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The disequilibrium concept (D) was introduced by López-Ruiz, Mancini, and Calbet 20 years ago together 
with their successful notion of statistical complexity. In this note we show that, in a classical, canonical-
ensemble environment, D displays interesting thermodynamic properties and is able to replace the 
partition function. Also, we show that for a generalized Statistical Complexity-family that involves Rényi’s 
entropy of order q, the maximal value of these new complexities is attained in the case q = 1.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Even if one is cognizant about the degree of unpredictability 
and randomness of a system this does not at all mean that one can 
properly grasp the existing correlation-structures, that strongly in-
fluence the prevailing probability distribution (PD). Of course, one 
would want to capture the relationship among a system’s compo-
nents in the way that the entropy captures disorder. The pair of 
concepts randomness-structural correlations shares common com-
ponents. It is true that the opposite extremal situations of (i) per-
fect order and (ii) maximal randomness are not endowed with 
major structural correlations [1]. In between (i) and (ii) a varie-
gated range of structure-degrees can exist. These, naturally, would 
be reflected by the features of the above mentioned PD. In which 
way? The answer is rather complex. Crutchfield noted in 1994 that 
“Physics does have the tools for detecting and measuring complete 
order equilibria and fixed point or periodic behavior and ideal ran-
domness via temperature and thermodynamic entropy or, in dy-
namical contexts, via the Shannon entropy rate and Kolmogorov 
complexity. What is still needed, though, is a definition of struc-
ture and a way to detect and to measure it” [2,3]. Notoriously, 
Seth Lloyd enumerated as many as 40 ways of defining complexity, 
none of them satisfactory enough.

As stated above, we wish that some adequate functional of 
the probability distribution may enable one to grasp correlations 
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as entropy captures randomness. A really great breakthrough was 
reached by the complexity-definition of López-Ruiz, Mancini and 
Calbet (LMC) [1]. LMC’s complexity did separate and quantify con-
tributions coming from Shannon’s entropy or information H and 
structure. The structural part was assigned to the concept of dis-
equilibrium, denoted by D , that measures in probability space the 
distance from the actual PD to the uniform one, whose form for an 
N-particle system is given by

D =
N∑

i=1

(
pi − 1

N

)2

, (1)

where p1, p2, . . . , pN are the corresponding probabilities, with the 
condition 

∑N
i=1 pi = 1 [1].

LMC’s complexity definition reads CLMC = D H , and is also 
called the statistical complexity (see, for instance, Refs. [1,4–9]). 
CLMC vanishes, at it should, in the two special extreme instances 
(i) and (ii) cited above. Additionally, we mention in passing a 
slightly modified complexity (C ) definition introduced by Catalan 
et al. in Ref. [13], to avoid possible negative C-values. This new C
is of the form

C = D eH . (2)

In this effort we will focus attention, within a canonical-
ensemble environment, on the LMC disequilibrium concept and 
show that for classical integrable systems there is a consistent 
thermodynamic description related to it. Indeed, D entirely re-
places the partition functions in the ensuing relationships. We em-
phasize the fact that D is a distance in probability space, and that 
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such a distance is endowed with interesting thermodynamic prop-
erties. Our motivation is to reinforce the idea that the LMC-one 
is a correct version of statistical complexity, although not the only 
one, of course. Given the great number of alternative proposals, we 
are able to show that the LMC-one is at least maximal within the 
family of Rényi-related complexities.

The paper is organized as follows. Section 2 introduces some 
preliminary materials. Our results are presented in the Sections 3
and 4 and some conclusions are drawn in Section 5.

2. LMC disequilibrium in the canonical ensemble

We devote this preparatory section to present important ideas 
proposed by López-Ruiz for the canonical ensemble in Ref. [10]. In 
this reference an ideal gas in thermal equilibrium is discussed. Let 
us deal then with a classical system of N identical particles, con-
fined into a space of volume V , in thermal equilibrium at temper-
ature T . The corresponding Boltzmann distribution becomes [11]

ρ(x, p) = e−βH(x,p)

Q N(V , T )
, (3)

with β = 1/kB T , kB the Boltzmann constant, H(x, p) the Hamilto-
nian, and x, p the concomitant phase space variables. The canoni-
cal partition function is

Q N(V , T ) =
∫

d� e−β H(x,p), (4)

with d� = d3N x d3N p/N!h3N . It is well known that the Helmholtz’ 
free energy A is written as [11]

A(N, V , T ) = −kB T ln Q N(V , T ). (5)

R. López-Ruiz shows in Ref. [10] that the canonical disequilibrium 
D(N, V , T ) adopts the following quite interesting aspect

D(N, V , T ) = e2β [A(N,V ,T )−A(N,V ,T /2)]. (6)

Notice that this form is valid only for continuous probability dis-
tributions. So as better grasp the meaning of Eq. (6), changing now 
T by T /2 in Eq. (5) and replacing this into Eq. (6), one finally en-
counters that

D(N, V , T ) = Q N(V , T /2)

[Q N(V , T )]2
. (7)

A better known, alternative D-expression can be gotten. Employing 
now definitions (3) and (4), D can also be cast as

D(N, V , T ) =
∫

d� e−2βH(x,p)

[Q N(V , T )]2
=

∫
d� [ρ (x, p)]2 . (8)

This is the orthodox form used by most people (see, for instance, 
Ref. [12]).

3. Disequilibrium and thermodynamic relations

We assume now that the canonical, classical disequilibrium 
D(N, V , T ), given by (8), is known. Next, we proceed to investigate 
D-connections with some thermodynamic relations to gain insight 
into its thermodynamic role.

For pedagogical reasons, we list here the most important ther-
modynamic relations (we will call them, with a touch of subjec-
tivity, the relevant ones) in the canonical ensemble. Assuming we 
know the free energy (5), the rest of the relevant relations are
U = −
(

∂ ln Q N(V , T )

∂β

)
N,V

, (9)

μ = −kB T

(
∂ ln Q N(V , T )

∂N

)
V ,T

, (10)

p = kB T

(
∂ ln Q N(V , T )

∂V

)
N,T

, (11)

S = kB

(
∂(T ln Q N(V , T ))

∂T

)
N,V

, (12)

for the mean energy, chemical potential, pressure, and entropy, re-
spectively. All these quantities depend on the variables N , V and T . 
However, in order to gain some space with the notation, we retain 
this dependence only for the disequilibrium, Statistical Complexity, 
and free energy. In the remaining thermodynamic quantities, we 
will add the variables only when strictly necessary.

The idea now is recast these thermal relations in a disequilib-
rium parlance. This is done as follows.

3.1. Connection with the mean energy

Taking the derivative respect to β in Eq. (7), it is easy to arrive 
at(

∂ ln D(N, V , T )

∂β

)
N,V

=
(

∂ ln Q N(V , T /2)

∂β

)
N,V

− 2

(
∂ ln Q N(V , T )

∂β

)
N,V

. (13)

Appealing to the definition of mean value of energy (9) and re-
placing it into Eq. (13), we immediately get a first relation between 
the disequilibrium and the mean energy(

∂ ln D(N, V , T )

∂β

)
N,V

= 2(U (T ) − U (T /2)). (14)

The classical Equipartition Theorem of energy, valid in the case of 
quadratic dependence of energy on the variable under considera-
tion [14,15], asserts that

U = f

2
kB T , (15)

where f is the number of the system’s degrees of freedom. Note 
that we have dropped the dependence on V and N . Accordingly, 
from Eq. (15), we obviously have U (T /2) = U (T )/2. Therefore, in-
troducing this and Eqs. (15) into Eq. (14) we obtain(

∂ ln D(N, V , T )

∂β

)
N,V

= U . (16)

Notice that the relation (14) is more general than (16), since 
this last identity holds for systems that satisfy equipartition of en-
ergy.

Moreover, differentiating Eq. (7) respect to the mean energy U
we get(

∂ ln D(N, V , T )

∂U

)
N,V

=
(

∂ ln Q N(V , T /2)

∂U

)
N,V

− 2

(
∂ ln Q N(V , T )

∂U

)
N,V

. (17)

Since U is related to β through Eq. (15), we also have that β =
(∂ ln Q N/∂U )N,V . Thus, assuming again equipartition of energy, we 
immediately find(

∂ ln D(N, V , T )

∂U

)
= −β. (18)
N,V
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Therefore, the couple of Eqs. (16) and (18) would constitute the ba-
sic set of equations, called reciprocity relations, of a thermal Infor-
mation Theory à la Jaynes, that would yield a complete description 
of the thermodynamic properties of the system in D-language [16]. 
This is a nice result!

3.2. Connection with the thermodynamic entropy

We begin taking the derivative of Eq. (6) with respect the tem-
perature T , for V and N fixed. One has[

∂

∂T
(kB T ln D(N, V , T ))

]
N,V

= 2

[(
∂ A(N, V , T )

∂T

)
N,V

−
(

∂ A(N, V , T /2)

∂T

)
N,V

]
. (19)

By using the well-known thermodynamic relation for the entropy 
(12) and the free energy (5) one reaches[

∂

∂T
(kB T ln D(N, V , T ))

]
N,V

= S(T /2) − 2S(T ). (20)

3.3. Connection with the pressure

We connect the pressure with the disequilibrium through 
Eq. (7) and invoking the thermodynamic relation (11). Then, we 
arrive at(

∂ ln D(N, V , T )

∂V

)
N,T

= 2

kB T
(p(T ) − p(T /2)) . (21)

3.4. Connection with the chemical potential

Starting from the disequilibrium-concept (6) and differentiating 
with respect to N (V and T fixed), and invoking the thermody-
namic relation for the chemical potential in the canonical ensem-
ble, i.e., Eq. (10), we are led to(

∂ ln D(N, V , T )

∂N

)
V ,T

= 2

kB T
(μ(T ) − μ(T /2)) . (22)

3.5. Connection with the specific heat and fluctuations of energy

Consider the specific heat at constant volume V . It is defined 
as

C V =
(

∂U

∂T

)
N,V

= − 1

kB T 2

(
∂U

∂β

)
N,V

. (23)

Using Eq. (14) we find

C V = − 2

kB T 2

[(
∂U (T )

∂β

)
N,V

−
(

∂U (T /2)

∂β

)
N,V

]
. (24)

Using the definition (16) we are led to an alternative definition of 
CV in terms of the disequilibrium, whose form is

C V = − 1

kB T 2

(
∂2 ln D(N, V , T )

∂β2

)
N,V

. (25)

It is known that the energy-fluctuations in the canonical ensemble 
lead to (�U )2 ≡ 〈H2〉 − 〈H〉2 = kB T 2CV , so that, utilizing Eq. (25), 
we obtain the follows relationships

(�U )2 = −
(

∂2 ln D(N, V , T )

∂β2

)
N,V

. (26)
3.6. Connection with Statistical Complexity

We begin considering the general definition of Statistical Com-
plexity given by Eq. (2) with H any entropic functional (as ex-
plained in the Introduction). Taking the logarithm of C one finds

H = ln
(

C D−1
)

. (27)

Now, taking derivatives with respect to the mean energy U (with 
N and V fixed), we get(

∂ H

∂U

)
N,V

=
(

∂ ln C

∂U

)
N,V

−
(

∂ ln D

∂U

)
N,V

. (28)

Invoking the Eq. (18), we find(
∂ ln C

∂U

)
N,V

= −β +
(

∂ H

∂U

)
N,V

, (29)

which constitutes the necessary condition for C in order to have a 
D compatible with Thermodynamics as described by the canonical 
ensemble.

As a particular case, we rename in Eq. (29) the entropy H =
S/kB , with S the thermodynamic entropy and invoking the known 
relation for the thermodynamic temperature (∂ S/∂U )N,V = 1/T , 
we find(

∂ ln C

∂U

)
N,V

= 0. (30)

On could in this way conclude then that the definition of Sta-
tistical Complexity given by Eq. (2) is compatible with canonical-
ensemble thermodynamics provided that it compliance Eq. (30).

4. Connection with Rényi’s entropy

Other entropic functional of great relevance is the Rényi’s en-
tropy, because of its connection with the free energy, as explained 
in Ref. [17].

The Rényi’s entropy of order q for a classical system is defined 
as

Rq = kB

1 − q
ln

∫
d� [ρ(x, p)]q, (31)

where 0 < q < ∞. For q = 1 we get the usual thermodynamic 
entropy R1 ≡ S . We have added, for convenience, the Boltzmann 
constant in the definition of Rq .

Baez [17] noted that, while Shannon’s entropy has a strong 
thermodynamic’ flavor, the Rényi’s entropy Sq has not been com-
pletely integrated into this subject. Baez shows that it is not nec-
essary to modify statistical mechanics to find a natural role for 
Rényi’s entropy in physics. This role is related to the free energy, 
using a parameter q = T /T0 defined as a ratio of temperatures. It 
was shown by Baez that the relation between Rényi’s entropy and 
the free energy A is given by Eq. (9) of Ref. [17]

RT0/T (N, V , T0) = − A(N, V , T ) − A(N, V , T /2)

kB(T − T0)
. (32)

If we set T0 = T /2 and use Eq. (6), we obtain

D(N, V , T ) = e−R1/2(N,V ,T /2), (33)

which expresses a relation between Rényi’s entropy and disequi-
librium, such that it is possible to reconstruct the thermodynamic 
relations utilizing any of these three quantities. In addition, by us-
ing Eq. (2), we re-express the Statistical Complexity as

C(N, V , T ) = eS(N,V ,T )/kB−R1/2(N,V ,T /2), (34)
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which looks like a sort of distance between Rényi’s and Shannon’s 
entropies. Moreover, we can explore other, more general defini-
tions of Statistical Complexity using the Rényi’s measure. We pro-
pose here to adopts one version of the form

Cq(N, V , T ) = eRq(N,V ,T )/kB−R1/2(N,V ,T /2), (35)

that, for q = 1, coincides with Eq. (34). Applying Eq. (29), with 
H = Rq/kB , we get(

∂ ln Cq

∂U

)
N,V

= −β + 1

kB

(
∂ Rq

∂U

)
N,V

. (36)

Since, as it was shown in Ref. [18] (and references therein), that (
∂ Rq/∂U

)
N,V = 1/T , then we obtain(

∂ ln Cq

∂U

)
N,V

= 0, (37)

which it is true for all q.

4.1. Statistical Complexity bounds

The main property of the Rényi’s entropy is that it is concave 
for 0 < q ≤ 1 and neither concave nor convex for q > 1 respect 
to the probabilities. Because the concavity property is required by 
the maximum entropy principle [16,19], we restrict our treatment 
to 0 < q ≤ 1. From Eq. (35) we get

Rq − S = kB ln
(
Cq/C

)
. (38)

On the other hand, we observe, for 0 < q ≤ 1, that ρq ≥ ρ lnρ . 
Integrating both members by 

∫
d�, and after a bit of algebra, we 

get

S/kB ≥ −
∫

d� [ρ(x, p)]q , (39)

so that, taking into account the definition of Rényi’s entropy (31)
we find the inequality

S/kB ≥ −e(1−q)Rq/kB . (40)

Appealing to Eqs. (38) and (40), we arrive at

ln
(
Cq/C

) ≤ Rq/kB + e(1−q)Rq/kB . (41)

Since Rq ≥ 0, this entails

ln
(
Cq/C

) ≤ 1, (42)

implying

0 ≤ Cq ≤ C, (43)

where we have considered that Cq/C ≥ 0 for all q because the 
complexities are positive definite. We conclude that the maximum 
Statistical Complexity is attained by the LMC C .
5. Conclusions

We have shown in this note that, in a classical phase space 
context with continuous probability distributions, the LMC notion 
of disequilibrium D has a suitable role in statistical thermodynam-
ics. Indeed, in our new thermal relations, the partition function Q N

does not appear, so that one may be tempted to suggest that it has 
been replaced by the disequilibrium. All important thermodynamic 
relations can indeed be expressed in terms of D . One might argue 
that the logarithm of D exhibits properties analogous to those of 
Massieu potentials.

We have also used a generalized LMC-like complexity-family 
that involves Rényi’s entropy instead of Shannon’s

Cq(N, V , T ) = eRq(N,V ,T )/kB−R1/2(N,V ,T /2),

and shown that Cq=1 is maximal for this family.
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