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The occupancies and entropic entanglement measures for the ground state of two particles in a 
two-dimensional harmonic anisotropic trap are studied. We implement a method to study the large 
interaction strength limit for different short- and long-range interaction potentials that allows to obtain 
the exact entanglement spectrum and several entropies. We show that for long-range interactions, the 
von Neumann, min-entropy and the family of Rényi entropies remain finite for the anisotropic traps 
and diverge logarithmically for the isotropic traps. In the short-range interaction case the entanglement 
measures diverge for any anisotropic parameter due to the divergence of uncertainty in the momentum 
since for short-range interactions the relative position width vanishes. We also show that when the 
reduced density matrix has finite support the Rényi entropies present a non-analytical behavior.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The physics of systems of confined particles has attracted the 
interest of researchers from many different areas working on both, 
theoretical and experimental aspects [1,2]. One feature of such 
quantum systems that has recently gained impulse is the study of 
entropic measures of entanglement [3–7]. Among the many kind 
of systems that could be addressed using the physics of the con-
fined systems, in the present work we focus on Wigner molecules, 
which are the finite-size analogue of Wigner crystals, named after 
the seminal work of E. Wigner [1]. Since the late 80’s, when the 
first confined linear chains of ions where reported by D. Wineland 
[2], there has been an increasing capacity to confine, control and 
manipulate such entities, and has turned the Wigner molecules 
into a new platform to test the known, and look for new, traits 
of quantum mechanics [8].

Trapped ions are not the only physical systems that allow 
the formation of entities like the Wigner molecules (also named 
Coulomb crystals [8]). The experimental observation of strongly 
correlated states in quantum dots has attracted considerable in-
terest [9]. Wigner molecules have also been observed in two-
dimensional semiconductor heterostructures [10,11], semiconduc-
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tor quantum dots [12], one-dimensional quantum wires [13–16], 
carbon nanotubes [17,18], and in crystalline states for dusty 
plasma [19]. Several theoretical studies [20–27] have demonstrated 
that the physics of these systems with reduced dimensionality usu-
ally does not depend on the shape of the confinement but on 
its symmetries and strength (see Ref. [28] for an example where 
shape does have an influence). In the present work we use a har-
monic confinement as a model potential, and represent different 
physical situations using different interaction potentials. Wigner 
molecules arise when the interparticle interaction strength is much 
larger than the kinetic energy. The latter can be related to the tem-
perature of the system [8] and also to the density, or confining 
energy, of the particles [29]. Hence Wigner localization is expected 
for low density systems or for large interaction strengths.

The Calogero and Moshinsky models are the most salient exam-
ples of analytically solvable models of confined particles, including 
the exact computation of the entanglement entropies [3,4,30–35], 
in this sense it can also be mentioned the spherium model [36], 
and the quasi-solvable Hook model [37]. In particular, the Calogero 
model has been widely studied in condensed matter physics and 
has experienced several revivals [38,39], such as the discovery of 
an explicit relation of the Calogero model with the fractionary 
quantum hall effect [40] and fractional statistics [41]. In a previous 
paper [4], we have studied the behavior of the von Neumann and 
Rényi entropies of the one- and two-dimensional Calogero model 
for two particles. By considering anisotropic confinement in the 
two-dimensional case we showed that the one-dimensional regime 
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is reached when the anisotropy of the trap increases, and we also 
demonstrated that the Rényi entropies present a non-analytical
behavior in the neighborhood of those values of the interaction 
strength parameter for which the reduced density matrix has fi-
nite support.

Motivated by this, we consider anisotropic harmonic confine-
ment and compute the exact expression for the occupation num-
bers or occupancies of the two-dimensional ground state wave 
function in the large interaction strength limit for two particles 
which interact via different potentials depending on the distance 
between the particles. The exact natural orbitals are obtained from 
the Schmidt decomposition of the ground state wave function in 
the same limit and the occupancies are used to evaluate sev-
eral quantum information measurements such as von Neumann 
and Rényi entropies in closed form. The method presented here 
is a generalization of the strategy developed in Refs. [5,33,42,43]. 
The two particle one-dimensional systems with Coulomb and in-
verse powers interactions are addressed in [5,42,43], while the 
natural orbitals and occupation numbers of elliptically deformed 
two-dimensional quantum dots are reported in [33]. Here we give 
the analytical expressions of the natural orbitals, occupation num-
bers, von Neumann and Rényi entropies in the strong interaction 
limit for any potential which depends only on the interparticle dis-
tance.

Our main purpose is to determine the influence of the aniso-
tropy and the type of interparticle interaction by looking upon 
the linear, von Neumann, min-entropy, max-entropy and Rényi en-
tropies as entanglement measures. We have a particular interest 
in which are the differences arising from a short-range interac-
tion with respect to a long range one for which the emergence 
of Wigner Molecules has been widely described (see, for example, 
Refs. [20,21,24]). With this aim, we study two interacting potential 
cases for each interaction range, including one that can be exactly 
solved. In the long-range interaction case we consider the inverse 
power and the inverse logarithmic potential, and for the short-
range interaction we solve the screened inverse power potential 
and a Gaussian repulsive interaction. It is important to emphasize 
that the inverse power interaction case is used to model quantum 
dots [12] or ion traps [2] where the large interaction regime can be 
achieved experimentally due to a strong interaction between the 
particles or a weak confinement energy scale, for inverse square 
power one gets the Calogero model, while the screened Coulomb 
interaction provides a simple model potential for ions and plasmas 
[44].

The paper is organized as follows. The model is discussed in 
Section 2. In Section 3 we show the derivation of the analyti-
cal occupancies of two interacting particles in a two-dimensional 
anisotropic harmonic trap, while in Section 4 we calculate the en-
tropic entanglement measures. We discuss the results for long- and 
short-range interaction potentials in Sections 5 and 6 respectively. 
Finally, a summary and conclusions are presented in Section 7.

2. Confined two-dimensional two-particle systems

The physics of confined particle systems is nowadays very rel-
evant to understand the many recent experiments conducted in 
cold atom traps or in quantum dots, at least in a qualitative way 
[10–16]. The models for those systems contain two contributions 
to the potential energy: one is given by the trap potential and the 
other by the interaction between the particles. For small dots, con-
taining few electrons the trap potential can be approximated by 
a harmonic one [9], therefore we focus here on two interacting 
particles in a two-dimensional anisotropic harmonic traps, and im-
plement a method to solve the entanglement spectrum in the large 
interaction limit for arbitrary interaction potentials. The Hamilto-
nian for two particles in an anisotropic trap, in atomic units, is
H = −1

2

(
∇2

1 + ∇2
2

)
+ 1

2

{
(x2

1 + x2
2) + ε2(y2

1 + y2
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, (1)

where the frequency of the trap was taken equals to unity, ε > 1 is 
the anisotropy parameter, V

(
r12;

{
γi

})
denote the interaction po-

tential as a function of the interparticle distance r12 and some 
parameters 

{
γi

}
, and g is the ratio between the interaction and 

the confinement energy scale. By introducing the center of mass 
�R = 1

2 (�r1 +�r2) = (X, Y ) and relative coordinates �r = �r2 −�r1 = (x, y)

the Hamiltonian (1) decouple as H = H R + Hr , where
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) , (3)

and V ef f is the effective potential of the relative Hamiltonian given 
by

V ef f (x, y;ε,
{
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}
) = 1

4

(
x2 + ε2 y2
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+ gV

(√
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The total wave function is then the product of the center of 
mass wave function and the relative wave function

�(x, y, X, Y ) = ψ R(X, Y )ψr(x, y) , (5)

and, consequently, the Schrödinger equation separates into two 
equations

H Rψ R(�R ) = E Rψ R(�R ) , (6)

Hrψr(�r ) = Erψr(�r ) . (7)

The solutions of the center of mass equation (Eq. (6)) are the 
eigenfunctions of the harmonic oscillator that are invariant under 
particle exchange.

The relative Hamiltonian, Eqs. (3) and (4), must be analyzed
on a case-specific basis. However, in the next section we present 
a method to obtain the large interaction strength limit of general 
potentials that fulfill simple requirements.

3. Derivation of the analytical occupancies

The relative wave function may be obtained by solving the 
Schrödinger equation in the large interaction strength regime, 
g � 1, by using the harmonic approximation (HA) [45,46]. In the 
framework of the harmonic approximation one has to find the 
minima of the effective potential Eq. (4) and then the potential 
is replaced by its Taylor expansion up to second order about its 
minima, which satisfy ∇V ef f (x, y; ε, 

{
γi

}
) = 0. If the potential is 

repulsive, decreases monotonously and V
(
r;{γi

}) → 0 for r → ∞, 
with ε > 1, the minima lie on the x-axis and can be written as

�rmin = (±x0,0) with x0 > 0 given by
1

2g
= −

(
1

r

∂V

∂r

)∣∣∣∣
x0

.

(8)

It is important to notice that when the particles are confined in 
an isotropic trap, i.e. ε = 1, the minima degenerate into a circle of 
radius x0.

Within the harmonic approximation, a Hamiltonian of uncou-
pled oscillators is obtained

Hr
H A = −∇2

r + 1

2

{
ω2

x (x − x0)
2 + 1

2

(
ε2 − 1

)
y2

}
, (9)

with a frequency associated to the x-coordinate given by
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where the dependence on the parameters g and 
{
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}
is implicit in 

x0 = x0
(
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.

The totally symmetric ground state wave function �G S
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)
of the harmonic Hamiltonian H R + Hr

H A is a product of Gaus-
sians. The eigenvalues of the one-particle reduced density matrix 
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∣∣) are explicitly obtained (see supporting infor-
mation), and are given by
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where l, ̃l = 0, 1, 2, . . . . Each eigenvalue, or occupancy, is doubly 
degenerate due to the particle exchange symmetry.

The limiting values and behavior of ζ (ωx) and ξ(ε) are needed 
to compute the entropic quantities. We note then that for ωx > 0,
ζ (ωx) is always below unity and ζ (ωx) → 1 when ωx → ∞, while 
for ε > 1, ξ(ε) remains below one and ξ(ε) → 1 for ε → 1+ , then 
we must be specially careful in the isotropic confinement case (see 
Eq. (13)). For large anisotropy parameter ε � 1 one gets ξ(ε) → 0
and the occupancies reach the asymptotic values of the one di-
mensional model 	x

l .

4. Entropies in the large interaction strength limit

The entanglement can be measured using different entropic 
quantities. If {	i} is the complete set of eigenvalues, then the 
Rényi entropies are a family of such entropies defined by

Sα = 1

1 − α
log2 Trρα = 1

1 − α
log2

(∑
i

	α
i

)
, (14)

which are widely used in many-body or extended systems [47,
48]. Special values of the parameter α allow to recover other en-
tropies, being the min- and max-entropy good examples obtained 
by taking the limits α → ∞ and α → 0, respectively. The min-
entropy serves as a lower bound to the entanglement measures 
obtained from the whole family of entropies. The Hartley or max-
entropy, S0 = log2 R , only depends on the Schmidt rank R of the 
spectrum distribution and is a measure of bipartite entanglement 
which serves as a criterion for efficient classical representation of 
the state [49]. The distribution of the entanglement spectrum can 
be better understood by computing the Rényi entropies for many 
different values of the parameter α [4]. The von Neumann entropy 
is given by

S vN = −Tr (ρ log2 ρ) = −
∑

i

	i log2 	i . (15)

The von Neumann entropy has been used to study entanglement 
in continuous variables systems and spin models [48,50,51]. It can 
be recovered from the Rényi entropies in the limit α → 1. Finally, 
some authors use the linear entropy, defined by

SL = 1 − Trρ2 = 1 −
∑

i

	2
i , (16)

since for continuous variable systems the calculation of Trρ2 is 
reduced to a single integral. Even though, the linear entropy has no 
relevant information for the systems studied in the present work, 
we compute it for the sake of completeness.

Once we have obtained the occupancies it is possible to calcu-
late the quantum entropies. Since these calculations involve ge-
ometric series in ζ (ωx) and ξ(ε), the limiting values must be 
carefully computed.

Let us start with the Rényi entropies defined by Eq. (14). It is 
straightforward to show that due to the separability of the wave 
function, the Rényi entropies in the large interaction strength limit 
are the sum of the entropy associated to ψx(x1, x2) and ψy(y1, y2), 
then

Sα = Sα
x (ωx) + Sα

y (ε) , (17)

where
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log2

(
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α
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)
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and
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log2

(
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(1 − ξ(ε)α)

)
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Again, due to the separability of the wave function, we can 
write the two-dimensional von Neumann entropy of Eq. (15) as

S vN = S1
x (ωx) + S1

y(ε) , (20)

where each one of the terms in the sum has the form of a one-
dimensional von Neumann entropy [5], i.e.

S1
x (ωx) = − log2

(
(1 − ζ (ωx))

(1−ζ (ωx)) ζ (ωx)
ζ (ωx)

)
(1 − ζ (ωx))

+ 1 , (21)

S1
y(ε) = − log2

(
(1 − ξ(ε))(1−ξ(ε)) ξ(ε)ξ(ε)

)
(1 − ξ(ε))

. (22)

The super-index points that the von Neumann entropy can be 
obtained as a limiting case of the Rényi entropies when α → 1.

It is worth to notice that from Eq. (18) and (19) it is straight-
forward to show that the min-entropy S∞ , can also be written as 
a two-term sum:

S∞ = lim
α→∞

(
Sα

x (ωx) + Sα
y (ε)

) = lim
α→∞ Sα

x (ωx) + lim
α→∞ Sα

y (ε)

= S∞
x (ωx) + S∞

y (ε) . (23)

The Hartley or max-entropy in the large interaction strength 
limit can also be calculated as a limiting case with α → 0, S0 =
log2 R , and has finite value only when the one-particle reduced 
density matrix has finite support.

The two-dimensional linear entropy defined by Eq. (16) gives

SL = 1 − 1

2

1 − ζ (ωx)

1 + ζ (ωx)

1 − ξ(ε)

1 + ξ(ε)
. (24)

For the isotropic model ε → 1+ , ξ(ε) → 1 and the linear entropy 
goes to one, while for any other value of ε the linear entropy re-
mains below one.

A comment on the extension of the previous results to dimen-
sion D is in place. They can be extended if one considers D − 1
anisotropy parameters (see supporting information). The von Neu-
mann and Rényi entropies are the sum of D terms each one as-
sociated to one Cartesian coordinate and, as we demonstrated for 
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Fig. 1. Both terms of the two-dimensional von Neumann (black dashed), min-entropy (magenta dash-dotted) and Rényi entropies with α = 0.2, 0.4, 0.8, 1.5, 2 (red, blue, 
green, orange and cyan full lines respectively). (a) S y as a function of the anisotropy parameter ε. (b) One dimensional entropies Sx as a function of the squared frequency, 
ω2

x . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the two-dimensional case, the x-entropy term depends on the pa-
rameters of the interaction potential through ωx and each one of 
the remaining terms depend on only one of the D − 1 anisotropy 
parameters.

The two terms of the two-dimensional von Neumann, min-
entropy and Rényi entropies (α = 0.2, 0.4, 0.8, 1.5, 2) are depicted 
in Fig. 1. Let us first discuss the behavior of the entropies with re-
spect to the anisotropy of the trap, and afterwards the influence of 
the interparticle interaction.

As can be appreciated in Fig. 1(a), for the isotropic model 
(ε → 1+) the entropies Sα

y (ε) diverge logarithmically, whilst for 
any other values of ε they remain finite. By calculating the first 
derivative of Eq. (22) it is straightforward to show that

S vN ∼ − ln(ε − 1)

ln 16
for ε ∼ 1+ . (25)

This asymptotic leading term is depicted in the figure as a yel-
low dashed line which makes the logarithmic divergence of the 
isotropic von Neumann entropy evident. Actually, for ε → 1+ the 
von Neumann, min-entropy and the family of Rényi entropies 
present this same behavior. The figure also shows that for large 
anisotropy parameter the entropies Sα

y (ε) vanish. In other words, 
for ε � 1 the one dimensional problem is recovered and the von 
Neumann, Rényi and min-entropy reach the one dimensional val-
ues Sα

x (ωx).
The behavior of the x-entropies (denoted by Sα

x (ωx)) as a func-
tion of the frequency is shown in Fig. 1(b). The figure shows 
that the entropies are decreasing functions of the frequency for 
0 < ω2

x < 1/2, and increasing functions for ω2
x > 1/2. Actually, the 

entropies diverge logarithmically for large frequencies and also for 
ωx → 0, because in these limits one gets that ζ(ωx) → 1.

The entropy of a given system is computed using the frequency 
ωx obtained by the harmonic approximation Eq. (10). If it remains 
finite for large interactions parameters g � 1, then the von Neu-
mann, min-entropy and the family of Rényi entropies are finite for 
the anisotropic model and diverge logarithmically for the isotropic 
model. In the deformed or anisotropic case the particles crystal-
lize around the two classical minima of the relative Hamiltonian 
giving rise to a Wigner molecule, while for the isotropic model 
those minima degenerate into a circle, the particles are no longer 
localized around discrete minima and this lack of information is 
reflected in the divergence of the entanglement entropies. If the 
obtained frequency increases monotonously for large interactions, 
the von Neumann, min-entropy and the family of Rényi entropies 
diverge logarithmically for any anisotropy parameter. In this sense, 
the behavior of the system is defined by the one-dimensional en-
tropy Sα

x (ωx).
The previous analysis can be understood more qualitatively 
by using the Heisenberg uncertainty principle. The width of the 
Gaussian wave packet in the relative coordinate ψr(�r) (ground 
state of the Hamiltonian Eq. (9)) goes to zero when the fre-
quency increases. Actually, the relative position and momentum 

uncertainty are 
xr
H A =

√
〈(x2 − x1)

2〉 − 〈x2 − x1〉2 = 2
1
4 /

√
ωx and 


pr
H A = √

ωx/2
5
4 , then if ωx → 0 we obtain that 
xr

H A → ∞
and, conversely, when ωx → ∞ it is straightforward to show that 

pr

H A → ∞. Thus, we see that for ωx → ∞ the entropy of the 
Wigner molecule diverge because the position is completely de-
termined and consequently the momentum uncertainty diverges, 
we refer to this limit as strong crystallization. The opposite case, 
ωx → 0 leads to a well defined momentum state and hence we 
have no knowledge of the position. In both cases the divergence 
in the position or momentum width leads to the divergence of 
the entanglement entropies. Furthermore, the divergence of the 
y-entropies could also be explained in a similar way: for the 
isotropic model the minima degenerate into a circle and conse-
quently the particles are no longer localized around any definite 
angular positions, but the state has definite angular momentum.

For ω2
x = 1/2 the entropies have their minimum value equal 

to unity. Around this point, the von Neumann, min-entropy and 
Rényi entropies with α > 1 present an analytical behavior while 
the Rényi entropies with α < 1 have a non-analytical behavior. The 
von Neumann and Rényi entropies with α = 0.4, 0.5, 0.6 and their 
first derivatives around the point ω2

x = 1/2 are shown in Fig. 2
(a) and (b) respectively. It shows that the Rényi entropies present 
an infinite derivative for α = 0.4, discontinuous derivative for α =
0.5 and a continuous derivative with infinite second derivative for 
α = 0.6, while the von Neumann entropy (α → +1) is an analytical 
function of the frequency.

Recent studies by Amico and co-workers in 1/2-spin chains 
show the physical implications of non-monotonous properties of 
the Rényi entropies in many-body systems with topological order 
due to a truncation of the support of the reduced density matrix 
[52–54]. In Ref. [3] some of the present authors found that the 
Calogero model in one dimension has a finite number of non-zero 
occupancies for a discrete set of values of the interaction parame-
ter, and in Ref. [4] we demonstrated that in those particular values 
of the interaction parameter the Rényi entropies present a non-
analytical behavior.

Summarizing, non-analytical behavior of the Rényi entropies 
exposes the finite support of the reduced density matrix. In the 
present case, taking ω2

x = 1/2 in Eq. (12) it is straightforward 
to see that for this particular frequency there is only two non-
vanishing occupancies 	x

0 associated to the two lowest natural 
orbitals in the x-coordinate.
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Fig. 2. (a) Entropy terms Sα
x (ωx) and (b) their derivatives around the point ω2

x = 1/2. The von Neumann (black dashed), and Rényi entropies with α = 0.4, 0.5, 0.6 (red, blue 
and green full lines respectively) are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Occupancies as a function of ln(ε − 1) (see Eq. (11)) obtained for large inter-
action strength parameter, g � 1. 	l,l̃ with l = 0 and l̃ = 0, 1, 2, ..., 20 from top to 
bottom. The dominant one-dimensional eigenvalue is also shown (grey dashed line) 
[5]. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

In the following sections we apply our findings to study the 
behavior of the occupancies and entropic entanglement measures 
in the large interaction strength limit for different cases divided as 
long- or short-range potentials. From now on we calculate only the 
one dimensional entropy Sα

x (ωx), since the behavior of the entropy 
terms Sα

y (ε) were already analyzed.

5. Long-range interaction potentials

In the present section we consider two long-range interactions 
to exemplify our results: the inverse power interaction and inverse 
logarithmic interaction.

5.1. Inverse power interaction

The inverse power potential is

V ip (r;β) = 1

r2β
. (26)

For this potential x0 and ωx , Eqs. (8) and (10), can be obtained 
exactly and give

x0 = (4gβ)
1

2(β+1) and ω2
x = β + 1 . (27)

Thus, x0 increases when increasing the interaction strength param-
eter g , but the frequency remains invariant. For β = 1

2 , 1 one gets 
the Hook and the Calogero model respectively.

Let us start with the Calogero model. The occupancies de-
fined in Eq. (11) for large interaction strength parameter g � 1
are shown as a function of ln(ε − 1) in Fig. 3, where the grey 
dashed line is the dominant one-dimensional occupancy in the 
large interaction strength limit, obtained from Eq. (12), that is in 
agreement with the value reported in Ref. [5]. The figure shows 
that for ε → 1+ (isotropic model) the occupancies go to zero, 
but note that their sum is always equal to 1/2 due to the men-
tioned double degeneracy [33]. When the anisotropy increases all 
the occupancies 	l,l̃ with l̃ �= 0 present a local maximum. For fixed 
l the value of the anisotropy parameter at which the maximum 
occurs decreases when l̃ increases, while for fixed l̃ this value is 
the same for each l. For ε � 1 the Hamiltonian reduces to a one 
dimensional oscillator and the occupancies 	l,0 reach the asymp-
totic values of the one dimensional model. For values of ε near 
εc = √

5 the occupancies with l̃ = 0 stabilize on the one dimen-
sional values and those with l̃ �= 0 saturate at vanishingly small 
values. This feature can be explained if one takes into account that 
for ε = εc the relative Hamiltonian Eq. (9) reduces to a harmonic 
oscillator in polar coordinates around each minimum. More gener-
ally, for arbitrary β , the one dimensional regime is reached at the 
value εc = √

2 (β + 1) + 1. In this case the effective potential of the 
relative Hamiltonian Eq. (4) is isotropic in a small neighborhood 
around its minima. For ε > εc , the largest occupancy 	00 reaches 
the value ∼ 0.4853, and the sum of all the remaining occupancies 
is only ∼ 0.0147; this means that the two natural orbitals associ-
ated to this eigenvalue are the only two that are occupied while 
all the others natural orbitals contribution are negligible, and con-
sequently, the spatial wave functions are quite similar to those two 
natural orbitals [33].

As we mentioned above, the dependence with β is present only 
through the entropy term Sα

x (ωx). The width of the Gaussian wave 
packet in the relative coordinate is finite, 
xr

H A = 2
1
4 /(β +1)

1
4 and 

consequently the von Neumann, min-entropy and Rényi entropies 
are finite. However, the max-entropy diverges due to the infinite 
support of the one-particle density matrix. Notice that in the limit 
β → ∞ the entropies diverge logarithmically due to the divergence 
in the momentum uncertainty. This behavior can be seen in Fig. 4
where the von Neumann, the min-entropy and Rényi entropies are 
depicted as a function of the parameter β . The Rényi entropies 
increases for decreasing α, and the von Neumann entropy is a lim-
iting case with α → 1. It is important to emphasize that taking the 
limit β → 0 in the entropies does not result in the same entropies 
obtained for a system with harmonic confinement and a constant 
interaction (Eq. (26) with β = 0), since this limit does not com-
mute with the large interaction limit.

5.2. Inverse logarithmic interaction

The potential for inverse logarithmic interparticle interaction is
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Fig. 4. One-dimensional entropy terms Sα
x obtained for large interaction strength 

g � 1, as a function of the exponent of the interaction between particles, β . The 
von Neumann (black dashed), min-entropy (magenta dash-dotted) and Rényi en-
tropies with α = 0.2, 0.4, 0.8, 1.5, 2 (red, blue, green, orange and cyan full lines 
respectively) are shown. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

V il (r) = 1

ln(r + 1)
. (28)

In this case x0 and ωx satisfy the following equations

2g = x0 (x0 + 1) ln2 (x0 + 1) and

ω2
x = 1

2

{
1 +

( 2
ln(x0+1)

+ 1
1
x0

+ 1

)}
. (29)

For large interaction strength parameter the value of x0 increases 
when g increases, and consequently, the frequency goes to unity. 
Therefore, for g � 1, the one-dimensional von Neumann and Rényi 
entropies with α > 0 remain finite, but once more the max-
entropy diverges. We included two figures in the supporting in-
formation showing the qualitative behavior of x0 and the Rényi 
entropy as a function of α. The same analysis performed in the 
inverse power interaction case can be done for the inverse loga-
rithmic potential.

6. Short-range interaction potentials

In the present section we consider two particles in a two-
dimensional anisotropic harmonic trap with two different short-
range interactions: the screened inverse power interaction and 
Gaussian repulsive interaction.

6.1. The screened inverse power interaction

For the screened inverse power interaction the potential is

V sip (r; {β,γ }) = e−γ r

r2β
, (30)

where 1/γ is the cut-off distance. In this case x0 and ωx are given 
by

2g = eγ x0 x2(1+β)

0

2β + γ x0
and ω2

x = 1

2

(
1 + 2β

2β + γ x0
+ 2β + γ x0

)
.

(31)

Notice that taking γ = 0 the minima and the frequency of the in-
verse power interaction is recovered, and for β = 0 the interaction 
has exponential decay. For large interaction strength parameter g
the minima and the frequency increase monotonously with g , and 
consequently, the one-dimensional von Neumann and Rényi en-
tropies diverge logarithmically. As we mentioned in section 4 the 
divergence of the entropies can be explained as arising from the 
Fig. 5. One-dimensional von Neumann entropy S1
x as a function of the interaction 

strength parameter g , with β = 1 and γ = 0, 1/2, 1, 2 (from bottom to top, black, 
red, blue and green lines). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

momentum uncertainty 
pr
H A = √

ωx/2
5
4 , which diverges when 

ωx → ∞. Actually, the larger the γ parameter is, the larger the 
frequency is and the higher the entanglement entropies are, this 
behavior is shown in Fig. 5 where the one-dimensional von Neu-
mann entropy is depicted as a function of the interaction strength 
for β = 1 and γ = 0, 1/2, 1, 2.

6.2. The Gaussian repulsive interaction

In this subsection we consider the following interaction poten-
tial

V gr (r;σ) = e
− r2

2σ2 , (32)

where σ is the half width of the potential. In this case x0 and ωx

can be found exactly

x0 = σ

√
2 ln

(
2g

σ 2

)
and

ω2
x = 1

2

x2
0

σ 2
=

√
ln

(
2g

σ 2

)
with g ≥ σ 2

2
. (33)

They are increasing functions of the interaction strength parame-
ter g , thus, the one-dimensional von Neumann and Rényi entropies 
in the large interaction strength limit diverge logarithmically. We 
interpret this divergence in the same way as for the screened 
inverse power interaction. It is worth to mention that the limit 
σ → 0 does not reproduce the results of a delta interaction, which 
have a finite von Neumann entropy [55], since this limit does not 
commute with the large interaction strength limit.

From Eq. (33) it is straightforward to show that for g = gc with

gc = σ 2e
1
2

2
, (34)

x0 = σ and ω2
x = 1

2 , therefore, as was explained in section 3 all the 
occupancies vanish except two of them. The reduced density ma-
trix has then a finite support and the Rényi entropies with α < 1
have a non-analytical behavior, while the von Neumann entropy 
and Rényi entropies with α > 1 present a minimum at g = gc . The 
behavior of the first and second degenerate occupancies (Eq. (12)) 
for σ = 10 is depicted in Fig. 6 together with the value gc as a 
gray dashed line. The first two occupancies 	x

0 (Fig. 6(a)) reach 
the maximum value 1/2 for g = gc , value at which all the others 
occupancies vanish as can be appreciated for 	x

1 in Fig. 6(b).
Summarizing, we found that two trapped particles with a Gaus-

sian repulsive interaction between them, have a reduced density 
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Fig. 6. One-dimensional occupancies 	x
l (Eq. 12) with (a) l = 0 and (b) l = 1, for σ = 10, the value gc is depicted as a gray dashed line.
matrix with infinite support (infinite non-vanishing occupancies) 
for all the interaction strengths but for g = gc , value at which 
all the occupancies vanish except two, and the support is finite. 
Nevertheless, it is important to notice that the largest occupancy 
	x

0 � 0.49 throughout the considered range of g values, and the 
sum of all the remaining occupancies is � 0.01. Therefore, in the 
neighborhood of gc , the two natural orbitals associated to 	x

0 are 
the main contributions to the spatial wave function expansion.

7. Summary and conclusions

In this work we present analytical expressions in the large in-
teraction strength limit for the occupancies and quantum entropies 
for the ground state of a two-particle Wigner molecule in a two-
dimensional anisotropic harmonic trap. Our main result is that one 
is able to determine the influence of the anisotropy and the range 
of the interparticle interaction looking upon the entropic entangle-
ment measures.

The wave function is obtained within the framework of the 
harmonic approximation for large interaction strength values, and 
once we have the ground state wave function, we calculate the oc-
cupancies from the Schmidt decomposition of the reduced density 
matrix. We obtain doubly degenerate occupancies, and relate this 
to the equivalence between particle exchange in the wave func-
tion and the exchange between the two minima of the effective 
potential of the relative Hamiltonian. The linear, von Neumann, 
min-entropy, max-entropy and Rényi entropies are calculated ex-
actly in terms of the occupancies as a function of the anisotropy 
parameter and the parameters of the interaction potential.

We found that, due to the coordinate separability of the wave 
function, the von Neumann, min-entropy, max-entropy and Rényi 
entropies are a sum of terms associated to each coordinate, and 
that only one of these terms depends on the anisotropy parame-
ter and the other term is associated to the interaction potential. 
Consequently, the behavior of the entropies with respect to the 
anisotropy parameter can be analyzed without regard of the inter-
action potential, and the dependence on the interaction potential 
is entirely defined by the frequency obtained by the harmonic 
approximation of the one-dimensional problem. Moreover, we gen-
eralize these results to dimensions higher than two, see details in 
the supporting information.

We show that when the frequency remains finite for large in-
teractions, then the von Neumann, min-entropy and the family of 
Rényi entropies remain finite for the anisotropic model and di-
verge logarithmically for the isotropic model. The divergence of 
the entanglement measure entropies of the isotropic model can 
be understood as follows: in the deformed or anisotropic case the 
particles locate around the two classical minima of the relative 
Hamiltonian forming a Wigner molecule, while for the isotropic 
model those minima degenerate into a circle, the particles are no 
longer localized and this lack of information is reflected in the di-
vergence of the entanglement entropies. If the frequency increases 
monotonously for large interactions then, the von Neumann, min-
entropy and the family of Rényi entropies diverge logarithmically 
for any anisotropy parameter. In this sense, the influence of the 
interaction potential is present only in the one-dimensional en-
tropies.

The previous interaction-independent analysis allows us to ap-
ply them to different interactions straightforwardly. We group 
the interactions into short and long-range potentials and show 
the differences of the obtained results between the groups. For 
long-range interaction potentials, the frequencies remain finite 
in the large interaction strength limit, and the von Neumann, 
min-entropy and Rényi entropies are finite. In contradistinction, 
for short-range interaction potentials, the frequencies increase 
monotonously as a function of the interaction strength and, conse-
quently, the one-dimensional von Neumann and Rényi entropies 
diverge in the large interaction strength limit. The divergence 
of the entanglement entropies can be explained as arising from 
the momentum uncertainty divergence at large frequencies. It is 
important to mention that the one-dimensional von Neumann, 
min-entropy and Rényi entropies of the inverse power interaction 
model diverge logarithmically when the power of the inverse in-
teraction increases (see Eqs. (18) and (21)), since in this limit the 
interaction between the particles goes to a short range one.

We also demonstrate that when the frequency associated to 
the interaction potential, satisfy ω2

x = 1/2, the entropies have their 
minimum value equal to unity. Actually, the von Neumann, min-
entropy and Rényi entropies with α > 1 present an analytical be-
havior around this point, while the Rényi entropies with α < 1
have a non-analytical behavior, which exposes the finite support of 
the reduced density matrix. For this particular frequency there is 
only two non-vanishing occupancies 	x

0. Similar features were also 
recently reported by Amico and co-workers for 1/2-spin chains 
[52–54], and for the Calogero model [4] by the present authors. 
We further illustrate these features showing that two trapped par-
ticles with a Gaussian repulsive interaction have a reduced density 
matrix with infinite support (infinite non-vanishing occupancies) 
for all Hamiltonian parameters except for those values that allow 
ω2

x = 1/2, where all the occupancies vanish except two, and the 
reduced density matrix has finite support.

As a final remark, there is a very recent work concerning a sys-
tem of two Coulombically interacting particles confined to a D − 1
sphere, where the dependence of the entanglement measures on 
the radius of the system and the spatial dimensionality has been 
investigated [36]. Thus, as future perspectives we would like to 
study the effects of the dimensionality and the interaction strength 
on the entanglement of two confined particles which interact via 
a general potential, taking as a starting point the results obtained 
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in the generalization to dimensions higher than two presented in 
the second section of the supporting information.
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[3] O. Osenda, F.M. Pont, A. Okopińska, P. Serra, J. Phys. A, Math. Theor. 48 (2015) 

485301.
[4] M. Garagiola, E. Cuestas, F.M. Pont, P. Serra, O. Osenda, Phys. Rev. A 94 (2016) 

042115.
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