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The statistical notion of disequilibrium (D) was introduced by López-Ruiz, Mancini, and Calbet (LMC) 
(1995) [1] more than 20 years ago. D measures the amount of “correlational structure” of a system. 
We wish to use D to analyze one of the simplest types of quantum correlations, those present in 
gaseous systems due to symmetry considerations. To this end we extend the LMC formalism to the grand 
canonical environment and show that D displays distinctive behaviors for simple gases, that allow for 
interesting insights into their structural properties.

© 2017 Elsevier B.V. All rights reserved.
1. Introductory matters

1.1. Historical notes

Knowledge about the unpredictability and randomness of a sys-
tem does not automatically translate into an adequate grasping of 
the extant correlation structures, reflected by the current probabil-
ity distribution (PD). The desideratum is to capture the relations 
amongst the components of a system in a manner similar to that 
in which entropy captures disorder. One certainly knows that the 
antipodal extreme cases of (a) perfect order and (b) maximum ran-
domness are not characterized by strong correlations [1]. Amidst 
(a) and (b) diverse correlation-degrees may be manifested by the 
features of the probability distribution. The big question is how? 
Answering the query is not a simple task. Notoriously, Crutchfield 
has stated in 1994 that [2,3]:

“Physics does have the tools for detecting and measuring complete 
order equilibrium and fixed point or periodic behavior and ideal ran-
domness via temperature and thermodynamic entropy or, in dynam-
ical contexts, via the Shannon entropy rate and Kolmogorov complex-
ity. What is still needed, though, is a definition of structure and a way 
to detect and to measure it [2,3]”.
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Famously, Seth Lloyd found as many as 40 ways of introducing a 
complexity definition, none of which quite satisfactory.

LMC introduced an interesting functional of the PD that does 
grasp correlations in the way that entropy captures randomness. 
This may be regarded as a great breakthrough [1]. LMC’s statis-
tical complexity did individualize and quantify the bequeath of 
Boltzmann’s entropy (or information H) and that of structure. The 
latter contribution came from the notion of disequilibrium D , which it 
measures (in probability space) the distance from i) the prevail-
ing probability distribution to ii) the uniform probability. D reveals 
the amount of structural details. The larger it is, the more structure exists
[1,4]. For N-particles one has

D =
N∑

i=1

(
pi − 1

N

)2

, (1)

where p1, p2, . . . , pN are the individual normalized probabilities 
(
∑N

i=1 pi = 1) [1]. The two ingredients H and D are combined by 
LMC to yield the complexity C in the fashion CLMC = D H [1,5–10]. 
CLMC vanishes in the two above extreme cases (a) and (b).

1.2. Our present task and its motivation

In this paper, we deal with properties of D within of the grand 
canonical ensemble scenario, for simple gaseous systems obeying 
quantum statistics. We will use D as a structure-indicator so as to 
compare the classical Maxwell–Boltzmann situation vis-a-vis the 
Bose–Einstein and Fermi–Dirac ones.
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Why? Because in this way we have an opportunity of observing 
the workings of quantum symmetries in the simplest conceivable 
scenario. We will indeed encounter interesting quantum insights.

The issue of separating quantum (qc) from classical correlations 
(cc) has revived since the discovery of quantum discord [11–13]. 
Before, it was a simple matter to distinguish between cc and qc, 
because the former were associated to separable states and the 
latter to non-separable ones endowed with entanglement. The dis-
covery that some separable states are also endowed with qc (dis-
cord) made the cc-qc distinction a more formidable task, still the 
subject of much research. This gives our present endeavor some 
additional contemporary relevance.

The structure of this paper is organized as follows: in Section 2
we recapitulate the relevant background, i.e., the pertinent formal-
ism in the canonical ensemble and we introduce also our pro-
posal referring to extending the disequilibrium notion to the grand 
canonical ensemble. The main results of the paper are presented 
in Section 3, in which we apply our ideas to quantum gaseous sys-
tems, focusing attention on the mean occupation number. Finally, 
we present our conclusions en Section 4.

2. Disequilibrium in the grand canonical ensemble

2.1. López-Ruiz work for the canonical ensemble

We recapitulate first interesting notions of López-Ruiz for the 
canonical ensemble [4,14]. These deal with a classical ideal gas in 
thermal equilibrium. One has N identical particles, confined to a 
volume V at temperature T . The ensuing Boltzmann PD is [17]

ρ(x, p) = e−βH(x,p)

Q N(V , T )
. (2)

One has β = 1/kB T , kB Boltzmann’s constant, while H(x, p) is the 
Hamiltonian, and x, p are the phase space variables. The canonical 
partition reads

Q N(V , T ) =
∫

d� e−β H(x,p), (3)

with d� = d3N x d3N p/N!h3N . The Helmholtz free energy A is [17]

A(N, V , T ) = −kB T ln Q N(V , T ). (4)

López-Ruiz (LR) demonstrates, in Ref. [14], that the disequilibrium 
D displays the following appearance for continuous probability dis-
tributions

D(N, V , T ) = e2β [A(N,V ,T )−A(N,V ,T /2)]. (5)

LR changes the variable T by T /2 in Eq. (4) and replaces this into 
Eq. (5). Consequently, he finds

D(N, V , T ) = Q N(V , T /2)

[Q N(V , T )]2
. (6)

Employing now definitions (2) and (3), D can also be cast as

D(N, V , T ) =
∫

d� e−2βH(x,p)

[Q N(V , T )]2
=

∫
d�ρ2(x, p). (7)

This is the orthodox form used by most people (see, for instance, 
Ref. [15]).

2.2. Our proposal for the grand canonical ensemble

Our goal here is to extend the above ideas of López-Ruiz to 
the structures of the grand canonical ensemble. In this ensemble, 
the system has a variable number of particles N , with the average 
number N̄ determined by external conditions. The system can ex-
change both energy and particles with a reservoir. We assume, as 
usual, equilibrium with respect to both energy and particle num-
ber, i.e., reservoir and system have the same temperature T and 
the same chemical potential μ [16]. To describe this kind of sys-
tems, we appeal to the equilibrium distribution, i.e.,

ρ(x, p, N) = e−β(H(x,p)−μN)

Z(z, V , T )
, (8)

where Z(z, V , T ) = ∑
N zN Q N(V , T ) is the grand partition func-

tion. One usually defines the fugacity z = exp(μβ) [17]. The dise-
quilibrium is rigorously defined as

D(z, V , T ) =
∑

N

∫
d�ρ2(x, p, N), (9)

that constitutes an extension of the definition (7) given for the 
canonical ensemble, except that now we have added a sum 
over N and incorporated the corresponding equilibrium distribu-
tion ρ(x, p, N). In view of Eqs. (3) and (8), D becomes

D(z, V , T ) = 1

Z2(z, V , T )

∑
N

z2N
∫

d� e−2βH(x,p). (10)

Note that we are adding a dependence on the fugacity z in D . From 
Eqs. (6) and (7), the above expression can be cast as

D(z, V , T ) = 1

Z2(z, V , T )

∑
N

z2N Q N(V , T /2). (11)

We see that, when T changes to T /2, z is replaced by z2. 
In such a situation, we immediately find that Z(z2, V , T /2) =∑

N z2N Q N (V , T /2), which leads to an original expression for the 
disequilibrium in terms of Z , namely,

D(z, V , T ) = Z(z2, V , T /2)

Z2(z, V , T )
, (12)

depending on the variables V , T , and z. It is well known that the 
natural quantity associated to this ensemble is the grand potential, 
given by [16,17]

�(z, V , T ) = −kB T lnZ(z, V , T ). (13)

Introducing (13) into Eq. (12), one can re-express D for the grand 
canonical in terms of the grand potential �

D(z, V , T ) = e2β [�(z,V ,T )−�(z2,V ,T /2)]. (14)

In order to establish another connection with the grand canonical 
ensemble, we appeal to the relationship between the Helmholtz 
free energy A given in Eq. (4) and the grand potential � defined 
in (13) [16]

A(N̄, V , T ) = kB T N̄ ln z + �(z, V , T ), (15)

where A is evaluated for N̄ instead of N , due to the fact that 
N-fluctuations are small, with a peak at N = N̄ (we must use the 
relation N̄ = z∂ lnZ(z, V , T )/∂z in order to eliminate z [16]). Ac-
cordingly, replacing Eq. (15) into Eq. (14) we arrive at

D(N̄, V , T ) = e2β [A(N̄,V ,T )−A(N̄,V ,T /2)], (16)

where, in this representation, the corresponding variables are N̄, V , 
and T .

Summing up, Eqs. (12), (14), and (16) provide three alterna-
tive ways for calculating the disequilibrium in the grand canonical 
ensemble. One uses, respectively, the grand partition function, the 
grand potential, or the Helmholtz free energy.
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3. Statistical features of quantum gaseous system: mean 
occupation number

3.1. Disequilibrium

Following Ref. [17], Chapter 6, we focus attention on a gaseous 
system of N non-interacting undistinguishable particles restricted 
to a volume V , with energies εk grouped into cells as described in 
this classical book. In the grand canonical ensemble, the equation 
of state for the aforementioned system is given by [17]

P V

kB T
= lnZ(z, V , T ) = 1

a

∑
ε

ln(1 + aze−βε), (17)

where i) a = +1 in the Fermi–Dirac (FD) case, ii) a = −1 in the 
Bose–Einstein (BE) one, and iii) a = 0 for the Maxwell–Boltzmann 
(MB) instance. The energy ε runs over all eigenstates. In partic-
ular, for the classical case, the grand canonical partition function 
becomes [17]

Z(z, V , T ) = z
∑
ε

e−βε. (18)

Replacing Eqs. (17) and (18) into Eq. (12), after a bit of algebra, we 
analytically find the disequilibrium:

D(z, V , T ) =
∏
ε

Da(z, ε, V , T ), (19)

where, for each energy level, we have

Da(z, ε, V , T ) =
⎧⎨
⎩

(1+az2e−2βε )1/a

(1+aze−βε )2/a for a = ±1,

ze−βε for a = 0.
(20)

We have here an expression for the disequilibrium (associated to 
the level of energy ε) for each of the three cases under consider-
ation. In what follows, in order to simplify the notation, we will 
drop the variables z, V , and T . Therefore, only the dependency on 
ε will be indicated. Moreover, since the mean occupation num-
ber 〈nε〉 of the level ε is given by [17]

〈nε〉 = 1

z−1eβε + a
, (21)

it follows that

z−1eβε = 1

〈nε〉 − a. (22)

Therefore, replacing Eq. (22) into Eq. (20), we obtain Da(ε) as a 
function of 〈nε〉 for our three cases. One has

Da(ε) =
{ [

(1 − a〈nε〉)2 + a〈nε〉2
]1/a

for a = ±1,

〈nε〉 for a = 0.
(23)

The Da(ε)-behavior ruled by Eqs. (20) and (23) is displayed in 
Figs. 1 to 4 for the FD (red), BE (blue), and MB (green) cases. The 
differences with the classical result are a clear illustration of the 
effects that quantum correlations generate. The minimum of Da(ε)

occurs when 〈nε〉 = 1/(1 + a), i.e., 〈nε〉 = 1/2 for fermions and 
〈nε〉 = ∞ for bosons, as we illustrate in Figs. 1 and 2. Minimum 
Da(ε) entails minimal structure, that in the BE instance is asso-
ciated to the condensate. Thus, the condensate is endowed with 
minimum structure, i.e., D−1(ε) clearly identifies the condensate 
as having no distinctive structural features, which constitutes a new 
Da(ε)-result, as far as we know. This notion is reinforced by Figs. 3
and 4, by plotting Da(ε) versus 〈nε〉. If we set q = (ε −μ)/kB T , we 
appreciate the fact that Da(ε) varies only between q = 0 and ap-
proximately q = 10, remaining constant (and equal to unity) for 
Fig. 1. Disequilibrium D+1(ε) (red curve) and 〈nε 〉 (magenta curve) versus (ε −
μ)/kB T for fermions. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 2. Disequilibrium D−1(ε) (blue curve) and 〈nε 〉 (magenta curve) versus (ε −
μ)/kB T for bosons. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

Fig. 3. Disequilibrium Da(ε) versus (ε − μ)/kB T . We have a red curve for fermions, 
a blue line for bosons, and green curve for MB (no quantum correlations). (For in-
terpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

any q-value greater than 10. Remember that the our system’s de-
scription converges to the classical one as q grows [17].

In the FD instance, instead, the minimum of D+1(ε) is attained 
for the situation farthest removed from the trivial instances of zero 
or maximal occupation. For fermions, complete or zero occupa-
tions display maximal structure. At fist sight, this behavior near 
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Fig. 4. Disequilibrium Da(ε) versus 〈nε 〉. We have a red curve for fermions, a blue 
line for bosons, and a green curve for MB (no quantum correlations). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 5. Ka(ε) = Da(ε) −〈nε 〉 as a function of 〈nε 〉 (red curve for fermions, blue curve 
for bosons, and green curve for MB), the quantumness indicator. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

〈nε〉 = 0 may seem surprising. The quantum disequilibrium is large 
while the classical one vanishes. There is no structure, classically. 
However, it is well known that the quantum vacuum is a very 
complex, complicated object, as quantum electrodynamics clearly 
shows. (The quantum–vacuum literature is immense. A suitable 
introductory treatise is that of Mattuck in Ref. [18].) This is fore-
shadowed by the quantum disequilibrium at the level of quantum 
gases! Instead, we note that, for a = 0 (the classical case), D0(ε)

coincides with the mean occupation number.
On the other hand, let us reiterate that for 〈nε〉 → ∞, the bo-

son disequilibrium vanishes, on account of dealing with indistin-
guishable particles. The condensate exhibits no structural details. 
Instead, the MB D0(ε) grows with 〈nε〉 because one deals with 
distinguishable particles, and much more information is needed to 
label a million particles than to label 10 of them. This fact empha-
sizes the fact that Da(ε) tells us about information on structural 
details, either physical or labeling-ones.

Let us define Ka(ε) = Da(ε) − 〈nε〉, which is a Da(ε)-related 
“quantumness index”, given that it vanishes in the classical case 
for all mean occupation number. We plot it in Fig. 5. This graph 
is very instructive. Note that 〈nε〉 = 1/2 is a critical value. For 
it, the curves attain classical values and, for fermions, Da(ε) is 
minimum, reflecting on minimal fermion structure. Not surpris-
ingly, in view of previous considerations, Ka(ε) is maximal at the 
quantum vacuum. From 〈nε〉 = 0, Ka(ε) steadily diminishes till 
we reach the critical point mentioned above. For bosons, it then 
steadily increases again, in absolute value, towards the condensate. 
For fermions it grows again, in absolute value, reaches a maximum 
at 〈nε〉 = 3/4, and then tends to zero again at 〈nε 〉 = 1.

3.2. Probability distributions as a function of Da(ε)

It is well-known the probability to encounter exactly n particles 
in a state of energy ε is pε(n) [17], which for the Fermi–Dirac 
instance reads

pε(n)|F D =
{

1 − 〈nε〉 for n = 0,

〈nε〉 for n = 1.
(24)

Thus, considering Eqs. (23) and (24), the disequilibrium becomes

D+1(ε) =
1∑

n=0

p2
ε(n) = p2

ε(0) + p2
ε(1). (25)

Since pε(0) + pε(1) = 1, replacing this into above equation, we also 
have

D+1(ε) = (1 − pε(1))2 + p2
ε(1), (26)

the disequilibrium as a function of the occupation probability 
pε(1). Solving Eq. (26) we find

pε(1)|F D = 1

2
(1 ± √

2D+1(ε) − 1), (27)

which leads to bi-valuation in expressing probabilities as a func-
tion of D+1, a novel situation uncovered here.

In the Bose–Einstein case, the probability is given by the distri-
bution [17]

pε(n)|B E = 〈nε〉n

(1 + 〈nε〉)n+1 , (28)

and, accordingly, the disequilibrium is now of the form

D−1(ε) = 1 − pε(n)

1 + pε(n)
. (29)

From the above equation then we obtain the probability distribu-
tion as a function of the disequilibrium. It reads as follows

pε(n)B E = 1 − D−1(ε)

1 + D−1(ε)
. (30)

For the MB-instance, pε is a Poisson distribution given by [17]

pε(n)|M B = (〈nε〉)n

n! e−〈nε 〉, (31)

that, for Eq. (23) becomes

pε(n)|M B = D0(ε)n

n! e−D0(ε). (32)

We represent Eqs. (27), (30), and (32) in Fig. 6, where we plot the 
probability as a function of the disequilibrium Da(ε) for the three 
cases, here discussed, with a = 0, ±1. All of them are different. The 
classical one is a Poisson distribution. The boson-one decreases 
steadily as D−1(ε) augments. The FD distribution is bi-valuated 
save at the D+1(ε) = 1/2 instance. Note that for D+1(ε) = 1 the 
probability can be either zero or one, a kind of “cat”-effect.
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Fig. 6. Probability pε (1) versus Da(ε) for our three cases. We have a red curve for 
fermions, a blue curve for bosons, and a green curve for MB (no quantum correla-
tions). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 7. The mean occupation number 〈nε 〉 versus σ .

3.3. Disequilibrium in term of fluctuations

The relative mean-square fluctuation is [17]

σ = 〈n2
ε〉 − 〈nε〉2

〈nε〉2
= 1

〈nε〉 − a. (33)

In the classical case (a = 0) the relative fluctuation is “normal”, in 
the sense that it is proportional to the inverse occupation num-
ber and exhibits the statistical behavior of uncorrelated events. In 
the Fermi–Dirac case σ becomes subnormal and fermions exhibit 
a negative statistical correlation. Since 0 ≤ 〈nε〉 ≤ 1, then σ ≥ 0. 
On the other hand, in the Bose–Einstein case, the fluctuation is 
super-normal [17] (σ ≥ 1), and thus bosons exhibit positive statis-
tical correlation [17]. We illustrate these considerations in Figs. 7
and 8.

Accordingly, in terms of fluctuations one has

Da(σ ) =
⎧⎨
⎩

(
a+σ 2

(a+σ )2

)1/a
for a = ±1,

1/σ for a = 0.

(34)

We see that, in quantum terms, Da(σ ) strongly depends also upon 
the symmetry parameter a. We plot the couple of Eqs. (34) in 
Fig. 7. As σ grows, curves of Da(σ ) for fermions and bosons tend 
to coincide. Once again, for fermions the “normal” situation is that 
of minimum Da(σ ).
Fig. 8. Disequilibrium Da(ε) versus σ . We have a red curve for fermions, a blue 
curve for bosons, and a green curve for MB (no quantum correlations). (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

4. Conclusions

We have shown in this note that quantum effects are clearly 
reflected by the disequilibrium’s Da(ε) behavior. In particular, we 
observe that:

• For instance, minimum D−1(ε) entails minimal structural cor-
relations, that in the BE instance are associated to the conden-
sate. Thus, the condensate is endowed with minimum struc-
ture, i.e., D−1(ε) clearly identifies the condensate as having 
no distinctive structural features. This is reinforced by Fig. 4, 
by plotting D−1(ε) versus 〈nε〉.

• On the other hand, in the FD instance, the minimum of D+1(ε)

obtains for the situation farthest removed from the trivial in-
stances of zero or maximal occupation. For fermions, complete 
or zero occupations display maximal structure.

• The behavior near 〈nε〉 = 0 is remarkable. The quantum dis-
equilibrium is large while the classical one vanishes. There is 
no structure, classically. However, the quantum vacuum is a 
very complicated object, as quantum electrodynamics clearly 
shows. This is foreshadowed by the quantum disequilibrium at 
the level of simple gaseous systems.

• For 〈nε〉 → ∞, the boson disequilibrium vanishes, on account 
of dealing with indistinguishable particles. The condensate ex-
hibits no structural details. On the contrary, the MB D0(ε)

grows with 〈nε〉 because one deals with distinguishable par-
ticles, and much more information is needed to label a million 
particles than to do so with 10 of them.

• We gather that Da(ε) tells us about information on structural 
details, either physical or labeling-ones.

References

[1] R. López-Ruiz, H.L. Mancini, X. Calbet, A statistical measure of complexity, Phys. 
Lett. A 209 (1995) 321–326.

[2] J.P. Crutchfield, The calculi of emergence: computation, dynamics and induc-
tion, Physica D 75 (1994) 11–54.

[3] D.P. Feldman, J.P. Crutchfield, Measures of statistical complexity: why?, Phys. 
Lett. A 238 (1998) 244–252.

[4] F. Pennnini, A. Plastino, Disequilibrium, thermodynamic relations, and Rényi’s 
entropy, Phys. Lett. A 381 (2017) 212–215.

[5] M.T. Martin, A. Plastino, O.A. Rosso, Statistical complexity and disequilibrium, 
Phys. Lett. A 311 (2003) 126–132.

[6] L. Rudnicki, I.V. Toranzo, P. Sánchez-Moreno, J.S. Dehesa, Monotone measures 
of statistical complexity, Phys. Lett. A 380 (2016) 377–380.

[7] R. López-Ruiz, H. Mancini, X. Calbet, A statistical measure of complexity, in: 
A. Kowalski, R. Rossignoli, E.M.C. Curado (Eds.), Concepts and Recent Advances 
in Generalized Information Measures and Statistics, Bentham Science Books, 
New York, 2013, pp. 147–168.

http://refhub.elsevier.com/S0375-9601(17)31021-6/bib4C4D43s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib4C4D43s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib43727574636831s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib43727574636831s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib43727574636832s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib43727574636832s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib63756174726Fs1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib63756174726Fs1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib4D5052s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib4D5052s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D6331s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D6331s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D633131s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D633131s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D633131s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D633131s1


3854 F. Pennini, A. Plastino / Physics Letters A 381 (2017) 3849–3854
[8] K.D. Sen (Ed.), Statistical Complexity. Applications in Electronic Structure, 
Springer, Berlin, 2011.

[9] M. Mitchell, Complexity: A Guided Tour, Oxford University Press, Oxford, Eng-
land, 2009.

[10] M.T. Martin, A. Plastino, O.A. Rosso, Generalized statistical complexity mea-
sures: geometrical and analytical properties, Physica A 369 (2006) 439–462.

[11] V. Vedral, Classical correlations and entanglement in quantum measurements, 
Phys. Rev. Lett. 90 (2003) 050401.

[12] N. Li, S. Luo, Classical states versus separable states, Phys. Rev. A 78 (2008) 
024303.

[13] G. Bellomo, A. Plastino, A.R. Plastino, Classical extension of quantum-correlated 
separable states, Int. J. Quantum Inf. 13 (2015) 1550015.
[14] R. López-Ruiz, Complexity in some physical systems, Int. J. Bifurc. Chaos 11 
(2001) 2669–2673.

[15] J. Sañudo, R. López-Ruiz, Calculation of statistical entropic measures in a model 
of solids, Phys. Lett. A 376 (2012) 2288–2291.

[16] Kerson Huang, Statistical Mechanics, 2nd ed., Wiley, USA, 1987.
[17] R.K. Pathria, Statistical Mechanics, 2nd ed., Butterworth-Heinemann, Oxford, 

UK, 1996.
[18] R.D. Mattuck, A Guide to Feynman Diagrams in the Many Body Problem, Mc-

Graw Hill, New York, 1967.

http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D6332s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D6332s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D633232s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D633232s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D6333s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6C6D6333s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib646973636F726431s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib646973636F726431s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib646973636F726432s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib646973636F726432s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib646973636F726433s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib646973636F726433s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib4C5275697A32303031s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib4C5275697A32303031s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib53616E6E75646Fs1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib53616E6E75646Fs1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib4875616E67s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib7061746872696131393936s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib7061746872696131393936s1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6D61747475636Bs1
http://refhub.elsevier.com/S0375-9601(17)31021-6/bib6D61747475636Bs1

	Statistical manifestation of quantum correlations via disequilibrium
	1 Introductory matters
	1.1 Historical notes
	1.2 Our present task and its motivation

	2 Disequilibrium in the grand canonical ensemble
	2.1 López-Ruiz work for the canonical ensemble
	2.2 Our proposal for the grand canonical ensemble

	3 Statistical features of quantum gaseous system: mean occupation number
	3.1 Disequilibrium
	3.2 Probability distributions as a function of Da( ε)
	3.3 Disequilibrium in term of ﬂuctuations

	4 Conclusions
	References


