Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the author's institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/authorsrights

Author's Personal Copy

Toxicon 140 (2017) 11-17

Contents lists available at ScienceDirect

Toxicon

journal homepage: www.elsevier.com/locate/toxicon

Antivenom against Crotalus durissus terrificus venom: Immunochemical reactivity and experimental neutralizing capacity

Federico Gastón Baudou^{a, 1}, Silvana Litwin^{b, 1}, Laura Cecilia Lanari^a, Rodrigo Daniel Laskowicz^a, Carlos Fabián Damin^c, Jean-Philippe Chippaux^d, Adolfo Rafael de Roodt^{a, c, *}

^a Área Investigación y Desarrollo / Venenos, Instituto Nacional de Producción de Biológicos – ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, CP 1281, CABA, Argentina

^b Servicio de Sueros Terapéuticos, Instituto Nacional de Producción de Biológicos – ANLIS "Dr. Carlos G. Malbrán", Argentina

^c Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina

^d UMR 216-MERIT, Institut de Recherche pour le Développement, Cotonou, Bénin, and PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France

ARTICLE INFO

Article history: Received 5 July 2017 Received in revised form 16 September 2017 Accepted 13 October 2017 Available online 16 October 2017

Keywords: Crotalus durissus terrificus Venom Antivenom Neutralization Incubation Rescue Dosage Treatment

ABSTRACT

The venom of Crotalus durissus terrificus produces a neurotoxic and myotoxic syndrome that can lead to the death. Specific antivenom is the only treatment to neutralize the toxicity of the venom and the precocity in applying the antivenom is crucial for the efficiency of the treatment. We studied the variation of the immunochemical reactivity and neutralizing capacity of the specific antivenom on this venom in pre-incubation and rescue experiments, at different times. ELISA titers increased with longer venom-antivenom incubation times (p < 0.05) nevertheless incubation times had no effect on the neutralizing capacity of the antivenom. The antivenom dose necessary to rescue mice injected with 1.5 MMD (minimal mortal dose) 30 min after venom inoculation was over ten folds the dose of antivenom theoretically required to neutralize the same dose of venom according values obtained from preincubation experiments. Results showed that the *in vitro* immunochemical reactivity is not directly related to the neutralizing capacity. These observations underline the need for a rapid antivenom administration. Although preincubation experiments in mice are a powerful tool for the validation of the potency of the antivenoms in the productive process, it is clear that the nominal neutralization of the antivenoms must not be considered as a "stoichiometric" value regarding the venom to be neutralized in case of natural envenomation and emphasize the need of realization of clinical trials in order to evaluate the adequate doses of antivenom to be therapeutically used.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The neutralizing capacity of an antivenom depends of the binding of the antibodies or its fragments to the different venom toxins and it is tested worldwide by preincubation assays (WHO, 1981, 2010, 2016; Theakston and Reid, 1983). Despite that preincubation assays does not represent the natural envenoming, since venom-antivenom are mixed previously the injection, these methods are easy to perform and their results are repetitive and extremely helpful for the study of the antivenom and as a tool for antivenom production (Gutiérrez et al., 1990, 2017; Theakston, 1990; Ownby, 1990; Araujo et al., 2008; Solano et al., 2010). The experiments that represent more natural conditions of the envenomation, the rescue experiments, are not routinely used for this purpose and are not used in the world to test antiophidic antivenoms (Gutiérrez et al., 1990; Theakston, 1990; Ownby, 1990). In addition, as an alternative to the neutralization experiments, assays based in the immunochemical reactivity of the antivenoms with the venoms have been proposed (Rungsiwongse and Ratanabanangkoon, 1991; Heneine et al., 1998; Maria et al., 1988; Barbosa et al., 1995).

However, in unpublished results, we did not observe relation

^{*} Corresponding author. Área Investigación y Desarrollo / Venenos, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, CP 1281, CABA, Argentina.

E-mail address: aderoodt@gmail.com (A.R. de Roodt).

First co-authors. Both authors contributed equally to the manuscript.

between immunochemical reactivity and neutralizing capacity of several antivenoms, neither variation in the neutralizing capacity after different times of pre-incubation of the venom-antivenom. By these reasons, we studied these relationships in order to clarify the relation of the immunochemical reactivity with the neutralization at different times of incubation and the effectiveness of the antivenom in a situation near the natural envenoming, i.e. through rescue experiments applying the antivenom after venom injection. We studied these relationships using *Crotalus durissus terrificus* (henceforth *C. d. terrificus*) venom, a neurotoxic and myotoxic venom, and their specific antivenom.

2. Material and methods

2.1. Venom

A pool of *C. d. terrificus* venom was obtained from adult snakes (over 100 specimens) kept in the National Institute for Production of Biologicals of the National Administration of Laboratories and Institutes of Health "Dr. Carlos G. Malbrán" (henceforth INPB). The venom was milked by manual extraction, vacuum dried and stored at -20 °C until use.

2.2. Antivenom

The antivenom used was Anticrotálico antivenom (batch 335, expiration date 06/2009), produced by the INPB. The antivenom was composed by $F(ab)_2$ fragments of equine immunoglobulins, in liquid form, in a formulation of 10 ml vial.

The protein content of the antivenom determined by Biuret method using the kit Proti II (Wiener, Rosario, Argentina) was 68 mg/ml. The nominal neutralizing potency was 4 mg of venom neutralized by ml of antivenom.

2.3. Animals

CF-1 mice of 18–22 g were obtained from the Service of mice production of the INPB. Mice were maintained in plastic boxes with water and rodent food *at libitum*, with cycles of dark/light of 12 h. For the use and care of the animals the institutional guidance of care of animals, in agreement with those of the Public Health Service (2002) and the National Research Council (2011) were followed.

2.4. Immunochemical studies

2.4.1. Solid-phase enzyme immunoassay (ELISA)

The ELISA was carried out according to published procedures with some modifications (Giallongo et al., 1982). Solid-phaseadsorbed venom of *C.d. terrificus* was prepared by treating wells of MaxiSorp plates (NUNC-Apogent) with 100 µl solution of 5 µg/ml of venom in 100 mM sodium carbonate buffer (pH 9.5). After overnight incubation at 4 °C, the wells were aspirated and washed with three 250 µl aliquots of a washing buffer (PBS, pH 7.4, containing 0.5 mg/ml of Tween 20). The wells were then filled with 200 µl of blocking buffer (3% bovine defatted milk and 2 mg/ml of Tween 20 in PBS at pH 7.4). After incubation for 2 h at 37 °C, the wells were washed as described above and filled with 100 µl aliquots of the antivenom serially diluted in incubation buffer (PBS at pH 7.4 containing 0.3% defatted milk and 0.5 mg/ml of Tween 20). The incubation times at 37 °C were 5, 30 and 120 min. After washing, in each case, the bound horse F(ab')₂s were allowed to react with 100 µl per well of 1/5000 dilution of anti-horse IgG labeled with peroxidase (The Binding Site) in incubation buffer. After another hour, the wells were washed and filled with 100 μ l of OPD solution (Sigma) and H_2O_2 as the substrate for peroxidase. The color development reaction was stopped by the addition of 100 μ l of 3 N sulfuric acid and the plate was read at an absorbance of 490 nm in a Microplate Reader Model 550 (BIO-RAD). Data were analyzed by nonlinear regression using the sigmoidal dose-response equation of the Prism–StatMate program (GraphPad Software, San Diego, CA). Conventional titers (EC₅₀) were calculated from the midpoint of the curve and correspond to the reciprocal antivenom dilution for half of maximal binding. Each point was repeated by quintuplicate and all the assays were repeated by quadruplicate.

2.4.2. ELISA-urea assay to determine antibody fragments avidity

The avidity was measured as suggested by Bollen et al. (1996) with some modifications (de Andrade et al., 2013; da Rocha et al., 2017). Wells in plates coated with *C. d. terrificus* venom as described above were filled with 100 μ l of 1/5000 dilution of the antivenom and incubated for 5, 30 or 120 min at 37 °C. After incubation, the wells were washed with PBS-Tween- defatted milk solution and filled with 100 μ l of 8 M urea or 0.15 M NaCl solution and incubated for 2 h at 37 °C. Then, plates were washed 5 times and incubated with the conjugate (Anti-horse IgG peroxidase conjugate, Sigma at a dilution 1/5000). The reaction was developed as described above. Each point was repeated by quintuplicate and the assays were repeated by triplicate. The avidity was measured as the ratio of the sample incubated with 0.15 M NaCl (Bollen et al., 1996; de Andrade et al., 2013).

2.5. Determination of lethal potency

The lethal potency of the venom was determined by intraperitoneal (i.p.) and by subcutaneous (s.c.) routes. Briefly, groups of 6 mice were injected with various doses of venom diluted in 0.15 M NaCl in a final volume of 0.5 ml (i.p.LD₅₀) or 0.3 ml (s.c.LD₅₀, in the back of mice). After 24 h the deaths were registered and the percentage of death versus the log of the venom dose were plotted. The median lethal dose (i.p.LD₅₀ and s.c.LD₅₀) were estimated by non-linear regression of variable slope (Casasola et al., 2008) using the software Prism 5.0 and were defined as dose of venom that killed the 50% of the challenged mice during the period of observation. The minimal mortal dose (MMD) was estimated considering the minimal dose of venom that killed 100% of mice challenged.

2.6. Neutralization experiments

The protection provided by the antivenom was studied by preincubation and rescue assays.

2.6.1. Pre-incubation experiments

Five LD₅₀ of the venom were mixed with various doses of the antivenom and incubated at 37 °C at different times after which the mixtures were injected by the i.p. route in groups of five C-F1 mice. The times of incubation of the antivenom were: 0 min, mixing venom plus antivenom in the syringe and immediately applying the mixture by the intra-peritoneal route (the mix was done individually for each animal), 1 min, 5 min, 10 min, 30 min, 60 min, 120 min and 180 min (in these cases mixing venom-antivenom and incubated at 37 °C during the correspondent times). After 24 h the number of surviving mice were registered and the percentage of survival versus the log of the dose of antivenom were plotted. The median effective dose was estimated by non-linear regression of variable slope (Casasola et al., 2008) using the software Prism 5.0. The median lethal dose (ED₅₀) was defined as the dose of antivenom that protected 50% of the challenged mice during the period

Values of the median effective doses (ED50) and potency (P) selected from the different experiments. The neutralization assays were repeated 5 to 10 times for each incubation time. Only the doses that accomplish the requirement of two consecutive doses of 0% protection and two points in the log section of the dose-response curve. The ED50s are expressed as microliter (µl) of antivenom by mice

of observation.

In addition, the neutralizing potency of the antivenom was estimated as suggested by the Pharmacopeia of the State of Sao Paulo, Brazil (Ministerio de Saúde, 1996) with the following formula P (potency)= ($[n-1]/[ED_{50} (\mu l)]$) x LD₅₀ (μg), where n-1 is the number of LD_{50} used as challenge dose (in this case 5-1 = 4), since the remaining venom is the responsible of the death of the half of mice, n-1 LD₅₀ are neutralized, expressing the potency as mg of venom neutralized by ml of antivenom (Ministerio de Saúde, 1996). The challenge dose of 5 LD₅₀ with different doses of antivenom and the incubation time by 30 min at 37 °C is used in Argentina and Brazil for the determination of the potencies of the therapeutic antivenoms (Ministerio de Saúde, 1996; Araujo et al., 2008). The assays for each incubation time were repeated 5 to 10 times. Only the assays that accomplished the requirement of two consecutive values of 0% protection and 100% protection and with at least two points in the log part of the dose-response curve were considered. Finally, 5 to 7 assays for each incubation time were selected (See Table 1 and Appendices 1 to 3).

2.6.2. Rescue experiments

The $ED_{50}s$ in rescue experiment (r ED_{50}) by the i.p. and intravenous (i.v.) routes were determined.

2.6.2.1. Selection of times and doses. The approximated ranges doses and the best times to be chosen for the neutralizing experiments were obtained by injecting antivenom in different doses at different times in groups of mice previously injected with 1.5 s.c. MMD (in this case, around $3.0s.c.LD_{50}$). Two experiments were performed: 1) Twenty microliters of antivenom (around 12.5 i.p. ED₅₀) were administered at different times (0, 1, 5, 15, 20, 25, 30 min) to groups of mice (n = 5) previously injected with 1.5 MMD of venom by the s.c. route. The protection was expressed as the percentage of surviving mice in each time. 2) After 30 min of similar venom challenge, mice were treated with 30, 60, 120, 160 and 200 µl of antivenom by the i.p. route. The protection was expressed as the percentage of protection obtained with each dose.

2.6.2.2. Determination of the rescue neutralizing potency. After doses and times selection, six mice per dose level were injected with 1.5 MMD of venom by s.c. route as previously described. After 30 min, mice were injected by the i.v. or the i.p. route with several doses of the antivenom diluted in 0.15 M NaCl, in a final volume of 200 μ l or in 500 μ l/mouse respectively. Mice were controlled by 24 h and the neutralizing potency achieved by each route was expressed as ED₅₀ (μ l/mouse) and in potency (mg/ml), determined as explained. The rescue experiments were repeated 10 times, nevertheless for the analysis 8 (i.p.) and 7 (i.v.) experiments were selected (those that accomplished the requisites mentioned above).

2.7. Statistics

For lethality assays, seroneutralization and ELISA $EC_{50}s$, nonlinear regression analysis of variable slope was used. To study the association between the incubation time and the EC_{50} and ED_{50} , it was used the linear regression analysis. For determination of the distribution of the neutralization results ($ED_{50}s$ and potencies) data were analyzed by Kolmogorov-Smirnov test, and for comparison between the results the Man-Whitney test was used. For all the statistical analysis as well as for the determination of mean values, standard deviations, variation coefficients and 95% confidence intervals, the software Prism 5.0 (GraphPad, CA) was utilized.

ED ₅₀ ED ₅₀ 2.1 2.1 2.2 2.2 2.2 2.2 1.5 2.2 2.2 (1.5 2.2 2.2 1.8 (1.6 1.8 (1.6 1.8 (1.6 1.8 (1.7 1.8 (1.7 1.8 (1.7 1.8 (1.5 2.0 (1.5 2.1 (1.5 2.0 (1.5 2.1 (1.5 2.0 (1.5 2.1 (1.5 2.1 (1.5 2.1 (1.5 2.1 (1.5 2.1 (1.5 2.1 (1.5 2.1 (1.5 2.1 (1.5 2.1 (1.5	I min P (mgV/mIAV) 5.1 (4.8–5.5) 2.6 (3.4–3.3) 3.6 (3.4–3.3) (3.6 to 3.9) 3.7 3.7 3.7	120 ED ₅₀ (µi/mouse) 1.4 (1.3–1.4) 2.7 (1.3–1.4) 2.7 (1.3–1.4) 1.9 (1.8–2.0) 1.7 (1.6–1.8) 1.7 (1.6–1.8) 1.7 (1.6–2.0) (1.8–2.0) (1.8–2.0) 1.7 (1.8–2.0) 1.7 (1.8–2.0) 1.7 (1.6–1.8) 1.7 (1.6–2.0) 1.7 (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0) (1.6–2.0)	nin P 5.4 (4.5-6.4) 3.8 (3.5-4.2) 3.7 (3.5-4.2) 3.7 (3.4-40) (3.3-3.9) 3.6 (3.3-4.4) (3.5-4.4) (3.5-4.4)	60 1 ED ₅₀ (µi/mouse) (1.3 (1.1–1.5) 1.8 (1.7–2.0) 1.9 (1.8–2.0) 1.8 (1.8–2.1) 1.8 (1.6–2.0) 1.8 (1.6–2.0)	min P (mgv/mlAV) 4.4 4.3 4.3 (3.7-5.0) 4.4 (4.3-4.6) (4.0-4.1) (3.4-6.5) (3.4-6.5)	301 ED ₅₀ (µi/mouse) + 1.6 (1.5-1.6) 1.6 (1.4-1.9) 1.6 (1.4-1.9) 1.6 (1.5-1.6) 1.5 (1.7-1.8) 1.5 (1.1-2.1) (1.1-2.1)	min P 3.7 (3.4–4.0) 2.8 (1.9–4.0) 5.5 (4.8 to 6.3) 3.4 (4.8 to 6.3) 3.4 (3.1–3.8) (3.8–5.6) (3.8–5.6)	100 ED50 (µi/mouse) 1.9 (1.7-2-0) 2.5 (1.7-2-0) 2.5 (1.7-3.6) 1.3 (1.7-2.0) 1.3 (1.7-2.0) 1.3 (1.7-2.0) 1.5 (1.7-2.0) 1.5 (1.7-2.0) 1.3 (1.1-2.0) 1.3 (1.1-2.0) 1.3 (1.1-2.0) 1.3 (1.1-2.0) 1.3 (1.1-2.0) 1.5 (1.5	nin P 5.4 (3.3-9.4) 3.3 2.8-4.0) 4.9 4.5 (4.3-4.8) 3.4-4.8) 4.5 (4.3-4.8) 3.3-4.5) (3.3-4.5)	5 π ED ₅₀ (µi/mouse) (1.3 1.3 0.7-2.1) 2.1 1.4 1.4 1.4 1.7 1.7 1.7 1.7 1.7 1.15 1.5 1.5 1.7 1.8 1.7 1.8 1.5 1.5 1.5 1.6	nin (mgv/mlAV) 3.1 (2.5-3.9) (2.5-3.9) (1r ED ₅₀ (µi/mouse) 2.2 (1.9-2.8) 2.1 2.2 (1.9-2.7) 2.1 1.7 2.1 1.9-2.7 1.1-2.0 1.5 (1.1-2.0) 1.5 (1.4-1.5) 1.5 1.5 1.5 1.4-1.5 1.8	nin P (mgv/mlAV) 4.4 (4.2–5.0) 4.4 (4.2–4.6) 3.8 (3.4–4.2) 3.5 (3.6–4.3) (3.6–4.3) (3.6–4.3) (3.6–4.3) (3.6–4.3) (3.6–4.3) (3.6–4.3)	0 1 ED ₅₀ (µi/mouse) 1.5 (1.4–1.6) 1.6 (1.5–1.7) 1.8 (1.5–1.7) 1.8 (1.5–2.0) 2.0 (1.6–1.9) (1.6–1.9)	Times Determinations Sxperimental values Median with
[1.8–2.2	[2.6 - 5.1]	[1.4 - 2.7]	[3.6 - 5.4]	[1.3 - 1.9]	[4.0 - 4.7]	[1.5 - 1.7]	[2.8 - 5.5]	[1.3 - 2.5]	[3.3 - 5.6]	[1.3 - 2.1]	[3.1 - 4.8]	[1.5 - 2.2]	[3.5 - 4.6]	[1.5 - 2.0]	minimal and
2.0	3.7	1.9	3.8	1.8	4.4	1.6	3.7	1.9	4.3	1.6	4.0	1.8	3.8	1.8	Median with
(1.5 - 2.9)															
2.1															
(1.4-2-3)									(3.3 - 4.5)	(1.8 - 2.1)	(4.2 to 5.1)	(1.4 - 1.7)			
1.8									3.9	1.8	4.6	1.5			
(1.7 - 1.9)	(3.6 to 3.9)	(1.8-2.0)	(3.5-4.4)	(1.6 - 2.0)	(3.4 - 6.5)	(1.1 - 2.1)	(3.8 - 5.6)	(1.2 - 1.8)	(4.3 - 4.8)	(1.5 - 1.6)	(4.7 - 4.8)	(1.4 - 1.5)	(3.6 - 4.3)	(1.6 - 1.9)	
1.8	3.7	1.9	3.9	1.8	4.7	1.5	4.6	1.5	4.5	1.5	4.8	1.5	3.5	2.0	
(1.8 - 2.2)	(4.0 - 4.4)	(1.6 - 1.8)	(3.3 - 3.9)	(1.8 - 2.1)	(4.0 - 4.1)	(1.7 - 1.8)	(3.1 - 3.8)	(1.8 - 2.2)	(3.4 - 4.8)	(1.5 - 2.0)	(3.5 - 6.4)	(1.1 - 2.0)	(3.6 - 4.2)	(1.7 - 2.0)	
2.0	4.2	1.7	3.6	1.9	4.0	1.7	3.4	2.0	4.0	1.7	4.8	1.5	3.8	1.8	
(1.6 - 1.9)	(3.4 - 3.8)	(1.8 - 2.0)	(3.4 - 4.0)	(1.8 - 2.0)	(4.3 - 4.6)	(1.5 - 1.6)	(4.8 to 6.3)	(1.1 - 1.5)	(4.5 - 5.2)	(1.3 - 1.5)	(2.8 - 4.0)	(1.7 - 2.5)	(3.4 - 4.3)	(1.6 - 2.1)	
1.8	3.6	1.9	3.7	1.9	4.4	1.6	5.5	1.3	4.9	1.4	3.4	2.1	3.8	1.8	
(1.5 to 3-	(2.1 - 3.2)	(2.1 - 3.3)	(3.5 - 4.2)	(1.7 - 2.0)	(3.7 - 5.0)	(1.4 - 1.9)	(1.9 - 4.0)	(1.7 - 3.6)	(2.8 - 4.0)	(1.8 - 2.5)	(2.6 - 3.7)	(1.9 - 2.7)	(4.2 - 4.6)	(1.5 - 1.7)	
2.2	2.6	2.7	3.8	1.8	4.3	1.6	2.8	2.5	3.3	2.1	3.1	2.2	4.4	1.6	
(1.5 - 2.8)	(4.8 - 5.5)	(1.3 - 1.4)	(4.5 - 6.4)	(1.1 - 1.5)	(4.2 - 4.5)	(1.5 - 1.6)	(3.4 - 4.0)	(1.7 - 2 - 0)	(3.3 - 9.4)	(0.7 - 2.1)	(2.5 - 3.9)	(1.8 - 2.8)	(4.2 - 5.0)	(1.4 - 1.6)	values
2.1	5.1	1.4	5.4	1.3	4.4	1.6	3.7	1.9	5.4	1.3	3.1	2.2	4.6	1.5	Experimental
) (μi/mous	(mgV/mlAV)	(µi/mouse)	mgV/mIAV)	(µi/mouse) ((mgV/mlAV)	(µi/mouse)	(mgV/mlAV)	(µi/mouse)	(mgV/mlAV)	(µi/mouse) ((mgV/mlAV)	(µi/mouse)	(mgV/mlAV)	(μi/mouse))
ED ₅₀	Ρ	ED ₅₀	Ρ	ED ₅₀	Ρ	ED ₅₀	Р	ED ₅₀	Ρ	ED ₅₀	Ρ	ED_{50}	Ρ	ED ₅₀	Determinations
-	min	120	nin	1 09	min	301	nin	101	nin	5 n	nin	1 r	nin	0 Г	Times
1 ED ₅₀ ED ₅₀ (1.5–2.8 (1.5 to 3- 1.8 1.8	l min P (mgv/mlAv) 5.1 (4.8–5.5) 2.6 (2.1–3.2) 3.6	120 ED ₅₀ (µi/mouse) 1.4 (1.3–1.4) 2.7 (2.1–3.3) 1.9	nin P mgV/mIAV) 5.4 (4.5–6.4) 3.8 (3.5–4.2) 3.7	60 1 ED ₅₀ (µi/mouse) (1.3 (1.1–1.5) 1.8 (1.7–2.0) 1.9	min P (mgV/mIAV) 4.4 (4.2-4.5) 4.3 (3.7-5.0) 4.4	30 1 ED ₅₀ (µi/mouse) 1 1.6 (1.5-1.6) 1.6 (1.4-1.9) 1.6	nin P (mgV/mIAV) 3.7 (3.4–4.0) 2.8 (1.9–4.0) 5.5	101 ED ₅₀ (µi/mouse) 1.9 (1.7-2-0) 2.5 (1.7-3.6) 1.3	nin P (mgV/mIAV) 5.4 (3.3–9.4) 3.3 (2.8–4.0) 4.9	5 n ED ₅₀ (µi/mouse) (1.3 (0.7–2.1) 2.1 (1.8–2.5) 1.4	nin P (mgV/mIAV) 3.1 (2.5-3.9) 3.1 (2.6-3.7) 3.4	1 r ED ₅₀ (µi/mouse) 2.2 (1.8–2.8) 2.2 (1.9–2.7) 2.1	nin P (mgV/mIAV) 4.6 (4.2–5.0) 4.4 (4.2–4.6) 3.8	0 r ED ₅₀ (µi/mouse) 1.5 (1.4-1.6) 1.6 (1.5-1.7) 1.8	suo
(μi/mous) (μi/mous) (1.5–2.8	(mgV/mIAV) 5.1 (4.8–5.5) 2.6	(µi/mouse) (µi/mouse) 1.4 (1.3–1.4) 2.7	mgV/mlAV) 5.4 (4.5–6.4) 3.8	LU ₅₀ (µi/mouse) (1.3 (1.1–1.5) 1.8	r (mgV/mIAV) 4.4 (4.2–4.5) 4.3	μμ/mouse) 1.6 (μι/mouse) 1.6 (1.5–1.6) 1.6	(mgV/mIAV) 3.7 (3.4–4.0) 2.8	(µi/mouse) (1.9 (1.7–2-0) 2.5	r 5.4 (3.3–9.4) 3.3	LU ₅₀ (μi/mouse) (1.3 (0.7–2.1) 2.1	(mgV/mIAV) 3.1 (2.5-3.9) 3.1	2.2 (μi/mouse) 2.2 (1.8–2.8) 2.2	r (mgV/mIAV) 4.6 (4.2–5.0) 4.4	μι/mouse) 1.5 (1.4–1.6) 1.6 1.6	ntal
	min	120	nin	1 09	min	30 1	nin	101	nin	5 n	nin	1 Г	nin	0 Г	Times
	ED50 2.1 (1.5-28 2.2 (1.5-28 2.2 (1.5-28 (1.6-1.9 2.0 (1.8-2.2 1.8 (1.7-1.9 (1.7-1.9) 1.8 (1.7-1.9) (1.4-2-2 2.1 (1.4-2-2) 2.1 (1.5-2.8) (1.5-2.8) 2.0 (1.5-2.8) 2.1 (1.5-2.8) 2.2 (1.5-2.2) 2.2 (1.5-2.2) (1.5-2.2) (1.5-2.2) (1.5-2.2) (1.5-2.	$\begin{array}{c c} P & ED_{50} \\ \hline (mgV/mlAV) & (\mui/mous) \\ 5.1 & 2.1 \\ 2.6 & 2.2 \\ 2.6 & 2.2 \\ 2.1-3.2) & (1.5-2.8 \\ 1.8 \\ 3.4-3.8) & (1.6-1.9 \\ 1.8 \\ 3.7 & 1.8 \\ 3.7 & 1.8 \\ (3.6 to 3.9) & (1.7-1.9 \\ 1.8 \\ (1.7-1.9 \\ 1.8 \\ 2.1 \\ 1.8 \\ (1.5-2.9 \\ 2.1 \\ 1.8 \\ 2.1 \\ 1.8 \\ 2.1 \\ 1.8 \\ 2.1 \\ 1.8 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.0 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.0 \\ 2.1 \\ 2.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

F.G. Baudou et al. / Toxicon 140 (2017) 11-17

3. Results

The immunochemical reactivity of the antivenom determined by ELISA varied in the different incubation times. The EC₅₀s showed a direct relation between the incubation time and the immunochemical reactivity in all the cases (p < 0.05). The reactivity was higher when the antivenom was incubated during 120 min, regarding 30 min incubation, and the last showed higher reactivity that than observed using the incubation time of 5 min. The EC₅₀ values were for 5 min: 0.3765 (95% confidence intervals 0.3167 to 0.4476), 30 min: 0.1345 (c.i. 0.1219 to 0.1484) and 120 min: 0.097 (c.i. 0.0848 to 0.1111) (Fig. 1). The linear regression analysis of the EC₅₀s and the incubation times showed a direct correlation ($r^2 = 0.998$; n = 3; p 0.03).

The treatment with urea showed that antibody fragments strongly bind the venom at the different times. No differences in avidity were observed in the different incubation times, being in all the cases the index venom-antivenom treated with 8 M urea/ venom-antivenom incubated with 0.15 M NaCl equal to 1.0.

The lethal potency expressed as LD_{50} of the venom by the i.p. route was 1.74 µg/mouse (95% c.i. 1.5 to 2.0. µg) while considered by the s.c. route was around 5 fold higher, with a value of 8.55 µg/mouse (8.0–9.1 µg). The s.c. MMD (LD_{100}) was of 18 µg by mouse.

The incubation time did not affect the neutralizing potency. No relation was observed between the incubation times and the protection conferred by the antivenoms ($r^2 < 0.005$; p > 0.8; n = 8).

Pre-incubation experiments showed that the ED_{50} and P (potency) were very close in all the cases (Table 1 and Appendix 1). The variation expressed as coefficient of variation of the ED_{50} s obtained at the different times was close in all the cases: 0 min: 11.1%, 1 min: 21.3%, 5 min: 18.4%, 10 min: 25.0%, 30 min: 14.1%, 60 min: 14.2%, 120 min: 22.9% and 180min: 9.8%, surprisingly, the incubation times of 0 min (no incubation) and 180 min, were those with the lower coefficient of variation.

The values of ED_{50} ranged from 1.3 to 2.7 µl in the individual assays and in the different times, and from 1.6 to 2.0 µl considering the median value of the results in each different incubation time. The P ranged from 2.6 to 5.6 mg/ml (individually) and 3.6–4.4 mg/ml (different times of incubations). See Table 1. In almost all the cases the values of P were close to those declared in the vial of the antivenom by the producers. The ED₅₀ at 30 min of incubation (the one required for the official antivenom control) was 1.6 µl (c.i. 1.5–1.7 µl; individually min.1.1, max. 2.1) with a P of 4.4 mg/ml. When values of the assays (ED₅₀ and P) obtained at different times were compared, no statistical differences were observed between groups (p > 0.05) for the various times of incubation from 0 min to 180 min (See Appendices 2 and 3), being the only exception in

Fig. 2. Neutralizing capacity of the antivenom in rescue experiments. The neutralizing capacity of the antivenom in rescue experiments 30 min after the injection of 1.5 MMD (27 μ g) of venom. The different ED₅₀ values of the rescue experiments by the intraperitoneal (i.p.) or the intravenous route (i.v.) are show. Bars indicate the medians. Despite that the i.v. route seems to provided higher protection, the differences between the two inoculation routes did not show statistical differences (p > 0.05). Only the experiments when the 100% and 0% of death (at least two consecutive doses of these values) and at least two points in the log part of the curve were accomplished, were considered.

which differences were observed the 30 min incubation time, regarding the time of 180 min of incubation (p < 0.05), although with very close values. See Table 1 and Appendices 2 and 3.

When the adjustments for rescue experiments were performed, inverse relation between protection provided by 20 μ l (12.5 ED₅₀ determined by the preincubation assay) and the time elapsed after the challenge with venom was observed. The protection observed were 100% (1 and 5 min after venom injection), 60% (10 min), 40% (15 min) and 20% (20 and 25 min) and 0% in longer times. When antivenom was applied in higher doses 30 min after venom injection, only using 60 μ l or higher doses, protection was observed. See Appendix 4.

The rescue experiments were performed challenging the mice with 1.5 MMD of venom by s.c. route and applying the antivenom doses 30 min after the challenge, either by the i.p. or i.v. routes. The rED₅₀ (rescue ED₅₀) were 71 µl (median; minimal 35 µl and maximal 100 µl) using the i.p. route (n = 8) and 67 µl (median; minimal 26 µl and maximal 104 µl) using the i.v. route (n = 7). Despite that i.v. route could seems more potent than the i.p., no statistical differences were observed (p > 0.05). See Fig. 2.

Potencies expressed in milligrams of venom neutralized by 1 ml of antivenom or in milliliters of antivenom required to neutralize 1 mg of venom, for preincubation experiment (incubation 30 min) and rescue experiments are shown in Fig. 3.

4. Discussion

The venoms are formed by a large number of proteins which both toxicologically and immunologically are highly variable between species, inclusive between individuals of the same snake species (Chippaux et al., 1991; de Roodt et al., 2011). The only tool to treat snakebites envenoming is the use of antivenoms and their therapeutic effect is due by the direct contact of the antivenom molecules with their targets. This happens immediately during the incubation experiments but it is more difficult to achieve when the venom and the antivenom are injected separately (both route and time) in the same organism. The antivenom-venom encounter is random, nevertheless the efficiency of an antivenom meets an additional challenge: to bring the appropriate antibodies in contact with the specific toxic proteins of the venom in the victim's body. This is what this work tried to study.

In the ELISA the immunochemical reactivity of the antivenoms

Fig. 3. Neutralizing capacity of the antivenom expressed as potency. The neutralizing capacity of the antivenom in experiments is expressed in milligrams of venom (V) neutralized by 1 mL of antivenom (AV) (mgV/mlAV, Fig. 3.a) or as the volume of antivenom expressed in milliliters required to neutralize 1 mg of venom (ml/mg, Fig. 3.b) in the preincubation or in rescue experiments. The challenge doses were: 8.7 μ g/mouse in preincubation experiment (5.0 i.p. LD₅₀) and 27 μ g/mouse in rescue experiments (1.5 s.c. MMD). It is clear that the potency obtained in preincubation experiments is different (p < 0.05) regarding those obtained from rescue experiments. The different rescue ED₅₀ values observed in the rescue experiments by intraperitoneal (i.p.) or intravenous routes (i.v.) did not show statistical differences (p > 0.05). Error bars indicate the minimal and maximal values.

increased with the incubation time (Fig. 1), in agreement with results described by Solano et al. (2010), which observed higher turbidity of the mix antivenom -B. *asper* venom in concordance with incubation times. Despite the immunochemical reactivity increased with longer incubation times, these had no effect on the neutralizing activity of the venom.

Avidity experiments showed strong binding of the fragments since there were no differences in reactivity after treatment with 8 M urea since 5–120 min.

The evaluation of the antivenoms in the world is performed by pre-incubation assays (WHO, 1981, 2010, 2016). These assays are easy to carry on, provided repetitive results and valuable information on the neutralizing potency of the antivenoms, and are crucial for the study and production of antivenoms (Gutiérrez et al., 1990; Ownby, 1990; Theakston, 1990; Solano et al., 2010). Although data from experimental animals cannot be directly extrapolated to humans (Theakston and Reid, 1983), pre-incubation assays have shown to be reliable tools for working in preparation and evaluation of antivenoms (Schlottler, 1952; Christensen, 1966; WHO, 1981, 2010, 2016; Theakston and Reid, 1983; Gutiérrez et al., 1990; Araujo et al., 2008; Solano et al., 2010). However, the finding of methods for a better evaluation of the effectiveness of the antivenoms, were discussed. Among these, the rescue assays (or sequential procedures) were proposed as a more realistic assay to determine the usefulness of the antivenoms (Schlottler, 1952; Christensen, 1966; Gutiérrez et al., 1990; Chippaux and Goyffon, 1998; Dzikouk et al., 2002). In addition, the information provided by this type of assessment is valuable to understand neutralization in the context of the dynamics of envenoming (Gutiérrez et al., 2017). Nevertheless, despite the more realistic conditions regarding the neutralizing potency of the antivenoms, these assays are affected by several factors among that can be cited the type of venom, pharmacokinetics of venom compounds and antivenoms and physiological characteristics of the animal models (Gutiérrez et al., 1990, 2017; Ownby, 1990; Theakston, 1990).

Under natural conditions, in a snakebite the venom is injected into the tissues of the victim while the antivenom is administered after the bite by the i.v. route (if correctly applied). On the contrary, in preclinical tests, the venom is mixed with antivenom for 30 min incubation - according to WHO standards - and the mixture is administered intravenously or intraperitoneal (WHO, 1981, 2010, 2016). It follows that the crucial stage of the venom/antivenom challenge is optimized in the second case, which does not reflect at least two facts: a) the delay between the introduction of the venom and the administration of the antivenom and b) the place of introduction and separate distribution of venom and antivenom in the victim's organism. The difference between these two factors represents constraints limiting the chance of the encounter of the venom and antivenom.

By these reasons we tested the antivenom in rescue assays on order to study the neutralizing capacity of an antivenom of known neutralizing potency in mice in an assay closer to a natural envenomation in mice.

For rescue assays, we preferred to use 3 s.c. LD_{50} (around 1.5 MMD) instead of 5 LD_{50} (for which the gap would have been probably much higher) that should require more volume of antivenom and/or shorter times for their administration. We used the i.p. and i.v. routes of inoculation because despite the i.p. route has around the half of distribution rate regarding the i.v., this route allows to use higher volumes (Shimizu, 2004; Turner et al., 2011). Despite the different rate of distribution, the neutralizing doses obtained from the two methods in this study, were quite similar.

The need of higher doses of antivenom required to rescue mice can partially be explained by the characteristics of this venom. The main component of *C. d. terrificus* venom is the myotoxic and neurotoxic presynaptic phospholipase A₂ called crotoxin, that can represent over the half of the venom mass (Breithhaupt et al., 1974; Calvete et al., 2010). Amaral et al. (1997) showed a highly significant decrease in the concentration of crotoxin in patients' plasma arriving at the hospital related with the time elapsed post-bite. These results suggested that the clearance of crotoxin is fast and it is quickly distributed in deep tissues, probably linked to neurological receptors or muscle. This could partially explain the need of fast treatment with antivenom.

Aside from the limitations described above, another difference must be taken into account. The animal model used - the mouse cannot be considered as an human suffering a snake bite and treated with antivenom. Toxic substances for one as for the other may be different due its different anatomy and physiology (Gutiérrez et al., 2017).

The ED₅₀ and P of the antivenom, very stable after various times of incubation, was not useful to predict the dose of antivenom

16

F.G. Baudou et al. / Toxicon 140 (2017) 11-17

needed to neutralize a determinate dose of venom *in vivo*. The P of the antivenom obtained at 30 min of incubation at 37 °C following the technique used for the control of the antivenom indicate a neutralizing capacity of 4.4 mg/ml (theoretically 0.23 ml of antivenom to neutralize 1 mg of venom), nevertheless when the P of the same antivenom was estimated in the rescue experiments, it was lower: 0.25 mg/ml (4.3 ml/mg) and 0.26 mg/ml (3.8 ml/mg) using the i.p. or the i.v. routes, respectively (Fig. 3).

The dose determined by preincubation assay, was not useful for the determination of the potency in rescue assays since this did not follow the "law of multiple proportions" and, consequently, did not give twice as high a potency if the antibody concentration is doubled (Schlottler, 1952; Christensen, 1966; Ownby, 1990). The lack of proportionality that we showed in the rescue experiment confirms that the law of multiple proportions cannot be applied for the dosage of antivenoms. Antivenoms must only be applied after well-designed clinical assays to evaluate their dosage (Chippaux et al., 2010). The estimation for calculating the dosage of a therapeutic antivenom by simply multiplying the amount of antivenom necessary to neutralize 1 mg of venom by the number of milligrams of venom suspected to have been injected (Schlottler, 1952; Christensen, 1966; Belluomini, 1968; Ownby, 1990; Min. de Salud, 2000; Min. de Salud, 2014) should not be used as a tool for dosage.

These results in neutralizing experiments were very consistent and reliable since we used the same venom, same antivenom and same strain of mice for all the experiments. Results clearly showed that the neutralizing capacity of the antivenom obtained by the assays used in most of the countries and recommended by the Pharmacopeias (Ministerio de Saúde, 1996; Farmacopea de los Estados Unidos Mexicanos, 2000; WHO, 1981, 2010, 2016), cannot be used as a tool to predict the exact or approximate neutralization capacity of the antivenom in rescue assays, even in experimental and controlled conditions.

Preincubation and rescue experiments are methodologically quite different with distinct concentrations and times of contact of the reactants. In the pre-incubation experiments, venomantivenom are mixed in a tube with the absence of external factors able to cause interactions, and thus exist higher reaction rate and extent. In the rescue experiment the volumes of distribution of venom and antivenom in the mice body are larger and the venomantivenom binding is influenced by pharmacokinetics and pharmacodynamics parameters, with a lower rate and extent of reaction. Nevertheless, *in vivo* techniques are closer to reality.

Differences between the nominal neutralizing dose of the antivenom and the dose required for neutralization *in vivo* could also explain many therapeutic failures in envenomations treated with highly potent antivenoms, or at least why very high doses of antivenom fail to cure patients (Baldé et al., 2013) and reinforce the need of well-designed clinical assays in order to establish the correct dosage of an antivenom.

The neutralizing capacity determined by pre-incubation experiments is an important and valuable tool for the production and control of antivenoms, nevertheless should not be considered a stoichiometric measure to the dosage of antivenoms, since its nominal potency can only be applied to the experimental conditions in a same system (i.e. using the same venom, antivenom and animals) and not to other experimental conditions. If the change in the methodology of preclinical testing is not an urgent necessity -except for the replacement of mice for ethical reasons-, this reinforces the need for clinical trials to assess the real efficacy and dosage, and also safety, of antivenoms in humans.

Appendix A. Supplementary data

Supplementary data related to this article can be found at

https://doi.org/10.1016/j.toxicon.2017.10.009.

References

- Amaral, C.F., Campolina, D., Dias, M.B., Bueno, C.M., Chávez-Olortegui, C., Penaforte, C.L., Diniz, C.R., Rezende, N.A., 1997. Time factor in the detection of circulating whole venom and crotoxin and efficacy of antivenom therapy in patients envenomed by. Crotalus Durissus. Toxicon 35, 699–704.
- Araujo, H.P., Bourguignon, S.C., Boller, M.A., Dias, A.A., Lucas, E.P., Santos, I.C., Delgado, I.F., 2008. Potency evaluation of antivenoms in Brazil: the national control laboratory experience between 2000 and 2006. Toxicon 51, 502–514.
- Baldé, M.C., Chippaux, J.P., Boiro, M.Y., Stock, R.P., Massougbodji, A., 2013. Use of antivenoms for the treatment of envenomation by Elapidae snakes in Guinea, Sub-Saharan Africa. J. Venom. Anim. Toxins Inc. Trop. Dis. 19, 6.
- Barbosa, C.F., Rodrigues, R.J., Olortegui, C.C., Sanchez, E.F., Heneine, L.G., 1995. Determination of the neutralizing potency of horse antivenom against bothropic and crotalic venoms by indirect enzyme immunoassay. Braz. J. Med. Biol. Res. 28, 1077–1080.
- Belluomini, H.E., 1968. Extraction and quantities of venom obtained from venomous Brazilian snakes. In: Bücherl, W., Buckley, E.E., Deulofeu, V. (Eds.), Venomous Animals and Their Venoms, Venomous Vertebrates, vol. 1. Academic Press, New York-London, pp. 97–117.
- Breithhaupt, H., Rübsamen, K., Haberman, E., 1974. Biochemistry and pharmacology of the crotoxin complex. Biochemical analysis of crotapotin and the basic Crotalus phospholipase. Eur. J. Biochem. 49, 333–345.
- Bollen, L.S., Crowley, A., Dtodulski, G., Hau, J., 1996. Antibody production in rabbits and chickens immunized with human IgG. A comparison of titer and avidity development in rabbit serum, chicken serum and egg yolk using three different adjuvants. J. Immunol. Methods 191, 113–120.
- Calvete, J.J., Sanz, L., Cid, P., de la Torre, P., Flores-Díaz, M., Dos Santos, M.C., Borges, A., Bremo, A., Angulo, Y., Lomonte, B., Alape-Giron, A., Gutiérrez, J.M., 2010. Snake venomics of the Central American rattlesnake Crotalus simus and the South American *Crotalus durissus* complex points to neurotoxicity as an adaptative paedomorphic trend along *Crotalus* dispersal in South America. Proteome Res. 9, 528–544.
- Casasola, A., Ramos-Cerrillo, B., de Roodt, A.R., Carbajal Saucedo, A., Chippaux, J.-P., Alagón, A., Stock, R.P., 2008. Paraspecific neutralization of the venom of African species of cobra by an equine antiserum against *Naja melanoleuca*: a comparative study. Toxicon 53, 602–608.
- Chippaux, J.P., Goyffon, M., 1998. Venoms, antivenoms and immunotherapy. Toxicon 36, 823–846.
- Chippaux, J.P., Williams, V., White, J., 1991. Snake venom variability: methods of study, results and interpretation. Toxicon 29, 1279–1303.
- Chippaux, J-Ph, Stock, R.P., Massougbodji, A., 2010. Methodology of clinical studies dealing with the treatment of envenomation. Toxicon 55, 1195–1212.
- Christensen, P.A., 1966. Venom and antivenom potency estimation. Mem. Inst. Butantan 33, 305–326.
- da Rocha, D.G., Fernandez, J.H., Costa de Almeida, C.M., da Silva, C.L., Magnoli, F.C., da Silva, O.E., Dias da Silva, W., 2017. Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity. Eur. J. Pharm. Sci. 106, 404–412.
- de Andrade, F.G., Eto, S.F., dos Santos Ferraro, N.A.C., Marioto, D.T.G., Vieira, N.J., Cheirubim, A.P., de Paula Ramos, S., Venâncio, E.J., 2013. The production and characterization of anti-bothropic and anti-crotalic IgY antibodies in laying hens: a long term experiment. Toxicon 66, 18–24.
- de Roodt, A.R., Lanari, L.C., de Oliveira, V.C., Laskowicz, R.D., Stock, R.P., 2011. Neutralization of *Bothrops alternatus* regional venom pools and individual venoms by antivenom: a systematic comparison. Toxicon 57 (7–8), 1073–1108.
- Dzikouk, G.D., Etoundi Ngoa, L.S., Thonnon, J., Dongmo, A.B., Rakotonirina, V.S., Rakotonirina, A., Chippaux, J.P., 2002. Titrage comparatif de trois sérums antivenimeux d'Afrique sub-saharienne. Bull. Soc. Pathol. Exot. 95, 144–147.
- Farmacopea de los Estados Unidos Mexicanos, 2000. 7ª ed. Tabacalera, México DF, México.
- Giallongo, A., Kochoumian, L., King, T.P., 1982. Enzyme and radio immunoassays for specific murine IgE and IgG with different solid-phase immunosorbents. J. Immunol. Methods 52, 379–393.
- Gutiérrez, J.M., Rojas, G., Lomonte, B., Gené, J.A., Chaves, F., Alvarado, J., Rojas, E., 1990. Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon 28, 1127–1129.
- Gutiérrez, J.M., Solano, G., Pla, D., Herrera, M., Segura, A., Vargas, M.A., Villalta, M., Sánchez, A., Sanz, L., Lomonte, B., León, G., Calvete, J.J., 2017. Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead. Toxins 9, 163. https://doi.org/10.3390/toxins9050163.
- Heneine, L.G., Carvalho Jr., A.D., Barbosa, C.F., Arávjo dos Santos, M.R., 1998. Development of an ELISA to assess the potency of horse therapeutic polyvalent antibothropic antivenom. Toxicon 36, 1363–1370.
- Maria, W.S., Cambuy, M.O., Costa, J.O., Velarde, D.T., Chávez-Olórtegui, C., 1988. Neutralizing potency of horse antibothropic antivenom. Correlation between in vivo and in vitro methods. Toxicon 36, 1433–1439.
- Ministerio de Salud, 2000. Ofidismo, Módulos Técnicos. Serie de documentos monográficos, p. 57. http://bvs.minsa.gob.pe/local/ogei/807_ms-oge115.pdf. (Accessed 9 September 2017).
- Ministerio de Salud, 2014. Guía de prevención, diagnóstico, tratamiento y vigilancia epidemiológica de los envenenamientos ofídicos. Ministerio de Salud, Buenos

Author's Personal Copy

F.G. Baudou et al. / Toxicon 140 (2017) 11-17

Aires, p. 80.

- Ministerio de Saúde, 1996. Normas Técnicas de Fabricaçao e Controle de Qualidade dos Soros Antiofídicos, Antitóxicos e Antirrábico aprovada pela vigilancia sanitaria. Secretaría de Vigilancia Sanitaria Ministerio de Saúde, Brasil.
- National Research Council, 2011. Guide for the Care and Use of Laboratory Animals, eighth ed. AcademicPress, Washington.
- Ownby, ChL., 1990. Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon 28, 1129–1130.
- Public Health Service, 2002. Public Health Service Policy on Humane Care and Use of Laboratory Animals. US Department of Health and Human Services Public Law 99–158. Health Research Extension Act of 1985. DHHS. Washington DC.
- Rungsiwongse, J., Ratanabanangkoon, K., 1991. Development of an ELISA to assess the potency of horse therapeutic antivenom against Thai cobra venom. J. Immunol. Methods 136, 37–43.
- Schlottler, W.H.A., 1952. Problems of antivenom standardization. Bull. World Health Org. S 293–320.
- Shimizu, S., 2004. Routes of administration procedures. In: The Laboratory Mouse. Elsevier, Amsterdam, pp. 527–541 (Chapter 32).
- Solano, G., Segura, A., Herrera, M., Gómez, A., Villalta, M., Gutiérrez, J.M., León, G., 2010. Study of the design and analytical properties of the lethality

neutralization assay used to estimate antivenom potency against *Bothrops asper* snake venom. Biologicals 38, 577–585.

- Theakston, R.D.G., 1990. Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon 28, 1131–1132.
- Theakston, R.D.G., Reid, H.A., 1983. Development of simple standard assay procedures for the characterization of snake venoms. Bull. World Health Organ. 61, 949–956.
- Turner, P.V., Brabb, T., Pekow, C., Vasbinder, M.A., 2011. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Animal Sci. 50, 600–613.
- World Health Organization, 1981. Progress in the Characterization of Venoms and Standarization of Antivenoms. Offset Publication, WHO, Geneva, p. 44.
- World Health Organization, 2010. Guidelines for the Production Control and Regulation of Snake Antivenom Immunoglobulins. http://www.who.int/ bloodproducts/snake_antivenoms/SnakeAntivenomGuideline.pdf/. (Accessed 15 June 2017).
- World Health Organization, 2016. Guidelines for the Production Control and Regulation of Snake Antivenom Immunoglobulins. http://www.who.int/ biologicals/ECBS_2016_BS2300_WHO_Guidelines_antivenom_clean1.pdf/. (Accessed 15 June 2017).