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Abstract: Despite the impressive amount of literature on the foundations of quantum

mechanics, the relevance of symmetry in interpretation is not properly acknowledged. In fact,

although it is usually said that quantum mechanics is invariant under the Galilean group,

the invariance is usually not discussed in the case of the interpretation of the theory. This

situation is particularly pressing for realist positions, which want to know how reality would be

if quantum mechanics were true. From a realist perspective, it seems reasonable to require that

an interpretation of quantum mechanics, to be admissible, preserves the same symmetries of the

theory. In this paper we will take a realist standpoint in order to study what physical constraints

the Galilean group imposes on interpretation, and we will extrapolate the conclusions drawn

for quantum mechanics to the case of quantum field theory.
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1 Introduction

More than a century after its first formulations, quantum mechanics is still an arena of

hot interpretive debates. However, despite the impressive amount of literature on the

subject, the relevance of symmetry in interpretation is not properly acknowledged. In

fact, although it is usually said that quantum mechanics is invariant under the Galilean

group, the invariance is usually not discussed in the case of the interpretation of the

theory. But this is a serious shortcoming in the foundational context, since the fact

that a theory is invariant under a group does not guarantee the same property for its

interpretations to the extent that, in general, they add interpretive assumptions to the
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formal structure of the theory.

This situation may be considered irrelevant by those instrumentalist stances that are

not interested in understanding what kind of world quantum mechanics describes. But

it is pressing for realist positions, which want to know how reality would be if quantum

mechanics were true. From a realist perspective, it seems reasonable to require that an

interpretation of quantum mechanics, to be admissible, preserves the same symmetries of

the theory. In this paper we will take a realist standpoint, in order to study what physical

constraints the Galilean group imposes on interpretation. To this end, we will organize

the presentation in two parts. In the first part we will consider the invariance properties

of quantum mechanics: by beginning with considering the general notion of symmetry

and the difference between the concepts of invariance and covariance, we will show that

the Schrödinger equation is covariant under the Galilean group and we will consider

under what conditions it is invariant under the same group. On this basis, in the second

part we will address interpretive matters. First, we will consider the ontological meaning

of invariance by stressing the relationship between invariance and objectivity. Then we

will consider the constraints that Galilean invariance imposes onto any interpretation of

quantum mechanics. These arguments will allow us, finally, to extrapolate the conclusions

drawn for quantum mechanics to the case of quantum field theory.

2 The Galilean symmetry of quantum mechanics

2.1 The general concept of symmetry

The idea of symmetry has a long history, during which it was associated with other

notions such as harmony, equilibrium, beauty or proportion. At present, the everyday

notion of symmetry is endowed with a geometric content that is familiar to everybody:

something is symmetric when it has parts that are equal in a certain sense, such as in the

case of the left-right symmetry of human faces or of the rotational symmetry of Escher’s

circle limit paintings.

The idea of symmetry acquires a precise definition in mathematics, when it is linked

to the concept of invariance: from a mathematical viewpoint, an object is symmetric

regarding a certain transformation when it is invariant under that transformation. But

now, the transformation does not need to be geometric: the generic concept of symmetry

applies to generic transformations in abstract mathematical spaces. The mathematical

concept of symmetry was refined with the concept of group, which clusters different

transformations into a specific structure. The concept of group was originally proposed

by Galois in the first half of the nineteenth century, in the context of the resolution of

algebraic equations by radicals. In the second half of he same century, Lie built a theory

of continuous groups, with the purpose of extending Galois methods, originally designed

to solve algebraic equations, to the case of differential equations. This work opened the

way to apply the concepts of symmetry and invariance to the laws of physics expressed

as mathematical equations.
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Once the concept of symmetry is precisely defined in mathematical terms, different

kinds of symmetry can be distinguished. One classification distinguishes between global

and local symmetries: global symmetries depend on constant parameters, whereas local

symmetries depend smoothly on the point of the base manifold. Another distinction is

between external or space-time symmetries, and internal or gauge symmetries, due to

invariance under non space-time transformations. The Galilean invariance of Newtonian

mechanics and the Lorentz invariance of the special theory of relativity are paradigmatic

examples of global space-time symmetries, which were called “geometric” by Wigner

(1967). Symmetries can also be classified as continuous, described by continuous or

smooth transformations, or discrete, described by non-continuous transformations. Time-

translation, space-translation and space-rotation are the traditional cases of continuous

transformations, and time-reversal, space-reflection and charge-conjugation are common

examples of discrete transformations. Since in this paper we are interested in the Galilean

group, we will only focus on global space-time continuous symmetries.

In principle, there are two possible interpretations of a transformation: active and

passive. Under the active interpretation, the transformation corresponds to a change from

a system to another –transformed– system; for instance, one system translated in space

with respect to the original one. Under the passive interpretation, the transformation

consists in a change of the viewpoint –the reference frame– from which the system is

described; for instance, the space-translation of the observer that describes the system.

In the case of space-time transformations, continuous ones admit both interpretations,

but the active interpretation makes no sense in the case of discrete transformations (Sklar

1974: 363). Nevertheless, no matter which interpretation is adopted, the invariance of

the fundamental law of a theory under its continuous symmetry group implies that the

behavior of the system is not altered by the application of the transformation: in the

active interpretation language, the original and the transformed systems are equivalent;

in the passive interpretation language, the original and the transformed reference frames

are equivalent.

2.2 Invariance and Covariance

In the light of its general meaning, now the concept of invariance can be endowed with a

more precise presentation. Although the link between symmetry and invariance is clear,

we have not explained yet to which items the property of invariance applies. As Brading

and Castellani stress, the first step is to distinguish between symmetries of objects and

symmetries of laws: “we can apply the laws of mechanics to the evolution of our chair,

considered as an isolated system, and these laws are rotationally invariant (they do not

pick out a preferred orientation in space) even though the chair itself is not” (Brading

and Castellani 2007: 1332). In the case of physical laws, the symmetry of a law does not

imply the symmetry of the objects (states and operators) contained in the equation that

represents the law. Therefore, the conceptual implications of the symmetries of the law

and of the involved objects under a particular group of transformations have to be both
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considered.

In the second place, it is necessary to distinguish between the concepts of covariance

and of invariance. In the literature on the subject there is no consensus about what

covariance means. Very commonly, the property of invariance is applied only to objects,

and the property of covariance is reserved for laws and their corresponding equations.

However, as Ohanian and Ruffini (1994) emphasize, the difference between the invariance

and the covariance not only makes sense but also is relevant when applied to laws. In

rough terms, an equation is invariant under a certain transformation when it does not

change under the application of that transformation. In turn, an equation is covariant

under a certain transformation when its form is left unchanged by that transformation

(see Suppes 2000, Brading and Castellani 2007). From an exclusively formal viewpoint,

covariance is a rather weak property: any equation that is not covariant under a given

transformation can always be expressed in a way that makes it covariant by defining new

functions of the original variables. However, covariance has physical significance only

when those new functions can be endowed with physical meaning. In other words, if

the transformation of the objects involved in a law is defined in advance due to physical

reasons, one can decide univocally whether the law is invariant and/or covariant or not.

After these conceptual preliminaries, now we can introduce some formal definitions.

Def. 1: Let us consider a set A of objects ai ∈ A, and a group G of transformations

gα ∈ G, where the gα : A → A act on the ai as ai → a′i. An object ai ∈ A is invariant

under the transformation gα if, for that transformation, a′i = ai. In turn, the object

ai ∈ A is invariant under the group G if it is invariant under all the transformations

gα ∈ G.

In physics, the objects on which transformations apply are usually states s, observ-

ables O and differential operatorsD, and each transformation acts on them in a particular

way. Let us consider the example of time-reversal when applied to the objects involved

in Hamilton equations: the state s = (q, p), the observable Hamiltonian H, and the

differential operators D1 = d/dt, D2 = ∂/∂p and D3 = ∂/∂q. The time-reversal transfor-

mation, which acts on the variable t as t→ −t, reverses all the objects whose definitions
in function of t are non-invariant under the transformation:

s = (q, p)→ s′ = (q′, p′) = (q,−p)
O = H → O′ = H ′

D1 = d/dt→ D′
1 = d′/dt = −d/dt

D2 = ∂/∂p→ D′
2 = ∂′/∂p = −∂/∂p

D3 = ∂/∂q → D′
3 = ∂′/∂q = ∂/∂q

In physics, the objects to which transformations apply are combined in equations repre-

senting the laws of a theory. In particular, a dynamical law is represented by a differential

equation E (s,Oi, Dj) = 0, which includes the state s, certain observables Oi and certain

differential operators Dj. When a transformation is applied to all these objects, the law

may remain exactly the same, that is, its form may be left invariant by the transforma-

tion. This means that the relationship among the transformed objects is the same as
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that linking the original objects. But it may also be the case that the equation still holds

when only the state is transformed, and this means that the evolution of the state is not

affected by the transformation. Precisely:

Def. 2: Let L be a law represented by an equation E (s,Oi, Dj) = 0, and let G

be a group of transformations gα ∈ G acting on the objects involved in the equation

as s → s′, Oi → O′i and Dj → D′
j. L is covariant under the transformation gα if

E (s′, O′i, D′
j) = 0, and L is invariant under the transformation gα if E (s′, Oi, Dj) = 0.

Moreover, L is covariant –invariant– under the group G if it is covariant –invariant–

under all the transformations gα ∈ G.

On this basis, it is usually said that a certain group is the symmetry group of a theory:

Def. 3: A group G of transformations is said to be the symmetry group of a theory

if the laws of the theory are covariant under the group G. This means that the laws

preserve their validity even when the transformations of the group are applied to the

involved objects.

Still in the case of the above example, the Hamilton equations, dq/dt = ∂H/∂p and

dp/dt = −∂H/∂q, are covariant under time-reversal when H ′ = H, a condition satisfied

when H is time-independent; nevertheless, they are not invariant under time-reversal

because dp′/dt �= −∂H/∂q.

It is easy to see that, when a law is covariant under a transformation, and the ob-

servables and the differential operators contained in it are invariant under that transfor-

mation, the law is also invariant under the transformation. Nevertheless, as we will see

in the particular case of the Schrödinger equation, this is not the only way to obtain the

invariance of a law.

Some authors speak about symmetry instead of about covariance. For instance, Ear-

man (2004a) defines symmetry in terms of the models of a theory:

Def. 4: LetM be the set of the models of a certain mathematical structure, and let

ML ⊂M be the subset of the models satisfying the law L. A symmetry of the law L is

a map S :M→M that preserves ML, that is, for any m ∈ML, m
′ = S(m) ∈ML.

When L is represented by a differential equation E (s,Oi, Dj) = 0, each model m ∈
ML is represented by a solution s = F (Oi, s0) of the equation, corresponding to a

possible evolution of the system. Then, the covariance of L under a transformation g

that is, the fact that E (s′, O′i, D′
j) = 0 implies that if s = F (Oi, s0) is a solution of the

equation, s′ = F ′ (O′i, s0) is also a solution and, as a consequence, it represents a model

m′ ∈ML. This means that the definition of covariance given by Def. 2 and the definition

of symmetry given by Def. 4 are equivalent.

It is worth stressing that the covariance of a dynamical law represented by a differen-

tial equation does not imply the invariance of the possible evolutions represented by the

solutions of the equation. Price (1996) illustrates this point in the case of time-reversal

with the familiar analogy of a factory which produces equal numbers of left-handed

and right-handed corkscrews: the production as a whole is completely unbiased, but

each individual corkscrew is spatially asymmetric (see Castagnino, Lara and Lombardi

2003, Earman 2004b). In fact, the covariance of the law L, represented by the equation
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E (s,Oi, Dj) = 0, implies that s = F (Oi, s0) and s′ = F ′ (O′i, s0) are both solutions of

the equation, but does not imply that s = s′. In the model language, the symmetry of L

does not imply that m = m′. By contrast, invariance is a stronger property of the law:

the invariance of L means that E (s′, Oi, Dj) = 0, in this case s = s′ = F (Oi, s0) or, in

the model language, m = m′.
The general definitions just introduced now allow us to explicitly state the conditions

of covariance and invariance for quantum mechanics. Given a group G whose transfor-

mations act on states, observables and differential operator as |ϕ〉 → |ϕ′〉, |O〉 → |O′〉
and d/dt→ d′/dt, the Schrödinger equation is covariant when

d′ |ϕ′〉
dt

= −i�H ′ |ϕ′〉 (1)

and it is invariant when
d |ϕ′〉
dt

= −i�H |ϕ′〉 (2)

2.3 The Galilean Group

As emphasized by Lévi-Leblond (1974), although the covariance and even the invariance

of non-relativistic quantum mechanics under the Galilean transformations is usually as-

sumed as a well-known fact, in general this conceptual issue is absent from the standard

literature about the theory: only in very few cases this assumption is grounded on a

conceptual elucidation of the involved notions. With the exception of the book of Bal-

lentine (1998), it is common to see that the Galilean group is not even mentioned in the

textbooks on the matter. For this reason, it is worth dwelling on this point.

Under the assumption that time can be represented by a variable t ∈ R and position

can be represented by a variable r = (x, y, z) ∈ R
3, the Galilean group G = {gα}, with

α = 1 to 10, is a group of continuous space-time transformations gα : R3 × R→ R
3 × R

acting as

• Time-translation: t→ t′ = t+ τ

• Space-translation: r → r′ = r + ρ

• Space-rotation: r → r′ = Rθr

• Velocity-boost: r → r′ = r + ut

where τ ∈ R is a real number representing a time interval, ρ = (ρx, ρy, ρz) ∈ R
3 is

a triple of real numbers representing a space interval, Rθ ∈ M3×3 is a 3 × 3 matrix

representing a space-rotation an angle θ, and u = (ux, uy, uz) ∈ R
3 is a triple of real

numbers representing a constant velocity.

Since the Galilean group G is a Lie group, the Galilean transformations gα can

be represented by unitary operators Uα over the Hilbert space, with the exponential

parametrization Uα = eiKαsα , where sα is a continuous parameter and Kα is a Hermitian

operator independent of sα, called generator of the transformation gα. Therefore, the

Galilean group G is defined by ten group generators Kα: one time-translation Kτ , three

space-translations Kρi , three space-rotations Kθi , and three velocity-boosts Kui
, with
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i = x, y, z. The generators of G form the Galilean algebra, that is, the Lie algebra of the

Galilean generators. The combined action of all the transformations is given by

Us =
10∏
α=1

eiKαsα (3)

Strictly speaking, in the case of quantum mechanics the symmetry group is the group

corresponding to the central extension of the Galilean algebra, obtained as a semi-direct

product between the Galilean algebra and the algebra generated by a central charge,

which in this case denotes the mass operator M = mI, where I is the identity operator

and m is the mass. The mass operator as a central charge is a consequence of the

projective representation of the Galilean group (see Weinberg 1995, Bose 1995). However,

in order to simplify the presentation, from now on we will use the expression Galilean

group to refer to the corresponding central extension, and we will take � = 1 as usual.

Since the Galilean group is a Lie group, it is defined by the commutation relations

between its generators:

(a)
[
Kρi , Kρj

]
= 0 (f)

[
Kui

, Kρj

]
= iδijM

(b)
[
Kui

, Kuj

]
= 0 (g) [Kρi , Kτ ] = 0

(c)
[
Kθi , Kθj

]
= iεijkKθj (h) [Kθi , Kτ ] = 0

(d)
[
Kθi , Kρj

]
= iεijkKρk (i) [Kui

, Kτ ] = iKρi

(e)
[
Kθi , Kuj

]
= iεijkKuk

(4)

where εijk is the Levi-Civita tensor, such that i �= k, j �= k, εijk = εjki = εkij = 1,

εikj = εjik = εkji = −1, and εijk = 0 if i = j. In quantum mechanics, when the system is

free from external fields, the generators Kα represent the basic magnitudes of the theory:

the energy H = �Kτ , the three momentum components Pi = �Kρi , the three angular

momentum components Ji = �Kθi , and the three boost components Gi = �Kui
. Then,

by taking again � = 1, the commutation relations result

(a) [Pi, Pj] = 0 (f) [Gi, Pj] = iδijM

(b) [Gi, Gj] = 0 (g) [Pi, H] = 0

(c) [Ji, Jj] = iεijkJk (h) [Ji, H] = 0

(d) [Ji, Pj] = iεijkPk (i) [Gi, H] = iPi

(e) [Ji, Gj] = iεijkGk (5)

The rest of the physical magnitudes can be defined in terms of these basic ones: for

instance, the three position components are Qi = Gi/m, the three orbital angular mo-

mentum components are Li = εijkQjPk, and the three spin components are Si = Ji−Li.

In the Hilbert formulation of quantum mechanics, each Galilean transformation gα ∈
G acts on states and on observables as

|ϕ〉 → |ϕ′〉 = Usα |ϕ〉 = eiKαsα |ϕ〉 (6)
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O → O′ = UsαOU−1sα = eiKαsα O e−iKαsα (7)

In turn, the invariance of an observable O under a Galilean transformation gα amounts

to the commutation between O and the corresponding generator Kα:

O′ = eiKαsαOe−iKαsα = O ⇔ [O,Kα] = 0 (8)

2.4 Invariance and Covariance in Quantum Mechanics

In order to decide about the Galilean covariance and invariance of quantum mechanics, it

is necessary to analyze how the Galilean transformations act on the Schrödinger equation.

In fact, the action of a generic U = eiKs results in

d |ϕ′〉
dt

= −i
[
H ′ + i

dU

dt
U−1

]
|ϕ′〉 (9)

a) The invariance of the Schrödinger equation.

In a closed, constant-energy system free from external fields, H is time-independent and

the Pi and the Ji are constants of motion (see eqs. (5g,h)). Then, for time-translations,

space-translations and space-rotations, dU/dt = deiKs/dt = 0, where K and s stand for

H and τ , Pi and ρi, and Ji and θi, respectively. As a consequence, eq. (9) yields

d |ϕ′〉
dt

= −iH ′ |ϕ′〉 (10)

Moreover, since in this closed-system case H commutes with Pi and Ji (see eqs. (5g,h)),

for those three transformations H ′ = H (see eq. (8)). By applying this result to eq. (10),

we obtain eq. (2) and, so, we prove the invariance of the Schrödinger equation under

time-translations, space-translations and space-rotations when there are no external fields

acting on the system. The case of boost-transformations is different from the previous

cases, because the Hamiltonian is not boost-invariant even when the system is free from

external fields (for the same claim in classical mechanics, see Butterfield 2007: 6). In fact,

under a boost-transformation corresponding to a velocity ux, since [Gx, H] = iPx �= 0

(eq. (5i)), H changes as

H ′ = eiGxuxHe−iGxux �= H (11)

and the generator Gx is

Gx = mQx = m (Qx0 + Vxt) = mQx0 + Pxt (12)

Since Gx is not time-independent, dU/dt = deiGxux/dt �= 0, and eq. (9) yields

d |ϕ′〉
dt

= −i
[
H ′ + i

deiGxux

dt
e−iGxux

]
|ϕ′〉 (13)

When the value of the bracket in the r.h.s. side of eq. (13) is computed, it can be proved

that the terms added to H in H ′ cancel with those coming from the term containing the
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time-derivative (see Lombardi, Castagnino and Ardenghi 2010). Therefore, eq. (2) is

again obtained and the invariance of the Schrödinger equation is proved also for boost-

transformations.

In summary, when there are no external fields acting on the system, the Hamiltonian is

invariant under time-translations, space-translations and space-rotations, but not under

boost-transformations.

When the system is under the action of external fields, the fields modify the evolution

of the system: for example, in the case of a non-isotropic potential, it cannot longer be

expected that the system does not modify its behavior when rotated in space. But, in

non-relativistic quantum mechanics, fields are not quantized: they do not play the role

of quantum systems that interact with other systems. For this reason, the effect of the

fields on a system has to be included in its Hamiltonian, because it is the only observ-

able involved in the time-evolution law. As a consequence, under the action of fields the

Hamiltonian is no longer the generator of time-translations: it only retains its role of

generator of the dynamical evolution (see Laue 1996, Ballentine 1998). Therefore, the

commutation relations involving the Hamiltonian, eqs. (5g,h,i), are no longer valid: now

these relations hold with the generator of time-translations d/dt (see eqs. (4g,h,i)), but

not with the Hamiltonian. Therefore, the time-independence of the Pi and the Ji cannot

be guaranteed. As a consequence, in the general case, the Schrödinger equation is not

Galilean invariant in the presence of external fields.

b) The covariance of the Schrödinger equation.

In order to study the covariance of the Schrödinger equation, let us rewrite eq. (9) as

d |ϕ′〉
dt

− dU

dt
U−1 |ϕ′〉 = −iH ′ |ϕ′〉 (14)

This shows that the equation is covariant because the differential operator transforms as

d

dt
→ d′

dt
=

d

dt
− dU

dt
U−1 =

D

Dt
(15)

In other words, the transformed differential operator d′/dt is a covariant time-derivative

D/Dt, which makes the Schrödinger equation to be Galilean-covariant in the following

sense (see eq. (1))
d′ |ϕ′〉
dt

=
D |ϕ′〉
Dt

= −iH ′ |ϕ′〉 (16)

As shown above, without external fields, H, the Pi and the Ji are time-independent and,

as a consequence, dU/dt = 0; then, eq. (15) shows that d/dt is invariant under time-

translations, space-translations and space-rotations. But since for boost-transformations

this is not the case, the covariance of the Schrödinger equation requires the transformation

of the differential operator as d/dt→ D/Dt: covariance under boosts amounts to a sort

of non-homogeneity of time that requires the covariant adjustment of the time-derivative.

This illustrates the claim advanced in Subsection 2.2: although a law is invariant under

a transformation when it is covariant and all the involved objects are invariant, this is
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not the only way to obtain invariance. When the system is free from external fields, the

Schrödinger equation is invariant under boost-transformations, in spite of the fact that

the Hamiltonian and the differential operator d/dt are not boost-invariant objects.

When external fields are applied on the system, the Hamiltonian includes the action

of the fields. Then, although eq. (16) is still valid, the transformed Hamiltonian H ′ =
UHU−1 has to be computed case by case, and the conditions that the external potentials

have to satisfy in order to preserve covariance can be deduced (see Brown and Holland

1999, Colussi and Wickramasekara 2008).

3 Invariance in Interpretation

3.1 The Ontological Meaning of Symmetry

As it is usually accepted, the Galilean group is the symmetry group of continuous space-

time transformations of classical and quantum mechanics. In the language of the passive

interpretation, the invariance of the dynamical laws amounts to the equivalence among

inertial reference frames (time-translated, space-translated, space-rotated or uniformly

moving with respect to each other). In other words, Galilean transformations do not

introduce a modification in the physical situation, but only express a change in the

perspective from which the system is described.

This merely perspectival meaning of the Galilean symmetries depends, in turn, on

the properties of space and time. Invariance under time-translations expresses the ho-

mogeneity of time; invariance under space-translations and space-rotations expresses the

homogeneity and the isotropy of space, respectively. These invariances are embodied in

the commutation relations that define the Galilean group (see eqs. (5)). Nevertheless,

space is not always homogeneous and isotropic. In non-relativistic quantum mechanics,

fields are not quantized: they are treated as classical fields that act on the quantum sys-

tem by breaking the homogeneity and/or the isotropy of space. This breaking turns out

to be expressed in the form of the Hamiltonian: the non-homogeneity of space leads to

the fact that, at least, some Pi is not a constant of motion ([Pi, H] �= 0); the non-isotropy

of space leads to the fact that, at least, some Ji is not a constant of motion ([Ji, H] �= 0).

And this, in turn, amounts to the breaking of the full validity of the Galilean group under

the form of eqs. (5): the commutation relations involving the Hamiltonian ((5g), (5h)

and (5i)) are, in general, no longer valid. In this case, the commutation relations are

still defined by eqs. (4), but the generators of space-translations and space-rotations are

not P and J , but have to be defined in each case, depending on the specific form of the

external field.

The above remarks are related with the fact that certain quantities are physically

irrelevant in the light of the symmetries of a theory. For instance, the space-translation

symmetry of a dynamical law means that the specific place where the system is located

in space is irrelevant to its evolution governed by that law. The notion of physical irrele-

vance endows with physical content the difference between local and global symmetries:
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“A global symmetry reflects the irrelevance of absolute values of a certain quantity: only

relative values are relevant” (see Brading and Castellani 2007: 1360). In classical mechan-

ics, for example, space-translation invariance implies that absolute position is irrelevant

to the system’s behavior: the equations of motion do not depend on absolute positions,

only relative positions matter. The physical irrelevance of certain quantities is strongly

linked with the issue of objectivity.

The intuition about a strong link between invariance and objectivity is rooted in a

natural idea: what is objective should not depend on the particular perspective used

for the description. When this intuition is translated to group-theoretical language, it

can be said that what is objective according to a theory is what is invariant under

the symmetry group of the theory. This idea is not new. In the domain of formal

sciences, already Felix Klein, in his Erlangen Program of 1872, tried to characterize all

known geometries by their invariants, that is, by the quantities which are not changed

under a particular group of transformations (see Kramer 1970). This idea passed to

physics with the advent of relativity: it was widely discussed in the context of special and

general relativity with respect to the ontological status of space and time. In Minkowski

words: “Henceforth space by itself, and time by itself, are doomed to fade away into

mere shadows, and only a kind of union of the two will preserve an independent reality”

(Minkowski 1923: 75). The claim that objectivity means invariance begins to appear

in Weyl’s works, applied to mathematics, in his Philosophy of Mathematics and Natural

Science (1927), when he claims that “A point relation is called objective if it is invariant

under all automorphisms” (cited in Vollmer 2010: 1661). The idea, applied to physical

sciences, becomes a main thesis of his book Symmetry (Weyl 1952). In recent times,

the idea has strongly reappeared in several works. For instance, in her deep analysis of

quantum field theory, Auyang (1995) makes her general concept of object to be founded on

its invariance under transformations among all representations. In turn, the assumption

that invariance is the root of objectivity is the central theme of Nozicks book Invariances :

The Structure of the Objective World (2001). Once the ontological meaning of symmetry

is acknowledged, it is easy to admit that symmetry must play a relevant role in the

understanding of a physical theory. In the particular case of quantum mechanics, once

it is seen in what sense the Galilean group is the symmetry group of the theory, the

consideration of its Galilean invariance cannot be overlooked in the discussions about

interpretation.

3.2 An Invariant Interpretation of Quantum Mechanics

The physical meaning of the action of the Galilean transformations is well-understood in

classical mechanics. However, as pointed out in the Introduction, this issue is scarcely

discussed in the field of quantum mechanics, perhaps under the assumption that the

matter is as easy as in the classical case. But we will see that quantum mechanics is

peculiar also regarding to this point.

As it is well known, Heisenberg’s uncertainty principle poses a fundamental limit to
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the precision with which certain pairs of physical observables complementary observables

can be known simultaneously. Nevertheless, this result leaves open the way to think in the

possibility of completing the theory with certain hidden variables, which would determine

the values of all the observables of the system at any time in a classical-like manner. The

Kochen-Specker theorem (1967) breaks this possibility down by putting a barrier to any

realist classical-like interpretation of quantum mechanics. In fact, the theorem proves

the impossibility of ascribing precise values to all the physical quantities (observables)

of a quantum system simultaneously, while preserving the functional relations between

commuting observables. In other words, this result is a manifestation of the contextuality

of quantum mechanics: the ascription of precise values to the observables of a quantum

system is always contextual.

As a consequence of the Kochen-Specker theorem, any realist interpretation of quan-

tum mechanics is committed to selecting a privileged set of observables out of all the

observables of the system. The observables of that set will be those that acquire a defi-

nite value without violating quantum contextuality. At this point, the symmetry group

of the theory enters the scene: as stressed by Brown, Suárez and Bacciagaluppi (1998),

any interpretation that selects the set of the definite-valued observables of a quantum

system in a given state is committed to considering how that set is transformed under

the Galilean group.

But now the link between invariance and objectivity comes into play. The study

of the role of symmetry is particularly pressing in the case of realist interpretations of

quantum mechanics, which conceive a definite-valued observable as a physical magnitude

that objectively acquires an actual value among all its possible values: the fact that a

certain observable acquires a definite value has to be an objective fact. Therefore, since

the invariance of the theory holds, the set of the definite-valued observables of a system

picked out by the interpretation should be left invariant by the Galilean transformations:

from a realist viewpoint, it would be unacceptable that such a set changed as the mere

result of a change in the perspective from which the system is described.

The natural way to reach this goal is to appeal to the Casimir operators of the Galilean

group: if the interpretation has to select a Galilean-invariant set of definite-valued ob-

servables, such a set must depend on those Casimir operators, since they are invariant

under all the transformations of the Galilean group. The central extension of the Galilean

group has three Casimir operators which, as such, commute with all the generators of

the group: they are the mass operator M , the squared-spin operator S2, and the internal

energy operator W = H −P 2/2m. The eigenvalues of the Casimir operators label the ir-

reducible representations of the group; so, in each irreducible representation, the Casimir

operators are multiples of the identity: M = mI, where m is the mass, S2 = s(s + 1)I,

where s is the eigenvalue of the spin S, and W = wI, where w is the scalar internal

energy.

Whereas the fact that the system objectively acquires a definite value of the mass and

the spin seems strongly reasonable, the fact that the Hamiltonian is not included in the

privileged set may sound puzzling, given the very special role that the Hamiltonian plays
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in quantum mechanics by ruling the time-evolution of quantum systems. So, it is worth

taking a while to consider how the Hamiltonian behaves under the action of the Galilean

transformations.

Let us consider a quantum system not affected by external fields, whose Hamiltonian,

in a generic reference frame RF , reads H = P 2/2m + W = K + W , where the kinetic

energyK = P 2/2m only depends on the total momentum relative to RF , and the internal

energy W does not depend on the position and the momentum relative to RF , but only

depends on differences of positions and, eventually, on their derivatives. It is precisely

these features of K and W what guarantees that [K,W ] = 0 and, as a consequence, H

can be expressed as

H = P 2/2m+W = K +W = HK ⊗ IW + IK ⊗HW (17)

where HK is the kinetic Hamiltonian acting on a Hilbert space HK , HW is the internal

energy Hamiltonian acting on a Hilbert space HW , and IK and IW are the identity

operators of the respective tensor-product spaces (for examples in well-known models,

see Ardenghi, Castagnino and Lombardi 2009). As stressed above, the Hamiltonian is

invariant under time-translations, space-translations and space-rotations, but not under

boost-transformations; so let us consider that case.

If a boost-transformation of velocity ux is applied to the system, the unitarily trans-

formed Hamiltonian is (see proof in Lombardi, Castagnino and Ardenghi 2010)

H ′ = eiGxuxHe−iGxux = H − uxPx +
1

2
Mu2

x = H + TB (18)

where TB is the boost contribution to the energy. Therefore, it can be expressed as

H ′ = H + TB =
P 2

2m
+W + TB = K ′ +W (19)

where K ′ is the transformed kinetic energy:

K =
P 2

2m
⇒ K ′ = K + TB =

P 2

2m
+ TB =

(P + PB)
2

2m
(20)

For the same reasons as before, [K ′, W ] = 0 and, as a consequence, H ′ can be written as

H ′ = K ′ +W = H ′
K ⊗ IW + IK ⊗HW (21)

where H ′
K = HK +HB is the transformed kinetic Hamiltonian acting on HK . In other

words,

H ′
W = HW H ′

K = HK +HB (22)

This means that the application of a boost-transformation does not modify the internal

energy W of the system: W is boost-invariant, in agreement with the fact that it is a

Casimir operator of the Galilean group and that it only depends on differences of positions

(it is a relevant quantity). The boost-transformation only modifies the kinetic energy by

adding the kinetic energy of the boost, in agreement with the fact that it is not a Casimir
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operator of the Galilean group and that it depends on the velocity relative to the reference

frame RF (it is an irrelevant quantity).

The above considerations all point to the same direction: the objective content of the

energy description of the system is given by the internal energy W , which is invariant

under the whole Galilean group. On the contrary, the kinetic energy K, whose value is

modified by a boost, can be viewed as a non-objective magnitude that changes with the

mere change of the descriptive perspective. In particular, when the system is described

in the reference frame at rest with respect to its center of mass, then P = 0 and the

kinetic energy disappear from the description.

These conclusions about the non-objectivity of the kinetic energy are not challenged

by the fact that a boost-transformation has a well-defined manifestation in the energy

spectrum of the system: it produces a Doppler shift on that spectrum. However, we also

know that energy is defined up to a constant value: the relevant information about the

energy spectrum of a system is contained in its internal energy, and the kinetic energy only

introduces a shift of that spectrum. Therefore, the internal energy carries the physically

meaningful structure of the energy spectrum, and the kinetic energy represents an energy

shift which, although observable, is physically non relevant and merely relative to the

reference frame used for the description.

Recently, a new interpretation of quantum mechanics has exploited the symmetry

features of the theory to solve its main conceptual conundrums. The modal-Hamiltonian

interpretation (Lombardi and Castagnino 2008, Castagnino and Lombardi 2008, Lom-

bardi 2010, Ardenghi and Lombardi 2011, Lombardi, Fortin, Castagnino and Ardenghi

2011) is a realist, non-collapse approach according to which the quantum state describes

the possible properties of the system but not its actual properties. According to this

interpretation, the Hamiltonian is decisive in the definition of systems and subsystems,

and in the selection of the preferred context where observables acquire definite values.

This interpretation has been applied to many well-known physical situations (free parti-

cle, free particle with spin, harmonic oscillator, free hydrogen atom, Zeeman effect, fine

structure, the Born-Oppenheimer approximation), leading to results consistent with ex-

perimental evidence (Lombardi and Castagnino 2008, Section 5). Moreover, it has proved

to be effective for solving the measurement problem, both in its ideal and its non-ideal

versions. (Lombardi and Castagnino 2008, Section 6, Ardenghi, Lombardi and Narvaja

2013, Lombardi, Fortin and López 2015). This interpretive view also promotes an on-

tology of properties, based on the algebraic approach to QM, where systems are bundles

of properties represented by quantum observables (da Costa, Lombardi and Lastiri 2013,

da Costa and Lombardi 2014, Lombardi and Dieks 2016).

Although based on the central role of the Hamiltonian, the modal-Hamiltonian in-

terpretation was reformulated in an explicitly invariant form, according to which the

definite-valued observables of a quantum system free from external fields are (i) the

observables Ci represented by the Casimir operators of the Galilean group in the corre-

sponding irreducible representation, and (ii) all the observables commuting with the Ci

and having, at least, the same symmetries as the Ci (Lombardi, Castagnino and Ardenghi
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2010). In turn, as argued above, from a realist viewpoint, the fact that certain observ-

ables acquire an actual definite value is an objective fact in the behavior of the system;

therefore, the set of definite-valued observables selected by a realist interpretation must

be also Galilean-invariant. But the Galilean-invariant observables are always functions

of the Casimir operators of the Galilean group. As a consequence, one is led to the con-

clusion that any realist interpretation that intends to preserve the objectivity of the set

of the definite-valued observables may not stand very far from the modal-Hamiltonian

interpretation.

3.3 Invariance and Interpretation in Quantum Physics

In his paper “Physical reality”, Born (1953) expressed very clearly his conviction about

the strong link between invariance and objectivity: “I think the idea of invariance is

the clue to a rational concept of reality” (1953: 144); “The main invariants are called

charge, mass (or rather: rest-mass), spin, etc.; and in every instance, when we are able

to determine these quantities, we decide to have to do with a definite particle. I maintain

that we are justified in regarding these particles as real in a sense not essentially different

from the usual meaning of the word.” (1953: 146).

Born’s words suggest us the possibility of generalizing the idea developed in this

work in two senses. In non-relativistic quantum mechanics, the external fields acting

on a system are not quantized, and this fact is what breaks down the harmony of the

free case: the Hamiltonian is no longer the generator of time-translations in the Galilean

group. In quantum field theory, on the contrary, fields are quantum items and not external

fields affecting the behavior of the quantum system. As a consequence, the generators

of the Poincaré group do not need to be reinterpreted in the presence of “external”

factors. These features of quantum field theory make us to consider whether the realist

interpretation, expressed in terms of the Casimir operators of the Galilean group in non-

relativistic quantum mechanics, can be transferred to quantum field theory by changing

accordingly the symmetry group: the definite-valued observables of a system in quantum

field theory would be those represented by the Casimir operators of the Poincaré group.

Since M and S2 are the only Casimir operators of the Poincaré group, they would always

be definite-valued observables. This conclusion stands in agreement with a usual physical

assumption in quantum field theory: elemental particles always have definite values of

mass and spin, and those values are precisely what define the different kinds of elemental

particles of the theory. Moreover, the classical limit of quantum field theory manifests the

limit of the corresponding Casimir operators (see Ardenghi, Castagnino and Lombardi

2011): there is a meaningful limiting relation between the observables that acquire definite

values according to quantum field theory and those that acquire definite values according

to quantum mechanics.

But the idea can also be generalized in a second sense: if invariance is a mark of

objectivity, it should guide the interpretation not only of quantum mechanics, but also

of any physical theory with definite symmetries. Following this idea, there is no reason
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to focus only on space-time global symmetries: internal or gauge symmetries should

also be considered as relevant in the definition of objectivity and, as a consequence,

in the identification of the definite-valued observables of the system. For instance, in

relativistic quantum mechanics a gauge symmetry is what identifies the charge as an

objective quantity. Therefore, the generalized principle for interpreting quantum theories

from a realistic viewpoint can be stated as follows: the definite-valued observables of a

system whose behavior is governed by a certain theory are the observables invariant under

all the transformations corresponding to the symmetries of the theory, both external and

internal.

4 Conclusions

In this paper we focused on a question usually not taken into account in the literature

on the interpretation of quantum mechanics in particular, and of quantum physics in

general: the question about how an interpretation should behave under the symmetry

group of the theory. By echoing the widespread position that links invariance and ob-

jectivity, and by considering that, from a realist viewpoint, it is unacceptable that what

acquires definite value changes as the mere result of a change in the perspective from

which the system is described, we have proposed a definite interpretive principle: the

objective definite-valued observables of a quantum system are the observables invariant

under all the transformations corresponding to the symmetries of the theory that gov-

erns its behavior. We have introduced a particular interpretation of quantum mechanics

that satisfies this general principle. Nevertheless, the proposal of this work goes beyond

a particular interpretation, since it intends to supply a general framework that guides

the building of any realist interpretation in the light of the physically central concept of

symmetry.
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[29] Lombardi, O., Fortin, S. and López, C. (2015). “Measurement, interpretation and
information.” Entropy, 17: 7310-7330.

[30] Minkowski, H. (1923). “Space and time.” Pp. 75-91, in W. Perrett and G. B. Jeffrey
(eds.), The Principle of Relativity. A Collection of Original Memoirs on the Special
and General Theory of Relativity. New York: Dover.

[31] Nozick, R. (2001). Invariances : The Structure of the Objective World. Harvard:
Harvard University Press.

[32] Ohanian, H. and Ruffini, R. (1994). Gravitation and Spacetime, 2nd edition. London:
W. W. Norton and Company.

[33] Price, H. (1996). Time’s Arrow and Archimedes’ Point: New Directions for the
Physics of Time. Oxford: Oxford University Press.

[34] Sklar, L. (1974). Space, Time and Spacetime. Berkeley-Los Angeles: University of
California Press.

[35] Suppes, P. (2000). “Invariance, symmetry and meaning.” Foundations of Physics, 30:
1569-1585.

[36] Vollmer, G. (2010). “Invariance and objectivity.” Foundations of Physics, 40: 1651-
1667.

[37] Weinberg, S. (1995). The Quantum Theory of Fields, Volume I: Foundations.
Cambridge: Cambridge University Press.

[38] Weyl, H. (1927). Philosophie der Mathematik und Naturwissenschaft. München:
Oldenbourg Verlag.

[39] Weyl, H. (1952). Symmetry. Princeton: Princeton University Press.

[40] Wigner, E. P. (1967). Symmetries and Reflections. Bloomington: Indiana University
Press.


