

View Article Online View Journal

PCCP

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: D. Ondarse Alvarez, S. Kömürlü, A. E. Roitberg, G. Pierdominici Sottile, S. Tretiak, S. Fernandez-Alberti and V. Kleiman, *Phys. Chem. Chem. Phys.*, 2016, DOI: 10.1039/C6CP04448D.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Published on 09 August 2016. Downloaded by Northern Illinois University on 17/08/2016 06:12:30

ARTICLE

Received 00th January 20xx,

Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution

D. Ondarse-Alvarez^a, S. Kömürlü^b, A. E. Roitberg^c, G. Pierdominici-Sottile^a, S. Tretiak^d, S. Fernandez-Alberti^{a*}, and V. Kleiman^{c*}

Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. Light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) is analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in *meta* position to a central group opening the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. For long times we observe similar probabilities for each branch to retain significant contributions of the lowest excited-state electronic transition density. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.

Introduction

A comprehensive knowledge about synthetic light harvesting materials and intramolecular mechanisms of energy redistribution triggered after photoexcitation is a fundamental task in the attempt to mimic natural photosynthesis^{1,2,3,4,5,6}. Light absorption involving multiple equivalent chromophore units introduces the interplay and competition of relative time scales for intra- and inter-molecular chromophore energy transfers as well as electronic and vibrational transfer processes. These initial electronic/vibrational energy transfer mechanisms are responsible for the efficiency in the transformation of photon energy into other usable forms of energy^{7,8,9,10}.

Advances in organic synthesis enable the development of new light-harvesting materials that can potentially improve the efficiency of organic photovoltaic cells in converting the energy of light directly into electricity. Among these novel materials, dendritic macromolecules have attracted special attention due to their welldefined regular structures with numerous individual chromophore units^{11,12,13,14,15,16,12,17,18,3,19,20,21,22,23}. Dendrimers are highly branched conjugated macromolecules with complex, well-defined three dimensional structures^{24,25,26}. The highly polarizable and spatially extended π -electron manifold is responsible for many of their unique electronic and photophysical properties that makes them suitable for a broad range of technological applications. Recent improvement in the synthesis of dendrimers allows new designs introducing functional groups in order to explore alternatives in their architecture that can lead to new optoelectronic properties.

Since the original work by Moore and coworkers, the family of dendrimers comprised of phenylene ethynylene (PE) units has been the focus of several experimental and theoretical studies^{27,28,29,30,31,32,20,33}. They exhibit both collection and energy transfer processes that are of interest in photosynthetic systems^{27,28,29}. The large number of chromophore units in their structures increases the molar absorptivity. PE dendrimers have shown to undergo highly efficient and unidirectional energy associated with efficient transfer their energy funneling^{31,33,34,35,36,37,38,39},^{40,41,42}. The complex interplay between atomic motions. excited-state populations. localization/delocalization of excitations has been a point of intense research for different building blocks of PE dendrimers. As a result, the coherent control of excited-state dynamics in PE dendritic macromolecules has shown to be possible⁴². More recently, a consistent experiment-theoretical description of excited-state dynamics in an unsymmetrical PPE dendrimer has shown that its electronic intramolecular energy-transfer mechanism after light absorption involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions⁴³.

The complex electronic dynamics in PE dendrimers is determined by nonadiabatic dynamics involving multiple coupled electronic excited states. Following light-absorption, the multiple photoinduced pathways to energy relaxation and redistribution involve internal conversion processes and changes in the spatial

^a Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina

^b 700,73rd St Dowers Grove 60516 IL

^c Department of Chemistry of Chemistry, University of Florida, Gainesville, Florida 32611, USA.

^d Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Published on 09 August 2016. Downloaded by Northern Illinois University on 17/08/2016 06:12:30

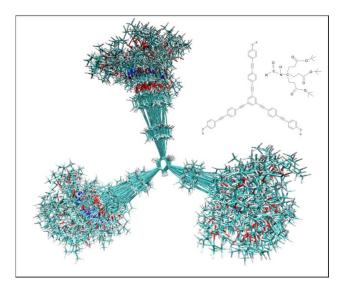


Figure 1. Chemical structure of dendrimer 1 and superposition of snapshots obtained from ground state molecular dynamics in THF.

localization of the electronic transition density. Previous works have measured the excited state populations as well as the energy transfer and vibrational relaxation processes using time-resolved emission and absorption techniques^{44, 22,40,41}. To complement this, simulation of these photophysical processes can be achieved using non-adiabatic excited state molecular dynamics (NA-ESMD)^{35,36,37}. This methodology has been successfully used to simulate the intramolecular flow of the excess energy in many large organic conjugated molecules including different PE dendrimers³⁹. The role played by thermal structural fluctuations in the building blocks in PE dendrimers during the dynamics of relaxation of high-energy excited states has been revealed via analysis based on evolution of transition density localization^{35,45}.

The flexibility of the three dimensional architecture of PE dendrimers depends on steric effects between chromophore units^{31,46,47,48} and it can be modulated by the incorporation of bulky end-groups to their highly branched structures. The scope of their conformational landscape has significant impact on the localization of the electronic transition densities and, therefore, effects on intra- and inter-units energy transfer. The degree of conformational disorder strongly influences the available through-space and sequential through-bond energy transfer mechanisms³⁷.

In this work, we present the results of a combined theoretical-experimental study elucidating ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1)⁴⁹ (see **Figure 1**). For this purpose, time-resolved spectroscopy and NA-ESMD simulations have been performed. Dendrimers with chromophores with the same conjugation length leads to compactness, resulting in a lack of energy gradient. This is the case for Dendrimer 1, which consists of three equivalent linear PE units attached in *meta* position to a central group opening the possibility of inter-branch energy transfer. In the ground electronic-state, the *meta* branching breaks the conjugation giving rise to localized excitations⁴⁷. The presence of transient electronic couplings and

delocalization of excited-state wave-functions have been previously supported by ab-initio calculations and experimental results^{41,50,39,51,45}. The variation in time of the strength of such nonadiabatic couplings and the extent of exciton delocalization modulate the final distribution of the excitation among the different chromophore units.

The paper is organized as follows. Both experimental and theoretical methods are described in Section II, results are presented and discussed in Section III and finally, Section IV summarizes our findings and conclusions.

Methods

Computational methods

The photoexcitation and subsequent electronic and vibrational energy relaxation and redistribution of 1 has been simulated using the NA-ESMD^{52,39} method. NA-ESMD combines the fewest switches surface hopping (FSSH) algorithm^{53,54} with "on the fly" analytical calculations of excited-state energies 55,56,57 gradients^{58,59}, and non-adiabatic coupling terms^{39,60,61,62}. Correlated excited states are calculated using the collective electron oscillator (CEO) method $^{^{63,64,65}}$ with the configuration interaction singles (CIS) formalism implemented with the semiempirical AM1 Hamiltonian⁶⁶. The instantaneous decoherence approach⁶⁷ is introduced in order to account for divergent quantum wavepackets and classical populations. The method resets the quantum amplitude of the current state to unity after every attempted hop. NA-ESMD has been successfully applied to a series of different building blocks and PE dendrimers^{39,43}, providing a sufficiently accurate description of intramolecular energy transfer and transient exciton localization/delocalization during photoinduced dynamics of these molecular systems. Further details of the NA-ESMD approach, implementation, advantages and testing parameters can be found in our previous work^{52,39,68}.

During NAESMD simulations, the intramolecular electronic energy redistribution is followed by computing the timedependent localization of the electronic transition density for the α current state. The diagonal elements of the calculated transition density matrices ($\rho^{g\alpha}$)_{nn} (index *n* refers to atomic orbital (AO) basis functions) represent the changes in the distribution of the electronic density induced by photoexcitation from the ground state *g* to an excited electronic α state⁶⁹. Therefore, the transition density localized on each linear PE unit or branch *i* at each time of the NA-ESMD simulations can be written as:

$$\rho_{\text{branch}i}^{g\alpha}(\mathbf{t}) = \sum_{n_A} (\rho_{n_A n_A}^{g\alpha}(\mathbf{t}))^2$$
(1)

where the index A runs over all atoms in a given linear PE branch.

The initial conditions for NA-ESMD simulations have been generated from an equilibrated ground state molecular dynamics simulation of **1** solvated with 1958 explicit tetrahydrofuran (THF) molecules with periodic boundary in a box with density = 0.891 g/cm³. This was carried out with the AMBER 12 software

2 | J. Name., 2012, 00, 1-3

package^{70,71,72,73} using the GAFF (General Amber Force Field)^{74,75}. During simulations, a time step of 1fs has been used and temperature was equilibrated employing a Langevin thermostat (γ = 2.0). Electrostatic potential (ESP) derived charges for previously optimized **1** geometry were obtained from single-point BLYP/6-31G* calculations and the Merz-Kollman scheme. Restricted ESP (RESP) charges^{76,77} were obtained imposing symmetry on equivalent atom types. RESP charges for **1** are summarized in **Figure S1**. After minimization, the system was heated to 300K during 100 ps. Thereafter, 40 ns of NPT molecular dynamics simulation were performed. The system was equilibrated for 30 ns before starting to collect sets of NA-ESMD initial conditions at 20 ps intervals during 10 ns. The collected set of initial conditions was finally relaxed during a short MD run using the semiempirical AM1 Hamiltonian and explicit THF molecules have been removed.

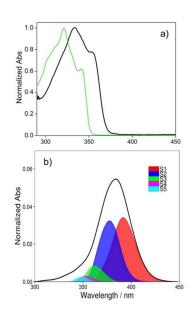
Four hundred (400) independent NA-ESMD simulations were started from these initial configurations after vertical excitation to an initial excited state α , with the frequency Ω_{α} . selected according to the Frank-Condon window defined as $g_{\alpha}(\mathbf{r},\mathbf{R}) = f_{\alpha} \exp[-T^2 (E_{\text{laser}} - \Omega_{\alpha})^2]$ where E_{laser} is the energy of the laser pulse centered at 383 nm and f_{α} represents the normalized oscillator strength for the α state, both expressed in units of fs⁻¹. We considered a Gaussian laser pulse, f(t) = $\exp(-t^2/2T^2)$, with T = 42.5 fs corresponding to a FWHM (Full Width at Half Maximum) of 100 fs. Each NA-ESMD simulation was run for 500 fs using a Langevin Thermostat to keep the temperature at 300K with a friction coefficient of 2.0 ps⁻¹. A new random seed has been used for each NA-ESMD simulation in order to avoid synchronicity effects between them⁷⁸. The bulky end-groups have been removed before the NA-ESMD simulations. Five electronic states and their corresponding nonadiabatic couplings were included in the simulations. A classical time step of 0.1 fs has been used for nuclei propagation and a quantum time step of 0.025 fs has been used to propagate the electronic degrees of freedom. In order to identify and deal with trivial unavoided crossings, the quantum time step was further reduced by a factor of 40 in the vicinity of such crossings⁷⁹. More details concerning the NA-ESMD implementation and parameters can be found elsewhere^{52,39,68}.

Experimental method

Compact dendrimers consisting of a backbone containing PE chromophores with bulky branched t-butyl ester ending groups were prepared using a convergent method described in detailed in separate publications⁸⁰.

Steady-state characterization was performed using UV-Vis absorption and fluorescence emission spectra. Sample concentrations for steady-state characterization were kept below 1 μ M to avoid any aggregation⁸¹ or excimer formation³², yielding optical densities less than 0.1 cm⁻¹.

We explored excited-state dynamics by time-resolved photoluminescence as a function of excitation and detection wavelengths. Fluorescence in the picosecond time-regime was characterized with the up-conversion technique⁴⁰. Up-conversion allows the measurement of the temporal evolution of the


fluorescence based on the sum-frequency mixing of the molecules' emission with an ultrafast gate pulse in a nonlinear crystal⁸² Tunable excitation pulses (300-400 nm) are derived from the 4th harmonic of the signal output of an optical parametric amplifier (OPA), pumped by a commercial Ti-sapphire laser system consisting of a Ti-Sapphire oscillator (Tsunami, Spectra-Physics) and subsequent amplifier (Spitfire, Spectra-Physics) with a repetition rate of 1 kHz. After excitation of the sample, the fluorescence is collected using two off-axis parabolic mirrors, and the excited volume imaged onto a 0.5 mm thick β -barium borate crystal. A portion of the direct output of the amplified laser system (20 µJ/pulse) is weakly focused (50 cm focal length) on the same crystal and spatially overlapped with the imaged fluorescence. The upconverted UV signal is collimated and directed to a 0.25 m monochromator (Oriel Cornerstone 260) to be dispersed and detected by a visible-blind photomultiplier tube (Hamamatsu R7154). Crystal tuning combined with scanning of the delay between excitation and gate pulses allows measurement of the temporal evolution of the fluorescence at particular emission wavelengths (for details see ref ⁴⁰). The polarization of the excitation beam is controlled using a Berek Compensator. Pump pulses with energies lower than 40 nj and a beam diameter of at least 200 µm are used to avoid photo bleaching and to maintain a linear optical response. The sample solutions, with concentrations below 10 µM (less than 0.15 mm-1), are stirred during the experiments to ensure exposure of fresh volumes with every laser shot and their photo-stability is checked before, during, and after each up-conversion experiment. Steady-state spectra of these samples were compared with lower optical density solutions (less than 0.01 mm-1) used for photophysical characterization and no changes in the spectra were observed due to aggregation or selfabsorption. The time resolution of the experiment is measured by cross-correlation of scattered pump and gate pulses yielding excitation pulses with FWHM ~ 270 fs at 350 nm. This instrument response function is used for convolution of decay and rise time functions to fit the experimental data. Multiple scans are combined with 4000 laser shots averaged at each time step.

Results and discussion

We study the photoinduced dynamics of the first generation PE dendrimer (1), both from an experimental and theoretical point of view. **Figure 1** shows the chemical structure based on three branches of equivalent, linear 1,4 bis(phenylethynyl) (PE) units, connected through the *meta* position to a central group. The end of each branch is capped with an alkoxy substituent connected to a dendritic-ester (R). The presence of these dendriticester groups makes the dendrimer soluble in organic solvents like THF but does not affect its photophysical properties.

The experimental and computed absorption spectra of **1** and the linear building block 1,4-bis(phenylethynyl) (**Figure S2**) at room temperature in THF are shown in **Figure 2**, and the measured emissions are shown in the supplemental information (**Figure S3**). The experimental results show that the shape of the absorption spectra is quite similar in both molecules; emission from of 1,4-bis(phenylethynyl)benzene shows clear vibronic structure while the

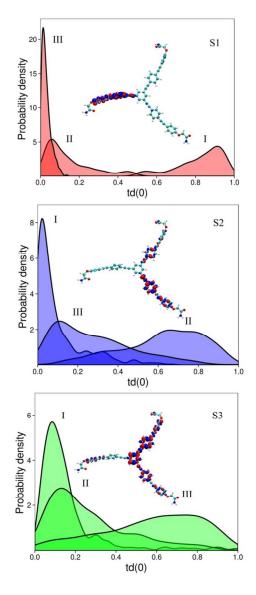
Published on 09 August 2016. Downloaded by Northern Illinois University on 17/08/2016 06:12:30

Figure 2. (a) Steady state absorption spectra of 1 (black) and 1,4bis(phenylethynyl)benzene (green) in THF; (b) Simulated absorption spectra with separated contributions from the different excited states.

emission of 1 is broad and featureless. Since the calculations do not include vibronic bands, these features are not expected to appear in the simulated spectra. The computed spectra appear at slightly lower energies than the experimental, an effect already observed in other similar molecules 35,83,84,43,85 which might be related to a difference in solvent properties and the level of QM theory used but which does not change the understanding of the photophysical processes. The computed as well as the experimentally absorption of dendrimer 1 display a red shift relative to the spectra of 1,4bis(phenylethynyl); 36 nm and 12 nm respectively. The effect of alkoxy substituents in PE dendrimers have been previously reported⁴⁶. Yoshida and coworkers⁸⁶ synthesized oligo(p-phenylene ethynylene)s as rod shaped π conjugated systems and characterized their photophysical properties. They observed red-shifts in the absorption and emission maxima, and an enhancement in the molar absorptivity of the oligomers as they are substituted with alkoxy groups in *para* position. This effect was attributed to the alkoxy groups enabling electron donation to the PE units. Kolandaivel and coworkers⁸⁵ calculated substituted and unsubstituted phenyleneethynylene oligomers absorption and emission spectra using timedependent density functional theory (TDDFT), obtaining good agreement with the experiments, though the calculated red shifts were larger than experimental ones. They concluded that the substitution with electron withdrawing or donating groups has a significant effect on the spectra. The red shift absorption spectrum of 1 compared to 1,4-bis(phenylethynyl) can also be related to rotations of the phenyl rings. It is known that the absorption spectra of PE oligomers are strongly affected by the rotation of the phenylene rings^{68,87}. In the ground state, the energy barrier for the rotation of the phenylene rings is very low (near k_BT, 0.59 kcal/mol for diphenylacetylene in gas phase) and the ground-state potential

is shallow⁸⁷. Nevertheless, higher energy barriers for ring-rotation are expected for 1 due to the presence of bulky branched t-butyl ester ending groups. Therefore, dendrimer 1 becomes more planar and with more extended conjugation lengths than the corresponding individual linear 1,4 bis(phenylethynyl) units.

The computed spectrum in Figure 2 (bottom panel) shows the contributions from each excited state to the overall absorption band. The absorption band is composed of contributions from $S_1(46\%)$, S_2 (37%), and S_3 (9%) states, with smaller contributions from higher energy states. In order to investigate the extent of coupling between the linear PE units in the different electronic excited states we analyze the distribution of values for the transition density (TD) found on each linear PE branch i, $\rho_{\text{branch }i}^{g\alpha}(0)$ (α =1,2,3), for the ensemble of initial ground state conformational sampling. For each excited state S_a, if the initial TD were localized in only one *i* branch we would expect a sharp distribution near a $\rho_{\text{branch},i}^{ga}(0) = 1$, whereas a fully delocalized TD would have a distribution around $\rho_{\text{branch},i}^{g\alpha}(0)$ = 0.33 for all branches. We have computed the localization of the TDs in each branch for each of the independent conformations sampled, and plot the distributions of those TDs (at t=0) in Figure 3. These wide distributions arise due to diverse conformations in the room temperature ensemble leading to electronic states with contributions from different sites. This analysis of spatial distribution of the transition densities allows an understanding of the nature of the electronic states, which are labeled according to their increasing energies but whose composition might change as the molecule samples different conformations^{84,39}. The branches in Figure 3 are labeled as I for the branch with the highest value of $ho_{branch,i}^{glpha}(0)$, II for the next value of , and $ho_{branch,i}^{glpha}(0)$ III for the branch with the lowest value of $\rho_{\text{branch},i}^{ga}(0)$ for the $S_1 \leftarrow S_0$ transition.


The top panel in **Figure 3** shows the distribution of the TD in the different branches for S₁. That panel clearly shows that S₁ is mostly localized in a single branch (I) with very much less TD in branch II and almost no TD in branch III. The middle panel shows the TD distribution of S₂ among the three branches, while the lower panel shows the distribution of TD from S₃. These two panels establish that neither states S₂ nor S₃ contribute to the TD for branch I, since in both cases branch I has as sharp distribution near 0. State S₂ has its TD distributed with a slight asymmetry between the other two branches, while S₃ shows an almost mirror image for the distribution. We learn from this figure that branches II and II show excited state population from two different states, in contrast to the behavior of branch I, which is only populated by S₁.

These distributions can be rationalized in simple terms when one thinks about the D_{3h} symmetry this dendrimer will adapt when fully minimized in it ground electronic state. In this case, one can assign site energies for each branch with some weak coupling between them and the energies and orbitals can be analytically obtained within a Frenkel Exciton model ^{88,89,90}. In that case, one finds that there is one state mostly localized in one branch, with two other states delocalized between the other two branches, in agreement with the results presented here at room temperature.

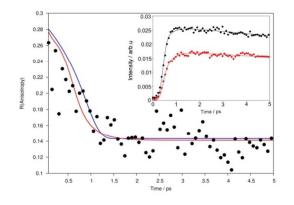
Given the different patterns of branch localization for the different excited states, the photoinduced dynamics of the $S_n \rightarrow S_m$

Published on 09 August 2016. Downloaded by Northern Illinois University on 17/08/2016 06:12:30

Journal Name

Figure 3. Distribution over all initial configurations of the TD in each branch among the different states. The branches are labeled I, II, and III according to their values of $\rho_{branch,i}^{ga}(0)$ for the $S_1 {\leftarrow} S_0$ transition, with I having the highest values in S_1 and III the lowest. Middle and lower panel show the $\rho_{branch,i}^{ga}(0)$ for the $S_2 {\leftarrow} S_0$ and $S_3 {\leftarrow} S_0$ transition respectively. The labels of the branches are the same for all plots.

electronic relaxation processes will also involve inter-branch energy exchange. The process of localization/delocalization among equivalent dendrimer branches can be investigated using timeresolved emission anisotropy in the femtosecond time-scale. The sample is excited with linearly polarized light, and the emission as a function of time is detected selecting either parallel or perpendicular polarizations, compared to the initially polarized plane. These experiments provide valuable information about the excited state dynamics and the extent of inter-branch couplings by measuring the ultrafast depolarization changes following excitation of Ph₃PG-1. Since loss of anisotropy due to the rotation of molecules occurs on the nanosecond time-scale it is possible to characterize faster processes without interference from the rotational diffusion. The ultrafast up-conversion technique was used to explore the excited-state dynamics of dendrimer 1. The dendrimer was dissolved in THF and excited at 340 nm (near the absorption maximum) while the emission was detected at 376 nm. The time -resolved anisotropy is calculated using the experimental perpendicular and parallel fluorescence decay data (see in inset in Figure 4). The individual polarized emission intensities are fitted with a sum of exponentials convoluted with the instrument response function. The experimentally measured anisotropy is plotted with the resultant from the fitting of the individual components. The result is a very fast time anisotropy decay component of 330 fs. Other parameters used in this fitting were kept fixed: a very long decay time constant obtained from TCSPC measurements and a 3 ps time component characterized by using up-conversion measurements and assigned to vibrational cooling (vide infra). The final anisotropy values are slightly above 0.1, which is the expected value for a planar configuration.


DOI: 10.1039/C6CP04448D

ARTICLE

In order to simulate the fluorescence anisotropy using NA-ESMD simulations, we need to compute the time correlation function of the normalized absorption dipole moment of 1 at time zero, $\vec{\mu}_{\rm A}(t=0)$, and its normalized emission dipole moment at time t, $\vec{\mu}_{\rm E}(t)$ ⁹¹:

$$C_{sim}(t) = \frac{I_{\rm II} - I_{\perp}}{I_{\rm II} + 2I_{\perp}} = \frac{2}{5} \left\langle P_2 \left\{ \vec{\mu}_{\rm A}(0) \cdot \vec{\mu}_{\rm E}(t) \right\} \right\rangle$$
(2)

where I_1 and I_{\perp} are the intensities of fluorescence polarized parallel and perpendicular to the plane of polarization of the exciting radiation pulse, respectively. P_2(x)=(3x²-1)/2 is the second-order Legendre polynomial. This equation assumes an ensemble of fluorophores with random isotropic initial orientation and the angular brackets denote the average over all the trajectories. The fluorescence anisotropy signal R(t) is then obtained by calculating

Figure 4. Fluorescence anisotropy data for dendrimer 1 in THF. Experimental decay is shown in black, fitting in red, and simulated in blue. Inset: Time-resolved fluorescence data at parallel polarization (black dots) and perpendicular polarization (red dots) with their fitting given in solid lines. The fits are obtained by convolution with a 300 fs IRF.

Published on 09 August 2016. Downloaded by Northern Illinois University on 17/08/2016 06:12:30

the convolution of $C_{sim}(t)$ with a Gaussian laser pulse whose width (300 fs FWHM) corresponds to the pulsewidth used in the experiments. The resulting fluorescence anisotropy curve is plotted in **Figure 4** (blue line), achieving a remarkable agreement with experiments.

Varnavski et al used similar time-resolved anisotropy measurements on dendrimers to investigate fast energy delocalization kinetics⁹². They studied dendrimers having two types of symmetries (C_3 and T_d). In both cases, they observed anisotropy decays on the femtosecond time-scale. The rate of the energy delocalization process was strongly dependent on the nature of the central moiety. In the case of a nitrogen core, the delocalization was faster as it enables strong coupling among the linear segments (35 fs). When the nitrogen was replaced with an adamantine core, delocalization got slower revealing weaker coupling (880 fs). Ruseckas et al ⁹³ described a sub 100fs process in which nuclear relaxation leads to a spread of the exciton in a larger area, thus changing the effective orientation of the transition dipole moment.

In dendrimer **1**, the initial anisotropy value of R(0)=0.28 is lower than the expected $R_{max}=0.4$ for spherical systems leading us to conclude that an ultrafast process is masked by a convolution with the instrument response function. The initially computed excited state shows some degree of localization (**Figure 3**). As energy transfer occurs, redistribution of the transition density among the different branches will lead to the scrambling of the transition dipole orientation. This scrambling of the orientation of the transition dipole can occur through two plausible mechanisms.

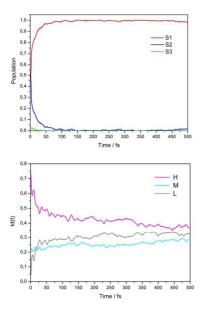


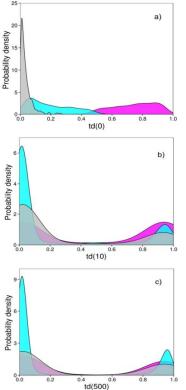
Figure 5. Calculated time evolution of populations shown using a state (top) or spatial (low) descriptor. These plots show the transition densities averaged over all the members of the ensemble. The spatial descriptor assigns as High (H), Medium (M) and Low (L) the branches with highest to lowest transition density at t = 0.

In one case, a true delocalization of the wavefunction due to strong coupling among equivalent chromophores or to nuclear relaxation⁹³. Another possibility considers a wavefunction that maintains its localized nature in an individual branch, but hops around from one branch to another driven by weakly coupled chromophores.

The robust match between our experimental and simulated anisotropy results allows us to use of the computational results to understand the mechanism behind the ultrafast loss of polarization anisotropy. We start by computing the excited state dynamics of the dendrimer and following the population of a given excited state (S_n) in time, as shown in **Figure 5** (top panel). Excitation is induced at the energy corresponding to the maximum of its absorption spectrum (383 nm), and takes into account the presence of several excited states in accordance to their contribution to the absorption spectrum. The initial state for NA-ESMD simulations is almost equivalently distributed between the S_1 and S_2 excited states with an almost negligible contribution from S_3 and nothing for states with n>3. After photoexcitation, an efficient ultrafast energy transfer takes place driving all the population to the lowest excited state (S_1) within the first 100 fs.

Since changes in the nuclear coordinates during molecular dynamics can change the localization patterns of the TD without changes in the excited state label, the population of the excited states cannot be used to identify intra- or inter-branch energy transfers. Therefore, the final electronic relaxation to the adiabatic S₁ state, reported as population increase in the lowest energy excited state (as shown in Figure 5 top panel) cannot be directly used to identify intra- or inter-branch energy transfers. In order to elucidate this feature, Figure 5 compares the variation in time of the population in each adiabatic state (top panel) with the average fraction of electronic transition density spatially localized on the different branches (bottom panel). In the lower panel, for each trajectory we label the three branches according to their fraction of transition density (high (H), medium (M), and low (L) at time =0. During the time of measurement, the excitation experiences an ultrafast inter-branch migration that leads to a final scrambling of the spatial information. It is interesting to note that this spatial scrambling of the exciton takes place at a slower pace than the population transfer among states; comparison of top and bottom panels show that although by t = 75 fs all the populations has reached S₁, the population of the spatial distributions continues to evolve until at least 500 fs.

In the spatial description an ultrafast inter-branch exchange of the excitation from initial highest to medium and lowest branches is observed during the first ~5-10 fs. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. Analysis of the inter-branch transition density exchanges shows that most of the stepwise variations involving large Δ TD values occur within the first 10 fs, after which we only observe Δ TDs of small magnitude, which continue to happen for long periods of time.


These results resemble those obtained in previous simulations of the photoinduced energy transfer between two chromophore units of the coupled anthracene dimer dithia-anthracenophane (DTA). The latter have also shown equivalent final energy redistribution among chromophore units⁹⁴, with half of the

Published on 09 August 2016. Downloaded by Northern Illinois University on 17/08/2016 06:12:30

trajectories finishing completely localized on the same monomer on which the initial excitation was located, and the other half of them becomes fully localized on the other monomer. The initial nonadiabatic coupling between states leads to an ultrafast exchange of energy between monomers while thermally induced geometric distortions and vibrational relaxation lead to localized electronic states.

Since **Figure 5** shows ensemble-average values, it is not possible to elucidate whether the spatial scrambling is due to hopping between sites or due to delocalization of the wavefunction among the different branches. A proper interpretation of the experimental data, and the understanding of the excited state dynamics can be obtained with the analysis of the distributions of the members of the ensemble. The critical role of choosing the proper descriptor can be better understood by evaluating the evolution of the complete distributions of transition density in each branch.

Figure 6 shows the distributions of TD among the three branches at different times within the system's evolution. For each branch, we present the TD corresponding to the sum of the contributions from three excited states. Immediately after excitation, the TD is broadly and unevenly distributed between two branches while a third branch is not excited. As the excited state dynamics evolves, the transitions become spatially localized.

Figure 6. Evolution in time of the distribution of fraction of electronic transition density localized on individual branches. The branches are classified according to their initial value of the fraction of transition density: High (magenta), Medium (cyan) and Low (gray) and they are graphed at (a) t=0, (b) 10 and (c) 500 fs.

By the end of the simulations, (500 fs) the distribution of the probability of obtaining TD values shows that the TD is localized in a given branch (sharp bands with TD ~1) thus the other two branches must have TD~0. The similar plots for the three branches at long times show the obvious answer where after the dynamics are concluded, the ensemble distribution has about a third of the configurations with TD confined in one given branch, and the choice of branch is randomly distributed, giving rise to the averages seen in **Figure 5**.

View Article Online DOI: 10.1039/C6CP04448D

ARTICLE

These results unequivocally demonstrate a mechanism of initial confinement of the spatial excitation within an individual branch followed by hopping between localized transition densities. The first process is due to the $S_1 \leftarrow S_2$ energy transfer and occurs in a very fast timescale, while the second process corresponds to interbranch energy transfer while the population remains in S_1 and it occurs in a slower timescale.

It is interesting to compare the results from this symmetric dendrimer with those of the previously studied unsymmetrical dendrimer⁴³. In that molecular system, energy bias and coupling to vibrational modes point to a localization of the excited state in one segment of the dendritic backbone before the final step of energy transfer to the lowest excited state. In the work presented here, immediately after photoexcitation the spatial distribution corresponds to a slightly delocalized picture due to the contribution from different states that reside in complementary Following an initial high-activity period driven by branches. population transfer from S_2 to S_1 , the changes in transition density become smaller and last for several hundreds of femtoseconds implying that the branches become less coupled. As a result, random exciton self-trapping on different PE units is observed with final similar probabilities for each branch to retain significant contributions of the lowest excited-state electronic transition density.

Conclusions

The photoexcitation and subsequent ultrafast spatial redistribution and electronic energy relaxation on a first generation dendrimer have been studied combining theoretical and experimental studies. Upon excitation, an efficient ultrafast $S_2 \rightarrow S_1$ energy transfer takes place. Time resolved anisotropy shows ultrafast scrambling of the transition dipole moment orientation in ca 300 fs, raising the question of potential coherent delocalization of the wavefunction. To understand the excited state dynamics and the mechanism behind the energy transfer we must choose a proper set of descriptors, which in this case correspond to the spatial distribution of the excited states wavefunctions.

Our results reveal a consistent picture of ultrafast loss of anisotropy due to an initial energy transfer between adiabatic states. This process is followed by a random exciton self-trapping on different units as the branches become less coupled. The final ensemble describes the random distribution of self-trapped excitons on the different PE units with each branch retaining a similar probability of significant contribution of the transition density to the lowest electronic excited-state. This process of spatial redistribution among chromophore units is driven by the lack of an energy gradient. The experimental loss of polarized emission can therefore be assigned to the confinement of the

electronic wavefunction in a single branch and its hopping between the branches rather than to its expansion over the whole dendrimer.

Am. Chem. Soc. 1992, 114 (8), 2944.

- (20) Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996. 118. 9635.
- Gilat, S.; Adronov, A.; Fréchet, J. Angew. Chem. Int. Ed. (21) 1999, 38 (10), 1422.
- (22) Peng, Z.; Melinger, J.; Kleiman, V. D. Photosynth. Res. 2006, 87(1), 115.
- (23)Bosman, A.; Janssen, H.; Meijer, E. Chem. Rev. 1999, 99 (7), 1665
- Balzani, V.; Ceroni, P.; Maestri, M.; Vicinelli, V. Curr. Opin. (24) Chem. Biol. 2003, 7 (6), 657.
- (25) Nantalaksakul, A.; Reddy, D.; Bardeen, C.; Thayumanavan, S. Photosynth. Res. 2006, 87 (1), 133.
- (26) Aida, T.; Jiang, D.-L.; Yashima, E.; Okamoto, Y. Thin Solid Films 1998, 331 (1-2), 254.
- (27) Mukamel, S. Nature 1997, 388, 425.
- Fréchet, J. M. Science (80-.). 1994, 263 (5154), 1710. (28)
- (29) Swallen, S.; Zhu, Z.; Moore, J.; Kopelman, R. J. Phys. Chem. B 2000, 104 (16), 3988.
- (30)Xu, Z.; Kahr, M.; Walker, K. L.; Wilkins, C. L.; Moore, J. S.; Jj, J. S. M. 1994, 116 (11), 4537.
- Kopelman, R.; Shortreed, M.; Shi, Z. Y.; Tan, W.; Xu, Z.; (31) Moore, J. S.; Bar-Haim, A.; Klafter, J. Phys. Rev. Lett. 1997, 78. 1239.
- (32)Swallen, S. F.; Kopelman, R.; Moore, J. S.; Devadoss, C. J. Mol. Str. 1999, 486, 585.
- Shortreed, M. R.; Swallen, S. F.; Shi, Z. Y.; Tan, W.; Xu, Z.; (33) Devadoss, C.; Moore, J. S.; Kopelman, R. J. Phys. Chem. B 1997. 101. 6318.
- (34) Melinger, J. S.; Pan, Y. C.; Kleiman, V. D.; Peng, Z. H.; Davis, B. L.; McMorrow, D.; Lu, M. J. Am. Chem. Soc. 2002, 124 (40), 12002.
- Fernandez-Alberti, S.; Kleiman, V. D.; Tretiak, S.; Roitberg, (35)A. E. J. Phys. Chem. A 2009, 113 (26), 7535.
- (36)Fernandez-Alberti, S.; Kleiman, V. D.; Tretiak, S.; Roitberg, A. E. J. Phys. Chem. Lett. 2010, 1, 2699.
- (37)Fernandez-Alberti, S.; Roitberg, A. E.; Kleiman, V. D.; Nelson, T.; Tretiak, S. J. Chem. Phys. 2012, 137 (22), 22A526.
- (38)Kobayashi, T.; Okada, T.; Kobayashi, T.; Nelson, K.; Silvestri, S.; Atas, E.; Mair, C.; Melinger, J.; Peng, Z.; Kleiman, V. In In Ultrafast Phenomena XIV; Castleman, A., Toennies, J., Zinth, W., Eds.; Eds. Springer Berlin Heidelberg, 2005; pp 456-458.
- Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. (39) Acc. Chem. Res. 2014, 47, 1155.
- (40)Atas, E.; Peng, Z. H.; Kleiman, V. D. J. Phys. Chem. B 2005, 109 (28), 13553.
- (41)Kleiman, V. D.; Melinger, J. S.; Mc Morrow, D. J. Phys. Chem. B 2001, 105, 5595.
- Kuroda, D.; Singh, C.; Peng, Z.; Kleiman, V. Science (80-.). (42) 2009, 326 (5950), 263.
- Galindo, J. F.; Atas, E.; Altan, A.; Kuroda, D. G.; Fernandez-(43) Alberti, S.; Tretiak, S.; Roitberg, A. E.; Kleiman, V. D. J. Am. Chem. Soc. 2015, 137 (36), 11637.
- (44)Kömürlü, S.; Lee, S. H.; McCarley, T.; Schanze, K. S.; Kleiman, V. D. J. Phys. Chem. B 2011, 115 (51), 15214.
- (45)Soler, M. a; Roitberg, A. E.; Nelson, T.; Tretiak, S.; Fernandez-Alberti, S. J. Phys. Chem. A 2012, 116 (40), 9802.
- (46) Gaab, K.; Thompson, A.; Xu, J.; Martnez, T.; Bardeen, C. J. Am. Chem. Soc. 2003, 125 (31), 9288. (47)
 - Ranasinghe, M.; Hager, M.; Gorman, C.; Goodson, T. J.

This journal is © The Royal Society of Chemistry 20xx

Published on 09 August 2016. Downloaded by Northern Illinois University on 17/08/2016 06:12:30

Acknowledgements

This work was partially supported by the National Science Foundation Grant (CHE-1058638), CONICET, UNQ, ANPCyT (PICT-PICT-2014-2662) and the U.S. Department of Energy and Los Alamos LDRD funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS) at LANL. The samples were synthesized by Dr Fude Feng and Kirk Schanze at the University of Florida.

Notes and references

References

- (1) Holdren, J. Science (80-.). 2007, 315, 737.
- Scholes, G.; Fleming, G.; Olaya-Castro, A.; van Grondelle, R. (2) Nat. Chem. 2011, 3 (10), 763.
- (3) Frischmann, P.; Mahata, K.; Wurthner, F. Chem. Soc. Rev. 2013, 42 (4), 1847.
- (4) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.; Gratzel, M. Nat. Chem. 2014, 6 (3), 242.
- (5) Halpin, A.; Johnson, P.; Tempelaar, R.; Murphy, R.; Knoester, J.; Jansen, T.; Miller, R. Nat. Chem. 2014, 6 (3), 196.
- (6) Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Mancal, T.; Cheng, Y.-C.; Blankenship, R. E.; Fleming, G. R. Nature 2007, 446 (7137), 782.
- (7) Andrews, D. J. Mater. Res. 2012, 27, 627.
- Adronov, A.; Fréchet, J. Chem. Commun. 2000, 18, 1701. (8)
- Hu, X.; Damjanovic, A.; Ritz, T.; Schulten, K. Proc. Nat. (9) Acad. Sci. USA 1998, 95, 5935.
- (10)Caycedo-Soler, F.; Rodriguez, F.; Quiroga, J.; Johnson, N. Phys. Rev. Lett. 2010, 104, 158302.
- (11) Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules 1986, 19 (9), 2466.
- (12) Newkome, G.; Yao, Z.; Baker, G.; Gupta, V. J. Org. Chem. **1985**, 50 (11), 2003.
- (13) Fréchet, J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (8), 4782.
- Fréchet, J. J. Polym. Sci. Part A Polym. Chem. 2003, 41 (23), (14) 3713.
- (15) C; Schalley; F; Vögtle; V; Balzani; P; Ceroni; M; Maestri; C; Saudan; Vicinelli, V. In Luminescent Dendrimers. Recent Advances. In Dendrimers V; Schalley, C., Vögtle, F., Eds.; Springer Berlin / Heidelberg, 2003; pp 159–191.
- (16) Smith, D.; Diederich, F. Chem. Eur. J. 1998, 4 (8), 1353.
- (17) Rajakumar, P.; Kalpana, V.; Ganesan, S.; Maruthamuthu, P. New J. Chem. 2013, 37 (11), 3692.
- (18) Froehling, P. Dye. Pigment. 2001, 48 (3), 187.
- Denti, G.; Campagna, S.; Serroni, S.; Ciano, M.; Balzani, V. J. (19)

Physical Chemistry Chemical Physics

	Phys. Chem. B 2004 , 108 (25), 8543.
(48)	Ahn, T. S.; Thompson, A. L.; Bharathi, P.; Müller, A.;
	Bardeen, C. J. J. Phys. Chem. B 2006 , 110 (40), 19810.

- (49) Feng, F.; Lee, S. H.; Cho, S. W.; Kömürlü, S.; McCarley, T. D.; Roitberg, A.; Kleiman, V. D.; Schanze, K. S. Langmuir 2012, 28 (48), 16679.
- (50) Huang, J.; Du, L.; Hu, D.; Lan, Z. J. Comput. Chem. 2015, 36
 (3), 151.
- (51) Ortiz, W.; Krueger, B. P.; Kleiman, V. D.; Krause, J. L.; Roitberg, A. E. J. Phys. Chem. A 2005, 109, 11512.
- (52) Nelson, T.; Fernandez-alberti, S.; Chernyak, V.; Roitberg, A. E.; Tretiak, S. J. Phys. Chem. B **2011**, *115*, 5402.
- (53) Tully, J. C. J. Chem Phys. **1990**, *93*, 1061.
- (54) Hammes-schiffer, S.; Tully, J. C. J. Chem Phys. **1994**, 101 (6), 4657.
- (55) Tretiak, S.; Mukamel, S. Chem. Rev. 2002, 102 (9), 3171.
- (56) Chernyak, V.; Schulz, M. F.; Mukamel, S.; Tretiak, S.; Tsiper, E. V. J. Chem. Phys. **2000**, 113, 36.
- (57) Tretiak, S.; Isborn, C. M.; Niklasson, A. M. N.; Challacombe, M. J. Chem. Phys. 2009, 130, 054111.
- (58) Furche, F.; Ahlrichs, R. J. Chem. Phys. 2002, 117, 7433.
- (59) Tretiak, S.; Chernyak, V. J. Chem. Phys. 2003, 119, 8809.
- (60) Tommasini, M.; Chernyak, V.; Mukamel, S. *Int. J. Quantum Chem.* **2001**, *85*, 225.
- (61) Chernyak, V.; Mukamel, S. J. Chem. Phys. 2000, 8, 3572.
- (62) Send, R.; Furche, F. *J. Chem. Phys.* **2010**, *132*, 044107.
- (63) Mukamel, S.; Tretiak, S.; Wagersreiter, T.; Chernyak, V. *Science (80-.).* **1997**, *277* (5327), 781.
- (64) Tretiak, S.; Chernyak, V.; Mukamel, S. *J. Chem. Phys.* **1996**, *105*, 8914.
- (65) Tretiak, S.; Zhang, W. M.; Chernyak, V.; Mukamel, S. *Proc. Nat. Acad. Sci. USA* **1999**, *96* (23), 13003.
- (66) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.
 J. Am. Chem. Soc. 1985, 107, 3902.
- (67) Nelson, T.; Fernandez-alberti, S.; Roitberg, A. E.; Tretiak, S. *J. Chem. Phys.* **2013**, *138*, 224111.
- (68) Nelson, T.; Fernandez-Alberti, S.; Chernyak, V.; Roitberg, A. E.; Tretiak, S. *J. Chem. Phys.* **2012**, *136* (5), 054108.
- (69) Wu, C.; Malinin, S. V; Tretiak, S.; Chernyak, V. Y. *Nat. Phys.* 2006, 2 (9), 631.
- (70) Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Gotz, A. W.; Kolossvary, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Hsieh, M.-J.; Cui, G.; Roe, R. D.; Mathews, D. H.; Seetin, M. G.; Solomon Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. 2014,.
- (71) Salomon-Ferrer, R.; Goetz, A. W.; Poole, D.; Grand, S. L.; Walker, R. C. J. Chem. Theory Comput. 2013, 9, 3878.
- Goetz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Grand, S.
 L.; Walker, R. C. J. Chem. Theory Comput. 2012, 8, 1542.
- (73) Grand, S. L.; Goetz, A. W.; Walker, R. C. Comp. Phys. Comm. 2013, 184, 374.
- (74) Wang, J.; Wolf, R.; Caldwell, J.; Kollman, P.; Case, D. J. Comput. Chem. 2004, 25 (9), 1157.
- (75) Mukherjee, G.; Patra, N.; Barua, P.; Jayaram, B. J. Comput. Chem. 2011, 32 (5), 893.
- (76) Cieplak, P.; Cornell, W.; Bayly, C.; Kollman, P. J. Comput. Chem. 1995, 16, 1357.
- (77) Bayly, C.; Cieplak, P.; Cornell, W.; Kollman, P. J. Phys. Chem.

1993, 97, 10269.

- (78) Sindhikara, D. ~J.; Kim, S.; Voter, A. ~F.; Roitberg, A. ~E. J. Chem. Theory Comput. 2009, 5 (6), 1624.
- (79) Fernandez-Alberti, S.; Roitberg, A. E.; Nelson, T.; Tretiak, S.
 J. Chem. Phys. 2012, 137 (1), 014512.
- (80) Feng, F.; Lee, S.; Cho, S.; Kömürlü, S.; McCarley, T.; Roitberg A; Kleiman, V.; Schanze, K. Langmuir 2012, 28, 16679.
- (81) Davis, B.; Melinger, J.; McMorrow, D.; Peng, Z.; Pan, Y. J. Lumin. **2004**, *106*, 301.
- (82) Abramczyk, H. Introduction to Laser Spectroscopy; Elsevier, 2005.
- Fernandez-Aberti, S.; Kleiman, V. D.; Tretiak, S.; Roitberg,
 A. E. J. Phys. Chem. Lett. 2010, 1, 2699.
- (84) Fernandez-Alberti, S.; Roitberg, A. E.; Kleiman, V. D.; Nelson, T.; Tretiak, S. J. Chem. Phys. 2012, 137 (22), 22A526.
- (85) Santhanamoorthi, N.; Senthilkumar, K.; Kolandaivel, P. Mol. Phys. 2009, 107 (16), 1629.
- Yamaguchi, A. Y.; Tanaka, T.; Kobayashi, S.; Matsubara, Y.;
 Yoshida, Z. J. Am. Chem. Soc. 2005, 127, 9332.
- (87) Thompson, A. L.; Gaab, K. M.; Xu, J. J.; Bardeen, C. J.;
 Martinez, T. J. J. Phys. Chem. A 2004, 108 (4), 671.
- (88) Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchara-Desce, M. Enhanced two-photon absorption of organic chromophores: Theoretical and experimental assessments; 2008; Vol. 20.
- (89) Katan, C.; Terenziani, F.; Mongin, O.; Werts, M. H. V.; Porres, L.; Pons, T.; Mertz, J.; Tretiak, S.; Blanchard-Desce, M. J. Phys. Chem. A 2005, 109, 3024.
- Katan, C.; Tretiak, S.; Werts, M. H. V; Bain, A. J.; Marsh, R.
 J.; Leonczek, N.; Nicolaou, N.; Badaeva, E.; Mongin, O.;
 Blanchard-Desce, M. J. Phys. Chem. B 2007, 111 (32), 9468.
- (91) Szabo, A. J. Chem. Phys. 1984, 81 (1), 150.
- (92) Varnavski, O. P.; Ostrowski, J. C.; Sukhomlinova, L.; Twieg, R. J.; Bazan, G. C.; Goodson, T. *J. Amer. Chem. Soc.* 2002, 124 (8), 1736.
- Ruseckas, A.; Wood, P.; Samuel, I. D. W.; Webster, G. R.; Mitchell, W. J.; Burn, P. L.; Sundstrom, V. Phys. Rev. B -Condens. Matter Mater. Phys. 2005, 72 (11), 1.
- (94) Alfonso Hernandez, L.; Nelson, T.; Tretiak, S.; Fernandez-Alberti, S. J. Phys. Chem. B 2015, 119, 7242.