRSF3 associate 
with interphase chromosomes and post-mitotic 
chromatin; however, during mitosis they are 
displaced from chromatin by phosphorylation of 
histone H3 on serine 10 (Loomis et al., 2009). 
Interestingly, SRSF1 mRNA is deposited onto 
mitotic microtubules; however, the regulation of 
its translation during cell cycle is not currently 
understood (Blower et al., 2007). Moreover, 
SRSF1 has been recently identified as a factor 
involved in centriole biogenesis, another mech-
anism essential for mitosis and genomic integrity. 
These findings suggest a potential role for SRSF1 
in regulating chromatin function and cell cycle 
progression (Balestra et al., 2013).

The oncogenic potential of SR proteins has 
so far being described in terms of the nuclear  
activities of SR proteins, most notably involving 
differential alternative splicing of pre-mRNAs 
involved in signaling and/or cellular transforma-
tion (Ghigna et al., 2005; Karni et al., 2007). A 
recent study confirmed that the transformative 
potential of SRSF1 requires its splicing activity, 

Figure 7. SRSF1 is required for bipolar spindle 
formation. (A and B) HeLa cells were transfected with 
control or SRSF1-specific siRNA and 48 hr later stained 
for DNA (blue), tubulin (green), and pericentrin (red). 
Representative images for cells transfected with control 
or SRSF1-siRNAs (A and B, respectively) are shown. 
(B) Images show the formation of multipolar spindles 
upon SRSF1 depletion. (C) Quantitation of the multipolar 
spindle phenotype observed in (B) upon SRSF1 depletion. 
(D) HeLa cells were treated as in (A and B) and 24 hr 
later transfected with either wild-type SRSF1 or its 

Figure 7. Continued on next page
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since deletion of its first RRM (RRM1), which is 
required for pre-mRNA splicing, abrogates this 
activity. Nonetheless, this study also revealed that 
preventing the nucleo-cytoplasmic shuttling of 
SRSF1 prevents its oncogenic potential, strongly 
suggesting a role for the translational activity of 
SRSF1 in its oncogenic activities (Shimoni-Sebag 
et al., 2013). Interestingly, SRSF1 as well as SRSF9 
(SRp30c) have been recently shown to promote 
the translation of β-catenin in an mTOR-dependent 
manner and this activates Wnt signaling-mediated 
tumorigenesis. In agreement, SRSF9 displays 
oncogenic properties and its overexpression has 

been observed in multiple types of human tumors (Fu et al., 2013). Results presented here strongly 
suggest that overexpressed SRSF1 could contribute to tumorigenesis by influencing the translational 
rate of key components of the cell cycle machinery. Indeed, many of the SRSF1 translational targets that 
we have identified here correspond to proteins with roles in chromosome segregation and cell cycle 
progression (data in Supplementary file 1 at Dryad: Maslon et al. (2014), Figure 2 and Figure 5). In 
particular, we found that SRSF1 has a role in regulating the translation of proteins that are required for 
mitotic spindle and kinetochore function. Importantly, altered expression of any of the spindle-associ-
ated proteins may contribute to unbalanced chromosome segregation during mitosis. Indeed, 
increased expression of NDC80 and SMC2 has been observed in cancer cells and an increased re-
quirement for NDC80 at kinetochores of cancer cells has been postulated (Ferretti et al., 2010; 
Dávalos et al., 2012). Interestingly, some SRSF1 translational targets, including NDC80 and centro-
somal proteins, have been previously identified in an siRNA screen looking for proteins involved in 
centrosome clustering in cancer cells (Leber et al., 2010). This suggests that the oncogenic function 
of SRSF1 could be partially due to its role in promoting the translation of factors that are involved 
in suppressing multipolar divisions in human tumor cells. Indeed, decreased levels of SRSF1 protein 
result in multipolar spindle formation and abnormal chromosomal alignment (Figure 7—figure sup-
plement 1). Importantly, we were able to rescue the multipolar spindle phenotype observed upon 
SRSF1 depletion only with overexpression of the wild-type SRSF1 protein. By contrast, increased ex-
pression of the nuclear-retained SRSF1-NRS did not rescue this phenotype, strongly suggesting a 
role for SRSF1-regulated translation in this process (Figure 7).

So far, most studies on gene regulation during cell cycle progression have focused on the transcriptional 
regulation of mRNAs encoding proteins required for this process as well as on the timely proteasome-
mediated degradation of checkpoint proteins. Lately however, a crucial role for the translational 
regulation of hundreds of mRNAs required for cell cycle progression, including most of the mRNAs 
encoding proteins forming the cohesin and condensin complexes, has been uncovered (Stumpf et al., 
2013). Interestingly, and despite the fact that our experiments were performed in an unsynchronized 
cell population, we observed an approximate 15% overlap between SRSF1 direct translational targets 
identified in this work and those genes that were shown to exhibit translation regulation during cell 
cycle progression (Stumpf et al., 2013 and this study), strongly suggesting that SRSF1 may have a 
central role in this event (Fisher's exact test: OR 1.466548, p=0.02611). Those overlapping targets 
include the condensin components, SMC2 and SMC4, the centrosomal protein CEP170, and the DNA 
repair protein MRE11A. Altogether, this suggests that SRSF1 could provide a transcript-specific 
mechanism for translational regulation of the cell cycle. Increased expression of SRSF1 would promote 
the increased translation of genes associated with cell division and this could partially explain the 
oncogenic role of SRSF1. In summary, these data provide insights on the complex role of SRSF1 in the 
control of gene expression and its implications in cancer.

Materials and methods
Cell culture and reagents
HEK 293T, HeLa, and HT1080 cell lines were grown in Dulbecco's Modified Eagle's Medium (Invitrogen) 
supplemented with 10% fetal calf serum, and incubated at 37°C in the presence of 5% CO2. Control 
pooled siRNA (D-001810-01), SRSF1 pooled siRNA (L-018672-01), and SRSF1 UTR-targeting siRNA 

nuclear-retained version (SRSF1-NRS). The next day 
cells were fixed and stained for DNA, tubulin, and 
pericentrin and the appearance of multipolar spindle 
was quantified. Scale bar is 5 μm.
DOI: 10.7554/eLife.02028.014
The following figure supplements are available for 
figure 7:

Figure supplement 1. SRSF1 is required for appropriate 
chromosome alignment. 
DOI: 10.7554/eLife.02028.015
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(J-018672-12) were purchased from Thermo Scientific. Cycloheximide was from Merck Chemicals and 
used at 50 μg/ml. PP242 was from Cayman Chemicals and was used at 5 μM.

Cell synchronizations
Cells were grown to 30% confluency and then incubated with 2 mM thymidine (VWR International) for 
18 hr, washed with PBS, and released into thymidine-free medium for 9 hr. Thymidine (2 mM) was then 
added for a further 16 hr. The cells were then washed with PBS, released into thymidine-free medium, 
and harvested at different time points, as indicated in the figure legend (Figure 5—figure supplement 1), 
and analyzed by propidium iodide-flow cytometric analysis.

Cell cycle analyses
Following the indicated treatment, cells were collected by centrifugation (1000 rpm, 4 min). After 
washing with PBS solution, cells were fixed with chilled 70% ethanol at 4°C for 24 hr. The cells 
were then centrifuged (1000 rpm, 4 min), washed once with PBS solution, resuspended in PBS, 
incubated with 5 μl of RNase A (0.5 μg/ml; Roche) for 30 min at 37°C, and stained with 50 μg/ml 
propidium iodide (Sigma) for 30 min at room temperature. Cell cycle distribution was then evaluated 
using flow cytometry.

Epitope-tagged expression plasmids
The mammalian expression vector pCGT7-SRSF1 (previously known as pCG T7-SF2/ASF) has been 
previously described (Cáceres et al., 1997). Transcription is driven by the cytomegalovirus enhancer-
promoter and the coding sequence begins with an N-terminal epitope tag, MASMTGGQQMG; this 
sequence corresponds to the first 11 residues of the bacteriophage T7 gene 10 capsid protein and is 
recognized by the T7.tag monoclonal antibody (Novagen). The mammalian expression vector GFP-α-
tubulin and RFP-H2B were provided by Carol-Anne Martin (MRC HGU).

DNA and siRNA transfection
Using Lipofectamine 2000 (Invitrogen), 70–90% confluent cells were transfected with the indicated 
amount of pCG T7 expression vector. The transfection medium was replaced with fresh medium with 10% 
FCS after 5 hr and following 24 or 48 hr incubation, cells were harvested and lysed or seeded for subse-
quent analysis. To determine transfection efficiency, HEK 293T cells were transfected in the same condi-
tions with a plasmid encoding green fluorescent protein (GFP). The efficiency of transfection was measured 
72 hr later using a FACS cantoII (BD) flow cytometer. Using DharmaFECT1 reagent (Thermo Scientific) 
according to manufacturer's protocol, 30–50% confluent cells were transfected with 100 nM siRNA.

RNA isolation and RT-qPCR
RNA was isolated using TRIzol LS Reagent (Invitrogen) following the manufacturer's protocol. RNA 
was then treated with Dnase (Ambion) and transcribed to cDNA using the First-Strand Synthesis 
System from Roche. This was followed by a probe detection qPCR assay (RealTime ready Custom 
Panel; Roche). For splicing validation and luciferase reporter mRNA analysis, the SYBR Green detec-
tion system was used (Lightcycler 2× SYBR Green Mix; Roche). The polysomal to monosomal ratio was 
calculated using the ΔΔCt method and the statistical analyses were performed using the Mann–
Whitney U test.

Protein extraction, antibodies, and Western blotting
Cell pellets were lysed in 50 mM Tris pH 8.0, 150 mM NaCl, and 1% NP-40 buffer containing protease 
inhibitors. Protein samples either from HEK 293T or HeLa cell extracts were separated by SDS–PAGE and 
electroblotted onto nitrocellulose membranes (Whatman) in 25 mM Tris-base, 40 mM glycine, and 20% 
methanol in a Genie Blotter unit (Idea Scientific Company), at 12 V for 1 hr or iBlot System (Invitrogen) 
for 6 min. Non-specific binding sites were blocked by incubation of the membrane with 5% non-fat milk 
in PBS containing 0.1% Tween 20 (PBST). Proteins were detected using the following primary antibodies 
diluted in blocking solution: mouse monoclonal anti-SRSF1 (clone 96, 1:1000; Hanamura et al., 1998), 
rabbit polyclonal anti-GAPDH (1:2000; Abcam), mouse monoclonal anti-T7 (1:10,000; Novagen), rabbit 
polyclonal anti-CEP170 (1:1000, Abcam), rabbit polyclonal anti-SMC4 (1:1000; Bethyl Laboratories), rabbit 
polyclonal anti-CEP70 (1:1000; Abcam), rabbit polyclonal anti-CEP57 (1:250; Abcam), mouse monoclonal 
anti-NDC80 (1:1000; Abcam), and mouse anti-β-actin (1:5000; Sigma-Aldrich). Following washing in 
PBST, blots were incubated with the appropriate secondary antibodies conjugated to horse-radish 

http://dx.doi.org/10.7554/eLife.02028
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peroxidase (Pierce) and detected with Super Signal West Pico detection reagent (Pierce). The mem-
branes were stripped using ReBlot Plus Strong Antibody Stripping solution (Chemicon) equilibrated in 
water, blocked in 5% milk in PBST, and reprobed, as described above.

Luciferase assay
Cells were transfected with the indicated constructs, including various pGL3 constructs using 
Lipofectamine 2000. Cells were then lysed on the plate using passive lysis buffer (Promega) and used 
for the Dual Luciferase Assay Kit following the manufacturer's guidelines (Promega). Samples were 
measured on a Monolight 3010 luminometer (Pharmingen). Firefly luciferase activity was normalized to 
Renilla luciferase expression.

Cell fractionation and sucrose gradient centrifugation
HeLa and/or HEK 293T cell were treated with 50 μg/ml cycloheximide for 30 min at 48 hr after trans-
fection. Cells were subsequently washed twice in ice-cold PBS containing cycloheximide. Cytoplasmic 
extracts were prepared as previously described (Sanford et al., 2004). Sucrose gradients (10–45%) 
containing 20 mM Tris, pH 7.5, 5 mM MgCl2, and 100 mM KCl were made using the BioComp gradient 
master. Extracts were loaded onto the gradient and centrifuged for 2.5 hr at 41,000 rpm in a Sorvall 
centrifuge with a SW41Ti rotor. Following centrifugation, gradients were fractionated using a BioComp 
gradient station model 153 (BioComp Instruments, New Brunswick, Canada) measuring cytosolic RNA at 
254 nm. Fractions 8 to 11 (polysomal fractions) and 1 to 7 (subpolysomal fractions) were pooled and 
sucrose concentration was adjusted to 20% w/v. The RNA extraction was performed as described above.

Analysis of RNA-seq reads
All sequence reads were mapped to the RefSeq transcripts (Pruitt et al., 2009) using GEM (Marco-
Sola et al., 2012), allowing for up to three mismatches per read and testing for both strands. 
Unambiguous reads, mapping to unique positions in the reference, and ambiguous reads, mapping to 
up to 10 multiple positions, were collected (Table 1).

Only the reads mapping forward in transcripts were kept for the analysis (Table 2).
For each mRNA (a), the density of read counts was calculating using the reads per kilobase per 

million of mapped reads (RPKM) in a given sample (N):

d (a,N) = 109 n (a,N)
N × length (a)

 (1)

Using these densities, for each transcript and for each of the two samples, polysomal (poly) and 
subpolysomal (sub), a polysomal index (P) was defined:

P (a) =
d (a,Npoly)

d (a,Npoly) + d (a,Nsub)
 (2)

This index measures the proportion of transcript copies that is present in polysomes.
Then, in order to determine the mRNAs that shift to polysomes upon SRSF1 overexpression, we 

defined a polysome shift ratio (PSR), as the log2 ratio of the polysomal index between the SRSF1 over-
expressed and mock experiments:

2

( , )
= log

( , )

P a SRSF1
PSR

P a mock

    
 (3)

Table 1. Number of sequenced and mapped reads from each sample

Sample Total reads Mapped reads Unambiguous Ambiguous

Polysomal (mock) 15,303,461 13,225,802 8,629,499 4,596,303

Polysomal (SRSF1) 19,135,008 15,505,493 10,150,775 5,354,718

Subpolysomal (mock) 15,553,058 11,676,769 7,489,329 4,187,440

Subpolysomal (SRSF1) 14,417,240 11,025,797 7,106,934 3,918,863

DOI: 10.7554/eLife.02028.016
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To estimate the cases that change significantly, 
two non-overlapping subpopulations of read counts 
from the mock sample were compared to each 
other. From these two subpopulations, the polyso-
mal index and the ratio between them were  
calculated. From this comparison, we calculated 
an empirical p value.

Comparison with the CLIP-seq data
The SRSF1 mRNA translational targets were com-
pared with RNAs having tags from the CLIP experi-
ments from Sanford et al. (2008) and (2009). A 

total of 23,633 CLIP tags obtained from a 454 sequencing experiment in Sanford et al. (2009) were 
mapped to the RefSeq mRNA set using Exonerate (Slater and Birney, 2005) with an ungapped align-
ment model. Sequence tags that fully aligned to the mRNA in the forward strand were kept. A total of 
9,094 different mRNAs from RefSeq were found to contain one or more tags.

SRSF1 translational targets and motif analysis
For the k-mer enrichment analysis, we considered the total count of 5-mers in CLIP-tag regions. The 
significant differences in relative abundance of 5-mers between the two sets were estimated using the 
z score statistic (Fairbrother et al., 2002):

( )
=

1 1
1

A B

A B

A B

X X

N N
z

g g
N N

−

  − −   

 (4)

where XA and XB are the number of occurrences of a given 5-mer in sets A and B, respectively; NA and NB 
are the total number of occurrences of all 5-mers in sets A and B, respectively, and g=(XA + XB)/NA + NB).

SRSF1 translational targets were defined as those mRNAs that shifted to polysomes significantly, 
that is PSR>0.889 (TTR, 1576 mRNAs). The set of mRNAs that did not shift were defined as those 
mRNAs with PSR −0.02<p<0.02 (null, 1448 mRNAs). If two or more mRNAs from a set had 80% or 
greater sequence similarity, only the longest one was kept. Accordingly, we were left with 1052 and 
1133 sequences, respectively. The 24 most significant 5-mers were selected (z score≥35, upper tail 
∼2.3%), including: AAAAG, AAAAT, AAAGA, AAATA, AAATG, AAATT, AATAT, AATTA, AATTT, AGAAA, 
ATAAA, ATATT, ATTTA, ATTTT, GAAAA, TAAAA, TAAAT, TATTT, TGAAA, TTAAA, TTATT, TTTAA, TTTAT, 
and TTTTA.

In order to select candidates for direct targets of SRSF1, we considered the tags from a previous 
CLIP-Seq experiment (Sanford et al., 2008, 2009). First, all mRNAs were separated into those with 
CLIP-tags (CLIP+) and those without CLIP-tags (CLIP-). Subsequently, a double comparison of 5-mers 
was considered:
 
1. 5-mers inside CLIP-tags in TTR+ CLIP+ mRNAs versus 5-mers inside CLIP-tags in null CLIP+ 

mRNAs.
2. 5-mers inside CLIP-tags in TTR+ CLIP+ mRNAs versus 5-mers in TTR+ CLIP+ mRNAs outside the 

CLIP-tags, that is the rest of the direct targets.
 

The double ranking of z scores was used to select 5-mers associated with direct translational targets. 
Subsequently, considering positives z scores such that p≤10−5 in both rankings, we found 12 GAA-rich 
5-mers associated with direct targets: AAAAG, AAAGA, AAAGG, AAGAA, AAGAT, AGAAA, ATGAA, 
ATTGG, GAAAA, GAAGA, TGGAA, and TTGGA.

In order to infer a consensus motif logo for direct translational targets, we first mapped the selected 
5-mers on the mRNA sequences extending 10 nt per flank. The resulting continuous sequences in 
TTR+ CLIP+ mRNAs were extracted.

The background model for MEME was built using a Markov model with the ‘null’ sequences for 
translational targets (M1) and with the CLIP-tags in null mRNAs and in TTR+ CLIP+ mRNAs outside the 
CLIP-tags for the direct translational targets (CM). Using these sequences as input, the program MEME 

Table 2. Total number of forward read counts 
considered in each sample

Total forward counts

Polysomal (mock) 10,407,102

Polysomal (SRSF1) 12,219,337

Subpolysosomal (mock) 9,188,985

Subpolyosomal (SRSF1) 8,585,825

DOI: 10.7554/eLife.02028.017
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(Bailey and Elkan, 1995) was used to recover a motif logo, requiring candidate motifs to appear in at 
least 90% of the input sequence set. We found only one motif for each pool of sequences that satisfied 
this criterion.

Gene Ontology analysis
The list of SRSF1 translational targets, including those with CLIP-tags and those estimated to be direct 
translational targets (CLIP-tag and consensus motif) were uploaded as a gene list to the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/home.
jsp), while all the mRNAs detected by RNA-seq were used as a background (Dennis et al., 2003). Then 
we analyzed the over-represented functional categories in ‘Biological Process’ using the gene functional 
classification tool containing all the levels of GO terms as described in Huang et al. (2009). EASE 
scores (modified Fisher's exact p value) were computed for all categories. The Benjamini–Hochberg 
correction method was applied to the data in order to identify the most significantly over-represented 
gene categories.

SILAC
For SILAC, HEK 293T cells were grown for 8 d with two passages in DMEM SILAC media before trans-
fection (Dundee Cell Products, Dundee, UK). The arginine and lysine isotopes were as follows: 
R0K0, L-[12C614N4]arginine (R0), and v-[12C614N2]lysine (K0); R6K4, L-[13C614N4]arginine (R6), and 
L-[12C62H414N2]lysine (K4); and R10K8, L-[13C615N4]arginine (R10), and L-[13C615N2]lysine (K8). Cells 
were grown either with R0K0 (untransfected cells), R6K4 (cells transfected with empty vector), or 
R10K8 (cell transfected with pCG-T7SRSF1). At 48 hr after transfection, cells were washed twice in ice-
cold PBS and scraped into ice-cold RIPA buffer containing a protease inhibitor cocktail (Roche). Total 
protein extracts were measured by the Bradford assay. Equal amounts of protein from unlabeled and 
labeled samples were run on SDS–PAGE, and gel lanes were cut into 10 sections, followed by over-
night digestion with trypsin at 37°C. Sample processing, mass spectrometry, and data analysis were 
performed by the Dundee Cell Products service.

Comparison with the SILAC experiment
The protein quantification changes detected by SILAC were compared to the changes in PSR detected 
with RNA-seq upon SRSF1 overexpression. After applying quantile normalization (Bolstad et al., 2003) 
to the enrichment signal of SRSF1 versus untransfected, and to the enrichment signal of the empty 
vector sample over untransfected, the log2 ratio of the two normalized signals was considered. In order 
to compare proteins identified by SILAC with mRNAs shifted to polysomes, the IPI identifiers (Kersey et 
al., 2004) from the SILAC experiment were mapped to the RefSeq identifiers used for the RNA-seq data.

RNA purification and array analysis
Total RNA was purified and genomic DNA removed using the RNeasy Plus Kit (74,134; Qiagen)  
according to the manufacturer's instructions. The RNA quality was verified by the 2100 Bioanalyzer 
(Agilent). Each array experiment was performed in triplicate. Array data analysis was performed by 
GenoSplice (www.genosplice.com; Paris, France). Affymetrix Human JAY arrays were normalized using 
the probe scaling method and background corrected with ProbeEffect from GeneBase (Kapur et al., 
2008). The gene expression index was computed from probes that were selected using ProbeSelect 
from GeneBase (Kapur et al., 2008). Gene expression signals were computed using these probes. 
Genes were considered expressed if mean intensity was ≥200. Genes were considered regulated if: (1) 
they were expressed in at least one condition (i.e., SRSF1 and/or empty vector control); (2) fold-
change was ≥1.5; and (3) the unpaired t test p value between gene intensities was ≤0.05. For each 
probe, a splicing index was computed. Unpaired t tests were performed to test the difference in probe 
expression between the two samples as described previously (Shen et al., 2010). Probe p values in 
each probeset were then summarized using Fisher's method. Using annotation files, splicing patterns 
(cassette exons, 5′/3′ alternative splice sites, and mutually exclusive exons) were tested for difference 
between isoforms, selecting those with a minimum number of regulated probesets (with p≤0.01) in 
each competing isoform (at least one third of ‘exclusion’ probesets have to be significant, and at least 
one third of ‘inclusion’ probesets have to be significant and show an opposite regulation for the splicing 
index compared to ‘exclusion’ probesets). For example, for a single cassette exon, the exclusion junction 
and at least one of the three inclusion probesets (one exon probeset and two inclusion junction probesets) 
have to be significant and have to show an opposite regulation for the splicing index.

http://dx.doi.org/10.7554/eLife.02028
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Comparison of translational targets and array experiment
Significantly regulated cassette exons from the array were mapped to RefSeq genes. Each upregu-
lated or downregulated exon was assigned to alternative isoforms that included or excluded the exon, 
respectively. No isoform with two exons regulated in opposite directions. The values of PSR were 
compared between the datasets of mRNAs either including or skipping the cassette exons from the 
array, as well as for all mRNAs detected by RNA-seq belonging to genes with multiple isoforms.

Immunofluorescence, microscope image acquisition, and processing
Appropriately transfected cells were seeded on coverslips in six-well plates. After 24 hr, cells were rinsed 
in PBS and fixed with 4% paraformaldehyde for 10 min at room temperature. The fixed cells were washed 
with PBS and permabilised using PBS + 0.2% Triton. After washing, the slides were blocked in 1% BSA 
in PBS for 1 hr. Various antibodies were used including anti-pericentrin, anti-α-tubulin, and anti-SRSF1, 
which were diluted 1:2000, 1:1000, and 1:1000, respectively. Slides were then washed and incubated 
with the appropriate AlexaFluor 488 and AlexaFluor 594 labeled secondary antibodies at 1:2000. Final 
washes were followed by mounting with DAPI Vectashield. A fluorescent upright microscope, Zeiss 
Axioplan 2, was used to image the cells at 20× magnification. At least 100 mitotic cells were captured 
and abnormal mitoses were scored for multipolar spindle and metaphase misalignment. Data are pre-
sented as a percentage of abnormal phenotypes versus total number of scored mitotic cells.

Live cell imaging
Transfected cells were seeded in six-well plates. After 24 hr, cells were rinsed twice in PBS and grown 
in phenol-red free medium. Live imaging for 24 hr at a time lapse of 15 min was performed with a Zeiss 
Axiovert 200 microscope. Metamorph software was used for image capture and analysis. At least 
20 mitotic cells were assessed for the time spent in mitosis.

Major datasets
Supplementary files 1–4 are available at Dryad: Maslon et al. (2014).

Supplementary file 1. List of SRSF1 translational targets. List of 1576 mRNAs enriched in polysomes 
upon SRSF1 overexpression.

Supplementary file 2. SILAC analysis following SRSF1 overexpression. List of proteins identified in 
SILAC experiment.

Supplementary file 3. Alternative splicing analysis. List of the 382 SRSF1-regulated cassette exons 
determined by exon arrays (cassette exons). List of SRSF1-regulated cassette exons with SRSF1-clip-
tags over cassette exon (clip tag over cassette exon tab).

Supplementary file 4. Bed file containing positions and sequences of the consensus motif in hg18 
assembly of human genome.
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