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Abstract Climate change and the increasing demand for
sustainable energy resources require urgent strategies to
increase the accuracy of selection in tree breeding (asso-
ciated with higher gain). We investigated the combined
pedigree and genomic-based relationship approach and its
impact on the accuracy of predicted breeding values using
data from 5-year-old Eucalyptus grandis progeny trial.
The number of trees that can be genotyped in a tree
breeding population is limited; therefore, the combined
approach can be a feasible and efficient strategy to

increase the genetic gain and provide more accurate pre-
dicted breeding values. We calculated the accuracy of
predicted breeding values for two growth traits, diameter
at breast height and total height, using two evaluation
approaches: the combined approach and the classical
pedigree-based approach. We also investigated the influ-
ence of two different trait heritabilities as well as the
inclusion of competition genetic effects or environmental
heterogeneity in an individual-tree mixed model on the
estimated variance components and accuracy of breeding
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values. The genomic information of genotyped trees is
automatically propagated to all trees with the combined
approach, including the non-genotyped mothers. This in-
creased the accuracy of overall breeding values, except for
the non-genotyped trees from the competition model. The
increase in the accuracy was higher for the total height, the
trait with low heritability. The combined approach is a
simple, fast, and accurate genomic selection method for
genetic evaluation of growth traits in E. grandis and tree
species in general. It is simple to implement in a traditional
individual-tree mixed model and provides an easy exten-
sion to individual-tree mixed models with competition
effects and/or environmental heterogeneity.

Keywords Genomic selection . Eucalyptus grandis .

Individual-treemixedmodel .Geneticandenvironmental
competition effects . Environmental heterogeneity .
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Introduction

The recent availability of affordable high-density geno-
mic marker panels (e.g., diversity array technology
(DArT) and/or single nucleotide polymorphisms (SNP))
created an opportunity, whereby the expected pedigree-
based relationship (Wright 1922) used for estimating
genetic parameters of complex traits following Fisher’s
(1918) infinitesimal model is replaced by molecular
marker-based realized pairwise genetic similarity be-
tween individuals (VanRaden 2008). Studies in domesti-
cated crop plants and animals have demonstrated that the
marker-based realized kinship matrix (G matrix) is supe-
rior to the common pedigree-based average numerator
relationship matrix (A matrix; Daetwyler et al. 2012; El-
Kassaby et al. 2012; Klápště et al. 2014; Cappa et al.
2016a; Gamal El-Dien et al. 2016). This superiority is
attributable to the marker-based realized kinship ability to
account for (1) Mendelian segregation among family
members (also known as Mendelian sampling term) as
their genetic similarity is estimated precisely instead of
using a Buniversal^ expected relationship such as 0.25
and 0.5 given to half- and full-sib family members,
respectively; and (2) historical pedigree that cannot be
ascertained by the known contemporary pedigree.

The G matrix can be used instead of the A matrix in
the individual-tree mixed model to predict breeding
values by best linear unbiased prediction (BLUP).
Fitting G matrix in the mixed model equations is the

genomic selection method known as genomic BLUP or
GBLUP (VanRaden 2008). This method is equivalent to
estimating individual marker effects using ridge regres-
sion and assuming such effects to be mutually indepen-
dent (Meuwissen et al. 2001). GBLUP is a very prom-
ising approach for tree breeding (El-Kassaby et al. 2012;
Klápště et al. 2014; Zapata-Valenzuela et al. 2013;
Muñoz et al. 2014). However, forest tree breeding pop-
ulations are usually large, with thousands of progenies
from many tested parents. Thus, genotyping costs and
logistical issues hinder the successful large-scale imple-
mentation of GBLUP approach in tree species.
Moreover, in an early program of open-pollinated tests,
genotyping of mother trees from the native stand is often
not possible. Therefore, a more realistic scenario would
include only a sub-set of genotyped trees to obtain theG
matrix (Isik 2014).

The combined pedigree-genomic relationship matrix
approach (H matrix) was recently proposed by Misztal
et al. (2009), Legarra et al. (2009), and Christensen and
Lund (2010), where the traditional A matrix is concur-
rently utilized with the G matrix. Therefore, this blended
relationship H matrix combines two types of genetic
information: (1) pedigree information (A matrix) of the
many non-genotyped individuals and (2) marker-based
relationship (G matrix) of a sub-set of genotyped indi-
viduals. TheHmatrix (or its inverse H−1) can be seen as
a projection of genetic merit (or marker genotype) from
genotyped to non-genotyped individuals using pedigree
relationships (Vitezica et al. 2011). Therefore, additional
information generated by including the genomic infor-
mation in the combined approach acts as genetic rela-
tionship bridges connecting information across individ-
uals and parents, thus ultimately facilitating better infor-
mation utilization during the BLUP analysis. As a result,
more reliable and accurate breeding values (in terms of
the correlation between the true and predicted breeding
value) should be obtained, thus increasing the probability
of correct ranking of selection candidates. The combined
approach has been widely applied in animal breeding
with many successful applications including pigs
(Christensen et al. 2012), chickens (Legarra et al. 2011;
Chen et al. 2011), dairy cattle (Aguilar et al. 2010), dairy
sheep (Baloche et al. 2014), dairy goat (Carillier et al.
2014), and beef cattle (Onogi et al. 2014). A priori, the
combined approach should producemore accurate breed-
ing value predictions than the pedigree approach alone
and also in forest genetic evaluations. However, only two
references on the combined approach have been found in
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forest genetic trials (Ogut 2012; Ratcliffe et al. 2017).
Using a real cloned Pinus taeda population and
simulated data, Ogut (2012) obtained higher accuracies
of predictions from the combined relationship H matrix
than from the traditional BLUP based on the A matrix.
Ratcliffe et al. (2017) in an open-pollinated population of
white spruce (Picea glauca) showed also an improve-
ment in the accuracy of predicted breeding value for tree
height and wood density traits when compared to the
combined approach vs. the utilization of the pedigree-
based approach.

The accuracy of breeding values predictions also de-
pends on the covariance structure of the random effects.
Therefore, the specification of the dispersion parameters
should consider the negative correlation caused by com-
petition among individuals and/or the positive spatial
correlation due to the environmental heterogeneity.
Negative competition and positive spatial correlations
are observable in forest genetic trials, either for each
component alone (e.g., Thomson and El-Kassaby 1988;
Dutkowski et al. 2006; Cappa and Cantet 2007 and 2008;
Ye and Jayawickrama 2008; Costa e Silva et al. 2013) or
in combination with each other (Costa e Silva et al. 2013;
Cappa et al. 2015; Cappa et al. 2016b). Forest genetic
trial analysis including competition effects and/or envi-
ronmental heterogeneity often result in greater accuracy
of breeding values and greater genetic gain than different
a priori experimental designs (Dutkowski et al. 2006;
Costa e Silva and Kerr 2013). Computationally, using
an individual-tree mixed model to account for competi-
tion (Cappa and Cantet 2008) and environmental hetero-
geneity (Cappa and Cantet 2007) or both effects simul-
taneously (Cappa et al. 2015; Cappa et al. 2016b) with
pedigree-based relationship matrix is similar to applying
the competition or spatial analyses with the combined H
matrix. Since the combined approach uses traditional
BLUP mixed model equations (Legarra et al. 2014), the
extension to an individual-tree mixed model with com-
petition genetic or environmental heterogeneity effects is
straightforward. However, the use of the combined ap-
proach in these models has not been reported in forest
tree breeding.

We assessed a Eucalyptus grandis (Hill ex Maiden)
population consisting of 164 open-pollinated families
including 2026 trees measured for two growth attributes
(diameter at breast height—DBH—and total height—
TH), which are known to possess different heritabilities.
A random sample of 187 trees from 132 families with up
to three individuals per family was also genotyped with

DArT (7680 markers), and subsequently, the genotypes
were used to compute theGmatrix. The objectives of the
study were to (1) compare the accuracies of the predicted
breeding values of genotyped offspring and non-
genotyped mothers and offspring from the combined
approach vs. the traditional pedigree-based approach;
and (2) study the effects of DBH and TH contrasting
heritabilities after the inclusion of competition effects or
environmental heterogeneity in an individual-tree mixed
model on the estimated variance components and on the
accuracy of predicted breeding values.

Material and methods

Progeny trial data

An open-pollinated (OP) progeny trial of Eucalyptus
grandis (Hill ex Maiden) (hereafter E. grandis) at
Gobernador Virasoro (lat. 28° 02′ S, long. 56° 03′ W
alt., 105 m), northern Corrientes province, Argentina,
was used. The trial comprised 164 OP families from
native forest: 92 from New South Wales and 56 from
southeastern Queensland, Australia and 16 from two
local land-race sources from Concordia, Entre Rios
province, Argentina. Nineteen genetic groups were
formed according to provenance. A detailed description
of this genetic material can be found in Marcó and
White (2002). Briefly, this progeny trial was established
as a randomized complete block design with 20 replica-
tions and one tree per plot at each replication (i.e.,
single-tree plot). Five-year diameter at breast height
(1.3 m above the ground level) over bark (DBH, cm)
and total height (TH, m) were measured on all surviving
trees (N = 2026). A random sample of 187 trees origi-
nating from 131 families of the OP progeny trial was
genotyped with a range of one to three trees per family.
The total number of phenotyped trees with at least one
genotyped half-sib was 1650 (see Table 1 for summary).

Molecular markers

Total genomic DNAwas extracted from young leaves in
November 2009 using the CTAB method (Hoisington
et al. 1994) with minor modifications to avoid oil pre-
cipitation. Instead of using isopropanol in the precipita-
tion step, samples were diluted in twice the volume of
10 mM Tris-HCl and 1 mM EDTA buffer and
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precipitated with 2.5 volumes of ethanol and 300 mM
sodium acetate.

All 187 randomly selected individuals were geno-
typed by Diversity Arrays Technology Pty Ltd. (DArT
P/L, Canberra, Australia) for 2816 DArT molecular
markers selected from an operational array with 7680
(Sansaloni et al. 2010). The selected markers showed
call rate values > 0.8, reproducibility values > 0.97
(reproducibility of scoring between replicated target
assays), and minor allele frequency (MAF) > 0.05.

Statistical models of analysis

Preliminary analyses indicated that the DBH and TH
showed strong competition and considerable spatial het-
erogeneity, respectively (see Online Resource 1).
Moreover, according to the Akaike information criterion
(AIC), competition model (see below model Eq. (2)) for
DBH and spatial model (see below model Eq. (3)) for
TH were significantly better than standard models (see
below model Eq. (1)) for the two genetic evaluation
methods (pedigree-based and combined), except to the
combination DBH trait and competition model for the
combined approach (results no shown). Therefore, the
DBH trait was analyzed as follows:

1. Standard mixed model (TM)

y ¼ X β þ Z rr þ Za þ e ð1Þ
where y is the vector of phenotypic data, β is the vector
of genetic groups as fixed effects, r is the vector of
random replicate effects, a is the vector of random addi-
tive genetic effects of individual trees (i.e., breeding
values), and e is the vector of random residuals; X, Zr,
and Z are incidence matrices relating the observations (y)
to the model effects in β, r, and a, respectively. The
vector e is distributed as e ∼N 0; I σ2

e

� �
where I is an

identity matrix and σ2
e is the residual variance. For the

pedigree-based approach, the a vector is assumed to be
distributed as a ~ N (0, A σ2a) where σ

2
a is the additive

genetic variance, and A is the average numerator rela-
tionship matrix from the pedigree information.

2. Competition mixed model (CM)

y ¼ X βþ Zrr þ Zdad þ Zcac þ Zppc þ e ð2Þ

where the effects β, r, and e and matrices X and Zr were
specified as described above. The direct and competition
breeding values for mothers and offspring are included in
the random vectors ad and ac, linked to the phenotypic
data y through the incidence matrices Zd and Zc, respec-
tively. Matrix Zd has all elements equal to 0 except for a 1
in the corresponding column. Similarly, the ith row of
matrix Zc has all elements equal to 0 except in the
position corresponding to the mi neighbors of the tree i,
with values fij, j = 1, ..., mi. These positive coefficients
can be interpreted as the intensity of competition (IC) that
each neighbor exerts over the phenotype of the ith tree.
Following Cappa and Cantet (2008) and assuming that
the intensity of competition is related to the inverse of the
distance between i and j, the IC for the competitors that
lie either in the same row or column (R-C) of the tree i
(fiR-C) and for competitors laying in the diagonal posi-
tions (D) with respect to tree i (fiD) are

f iR‐C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2niR‐C þ niD

r
f iD ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2niR‐C þ niD
p

where niR-C and niD are the respective numbers of com-
petitors laying in R-C and D. For the pedigree-based
approach, the stacked vector of breeding values is dis-
tributed as

ad
ac

� �
∼N 0

0

� �
;

σ2
Ad σAdAc

σAdAc σ2
Ac

� �
⊗A

� �

Table 1 Open-pollinated fami-
lies and genotyped and non-
genotyped individuals’ statistics
for diameter (DBH) and total
height (TH) in the Eucalyptus
grandis data set

aSD standard deviation

No. of records Mean (SDa)

DBH (cm) TH (m)

All trees with phenotype 2026 18.85 (4.27) 18.87 (2.68)

Trees from mothers with genotyped offspring 1650 18.87 (4.24) 18.87 (2.65)

Genotyped offspring 187 20.81 (3.07) 20.57 (1.67)

All mothers 164 – –

Total number of mothers with genotyped offspring 131 – –
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where σ2
Ad is the variance of the direct additive genetic

effects, σ2
Ac is the variance of the competition breeding

values, and σAdAc is their covariance. The vector pc in-
cludes the environmental competition effects (or
permanent environmental competition effects, Cappa and
Cantet 2008; Cappa et al. 2015; Cappa et al. 2016b) such
that pc ~ N (0, Iσ2

p) where σ
2
p is the variance of environ-

mental competition effects. Finally, the matrix Zp is com-
posed of the non-zero columns of Zc.

The TH trait was analyzed using the standard model
(Eq. (1)) and with the following spatial mixed model:

3. Spatial mixed model (SM)

y ¼ Xβ þ Z rr þ Zaþ ξþ η ð3Þ

where the effectsβ, r, and a, and matricesX, Zr, and Z are
specified as described above. In Eq. (3), an autoregressive
spatial component was added, where the residual vector e
was partitioned into a spatially dependent (ξ) and indepen-
dent (η) residuals (e.g., Costa e Silva et al. 2001). Gilmour
et al. (1997) suggested tomodel the ξ vector as a separable
Kronecker product of first-order autoregressive covariance
structures (AR1) on the rows (row) and the columns (col),
i.e., σ2

ξ AR1 ρcolð Þ ⊗ AR1 ρrowð Þ½ �, where σ2
ξ is the spa-

tially dependent residual variance, and ρi the autocorrela-
tion parameters. The vector ηwas assumed pairwise inde-
pendent, i.e., I σ2

η, where σ2
η is the independent residual

variance.
In the combined approach, the matrixA of the previous

mixed models, Eqs. (1)–(3), was substituted by the com-
bined pedigree- and marker-based pairwise relationshipH
matrix. Therefore, the vector ad of TM and SM is distrib-
uted ad ~N (0,Hσ2a), while the stacked vector of breeding
values for the CM is distributed as

ad
ac

� �
∼N 0

0

� �
;

σ2
Ad σAdAc

σAdAc σ2
Ac

� �
⊗H

� �

The inverse of the relationship matrix that combines
pedigree and genomic information (H−1) was derived by
Misztal et al. (2009), Legarra et al. (2009), Aguilar et al.
(2010), and Christensen and Lund (2010) as

H −1 ¼ A−1 þ 0 0
0 λ G−1−A−1

22

� �� �

where λ scales differences between genomic and
pedigree-based information, G−1 is the inverse of the

genomic-based relationship matrix, and A-1
22 is the in-

verse of the pedigree-based relationship matrix for the
genotyped individuals (A22). We studied the influence of
weighting factor λ in the estimation of variance compo-
nents for the TM model and for DBH and TH traits.
However, only slight differences were found in both
studied traits when λ decreased from 1.0 (i.e., only
contributions from genomic relationships) to 0.0 (i.e.,
only contributions from pedigree relationships) by 0.2
(i.e., λ = 1.0, 0.8, 0.6, 0.4, 0.2, 0.0). For instance, the
additive (and residual) variance varied from 5.76 (and
12.11) for λ = 0.0 to 6.21 (and 11.76) for λ = 1.0 for DBH
(see Online Resource 2). Therefore, the weighting factor
λ was set to 1.0 for both traits.

The genomic relationship G matrix from the domi-
nant DArT markers was calculated following the for-
mula suggested by Resende et al. (2010):

G ¼ Z−Pð Þ Z−Pð Þ0
∑kpk 1−pkð Þ

where pk is the frequency of the code 1 at locus k, Z is a
n × mmatrix (n = number of genotyped trees,m = num-
ber of DArT markers) that specifies the genotypes
expressed as 0/1 denoting the absence/presence of the
DArT marker, and P is a matrix containing pk in the kth
column.

A potential problem of the combined approach is that
G and A22 have to be expressed on the same scale
(Meuwissen et al. 2011). However,A22 involves relation-
ships of genotyped individuals with reference to the base
population (mothers), andG corresponds to relationships
within the current population. Several methods have been
developed to overcome this scale problem (Aguilar et al.
2010; Chen et al. 2011; Forni et al. 2011; Vitezica et al.
2011; Christensen et al. 2012). In this study, we scaled
the G matrix following closely the work of Chistensen
et al. (2012; Eq. 4): Gc = βG + α, where Gc is the scaled
Gmatrix and β and α are parameter values calculated by
solving the following system of equations:

Avg diag Gð Þð Þ β ¼ Avg diag A22ð Þð Þ
Avg Gð Þ β þ α ¼ Avg A22ð Þ

The actual parameter values of α and β were 0.0062
and 0.9938, respectively. FollowingVitezica et al. (2011),
other two possible corrections ofGwere also studied: (1)

Mol Breeding  (2017) 37:125 Page 5 of 13  125 



Gδ = G + 1 1′ δ, where δ ¼ 1
n2 ∑

i
∑
j
A22 i; jð Þ−∑

i
∑
j
Gi; j

 !

(Eq. 5 in Vitezica et al. 2011); and (2) GFst = (1 – ½ δ)
G + 11′ δ, correction suggested by Powell et al. (2010) in
Vitezica et al. (2011). However, given that β was very
close to 1 (0.9938), this parameter δ in Vitezica et al.
(2011) and Powell et al. (2010) was equal to α, i.e.,
0.0062. Consequently, the G matrix corrected by the
equation proposed by Christensen et al. (2012) was
equivalent to those proposed by Vitezica et al. (2011)
and Powell et al. (2010).

All the analyses were performed in R (R Core Team
2015) with the package breedR (Muñoz and Sanchez,
2014) using restricted maximum likelihood (REML,
Patterson and Thompson 1971) inference.

The theoretical accuracy r of the predicted breeding
values was calculated using the following expression:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PEV

σ̂2
a 1þ Fið Þ

s

The acronym PEV stands for Bprediction error
variance^ of predicted breeding values and are calculat-
ed as the diagonal elements of the inverse of the coeffi-
cient matrix from the mixed model equations of each
model studied (Gilmour et al. 1995), and Fi is the
inbreeding coefficients of tree i. For the CM, the esti-

mated additive genetic variance σ̂2
a was replaced with

the estimated direct additive genetic variance σ̂2
Ad .

The gain in accuracy of a tree’s breeding value when
using its markers’ information depends on the trait, the
model, and the group to which the tree belongs (i.e.,
genotyped offspring, non-genotyped offspring or par-
ents). Furthermore, even within each of these combina-
tions, the gains vary due to differences in relatedness
among individuals as measured by the markers and
ultimately reflecting the underlying Mendelian segrega-
tion process. We estimated the expected gain in accura-
cy for an individual by maximum likelihood using a
linear regression on the trait, the model, and the group.

The narrow-sense individual heritability ĥ
2

	 

was

estimated as

ĥ2 ¼ σ̂a2

σ̂a2 þ σ̂e2:

where σ̂2
a is the estimated additive genetic variance and

σ̂2
e is the estimated error variance. For CM, the additive

variance σ̂2
a was replacedwith the estimated total additive

genetic variance (Cappa and Cantet 2008). Assuming
that the focus tree is unrelated to its competitors and the
competitors are unrelated among themselves, the total

additive variance is σ̂2
Ad + σ̂2

Ac. Additionally, for CM,
the denominator of the above expression also included
the estimated variance of the environmental competition

effects, σ̂2
p.

Results

Pedigree and combined relationship matrices

When the pedigree-basedAmatrix analysis was conduct-
ed, the studied 164 OP families were treated as unrelated;
conversely, when the genomic-based G matrix of the
genotyped offspring was implemented, the ancestral re-
lationship among their mother trees was projected and
implied that 132 mothers, with genotyped offspring, are
related. The mother trees in the combined H matrix had
4084 (30.6%) out of 13,366 (i.e., (164) × (164–1)/2)
pairwise relatedness coefficients higher than zero while
that of the genotyped and the non-genotyped offspring,
from families with genotyped offspring, had 56.3% of the
pairwise relationships higher than zero as compared to
that of the A matrix which produced 0.51% higher than
zero. The average relationship coefficient for the non-
genotyped offspring from the same half-sib family varied
from 0.10 to 0.38 for the combined H matrix (consistent
with the expected value of 0.25 from the A matrix).
Moreover, the relationships between mother and off-
spring varied from 0.32 to 0.75 (consistent with the
expected value of 0.5 from the A matrix). Briefly, geno-
typed offspring generated additional information for the
non-genotyped half-sib mothers and their respective off-
spring, while, as expected, offspring from mothers with
non-genotyped offspring did not produce any additional
information.

Variance components

Generally, the TMmodel produced lower direct additive
genetic variance for both traits, while CM resulted in
higher additive variance for DBH, and SM showed only
slightly higher additive variance for TH, highlighting
the effect of competition and environmental heteroge-
neity (Table 2). These differences among the studied
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models showed opposite effects on the residual variance
terms as they were higher for the TM model that only
focused on direct genetic effects or experimental design
consideration (Table 2).

Using the H matrix generally produced slightly
higher additive genetic (direct and indirect) and smaller
residual variance estimates than the relationship A ma-
trix (Table 2), resulting in similar heritability estimates.
However, for TH, the spatial variance from the com-
bined approach (2.71) was notably smaller than that
from the pedigree approach (23.24). Finally, as expect-
ed, the replicate variance decreased after spatial effects
(i.e., SM) were included (Table 2). However, this reduc-
tion was more pronounced for the SMwith theHmatrix
than with the A matrix.

Accuracy of predicted breeding values

Mean accuracies of breeding values from the extended
models (i.e., CM or SM) of both investigated traits (i.e.,
DBH or TH) were higher than those from TM for both

pedigree and combined analyses (from 3.0 to 12.5%)
(Table 3). However, the increments in the average accu-
racy across non-genotyped mothers and non-genotyped
and genotyped offspring were slightly higher from the
pedigree than for the combined approaches: 10.9 vs.
6.6% (CM vs. TM) and 4.5 vs. 4.2% (SM vs.TM) for
A and H analyses, respectively.

Accuracy comparisons favored the combined analyses
over the pedigree for all individual-tree mixed models in
both traits, except for the non-genotyped parent and
offspring from the CM (Table 3; Fig. 1; Online
Resource 3). For the TM, the expected accuracy averaged
across groups increased from 0.62 to 0.64 (+ 3.6%) for
DBH and from 0.49 to 0.58 (+ 20.7%) for TH. For the
extended mixed models (i.e., CM and SM), the incre-
ments were slightly negative for DBH (from 0.70 to 0.69,
− 1.3%) or positive for TH (from 0.51 to 0.61, + 21.8%).
However, the expected gain in the accuracy with respect
to the classical pedigree approach varied among the non-
genotyped mothers and offspring and genotyped off-
spring for the different models and traits. Thus, associat-
ed with lower heritability for TH, the expected gain in the
accuracies of breeding values for parents and all offspring
using the combined approachwas higher for TH (varying
from 9.0 to 43.5%) than for DBH (varying from − 2.7 to
6.2%) (Table 3; Fig. 1). In short, the accuracy of overall
predicted breeding values from the combined approach
increased with respect to the classical pedigree-based
approach.

As expected, when the number of offspring per moth-
er increases, the accuracy of mother breeding values
from the A and H matrices increases for both traits
(Fig. 2). For both traits, more complex models produced
higher accuracies than the reduced model (i.e., TM), and
the combined approach (H matrix) was superior to that
of pedigree approach (A matrix), except for the trait-
model combination DBH-CM. Therefore, the observed
increase in accuracy resulting from using genomic data
could potentially reduce the number of tested offspring.

Discussion

In forest tree breeding, there is growing interest in apply-
ing GBLUP using a genomic individual-tree mixed mod-
el to increase genetic gains per unit of time. However, the
application of GBLUP requires genotyping all the trees
involved in the prediction. Although genotyping costs
have dramatically decreased in recent years, genotyping a

Table 2 Estimation of genetic parameters with pedigree and
combined approaches for diameter at breast height (DBH) and
total height (TH) in Eucalyptus grandis using different individual-
tree mixed models with spatial and competition effects

Method of genetic evaluation DBH TH

TMa CMa TMa SMa

Pedigree

Additive (direct) variance 5.76 7.56 1.08 1.16

Additive indirect variance – 1.12 – –

Direct and competition correlation – −0.94 – –

Replicate variance 0.19 0.25 0.75 0.06

Permanent environmental variance – 0.16 – –

Spatial variance – – – 23.24

Residual Variance 12.11 9.30 5.38 4.96

Heritability 0.32 0.48 0.17 0.19

Combined

Additive (direct) variance 6.21 6.26 1.14 1.26

Additive indirect variance – 0.43 – –

Direct and competition correlation – −0.99 – –

Replicate variance 0.19 0.25 0.75 0.02

Permanent environmental variance – 0.10 – –

Spatial variance – – – 2.71

Residual Variance 11.76 8.52 5.34 4.85

Heritability 0.35 0.44 0.18 0.21

a See text for models’ abbreviations
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large number of trees may not be cost-effective (Beaulieu
et al. 2014). An alternative genomic selection method
involves combining information from a few genotyped
and many non-genotyped trees with pedigree-recorded
data, into an overall relationshipHmatrix. The combined
H matrix can be seen as a modification of the regular A
matrix to accommodate genomic relationship (Legarra
et al. 2014). We investigated the accuracy of breeding
values of non-genotyped mothers and offspring and ge-
notyped offspring in a population of E. grandis as well as
the influence of the heritability of the trait and the inclu-
sion of competition genetic effects or environmental
heterogeneity in an individual-tree mixed model on the
estimated variance components and accuracy of breeding

values. This preliminary study intended to assess the
feasibility and usefulness of including marker data in
the genomic evaluation of trees, using the combined
approach methodology.

Cappa et al. (2016) highlighted the advantages of the
marker-based relatedness estimates over the expected
categorical measure of relationships using a sample of
166 genotyped offspring from the same data-set used in
this study. The combined relationshipHmatrix diffused
the information from genomic markers to non-
genotyped offspring and parent trees and leveraged this
information by more accurately reconstructing family
relationships of all trees: genotyped and non-genotyped
and with or without phenotype. For example, based on

Table 3 Mean and standard deviations of estimated theoretical
accuracies for the predicted breeding value based on the pedigree
and combined approaches for diameter at breast height (DBH) and

total height (TH) in Eucalyptus grandis using different individual-
tree mixed models

Method of genetic evaluation DBH TH

TMa CMa TMa SMa

Pedigree

Mothers 0.67 ± 0.07 0.72 ± 0.07 0.54 ± 0.07 0.57 ± 0.08

Genotyped offspring 0.60 ± 0.02 0.68 ± 0.02 0.46 ± 0.02 0.48 ± 0.02

Non-genotyped offspring 0.60 ± 0.03 0.68 ± 0.03 0.46 ± 0.02 0.48 ± 0.02

Average 0.62 ± 0.04 0.70 ± 0.04 0.49 ± 0.04 0.51 ± 0.04

Combined

Mothers 0.68 ± 0.07 0.71 ± 0.07 0.60 ± 0.08 0.62 ± 0.07

Genotyped offspring 0.64 ± 0.02 0.69 ± 0.02 0.66 ± 0.03 0.68 ± 0.04

Non-genotyped offspring 0.61 ± 0.03 0.67 ± 0.03 0.50 ± 0.03 0.53 ± 0.03

Average 0.64 ± 0.04 0.69 ± 0.04 0.58 ± 0.05 0.61 ± 0.04

a See text for models’ abbreviations

Fig. 1 Expected average percent
increases of the accuracy of
breeding values for mothers and
offspring from the combined
approach (H matrix) compared
with the classical pedigree (A
matrix) using the standard model
(TM), competition model (CM),
and spatial model (SM) for
diameter at breast height (DBH)
and total height (TH)
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their contemporary pedigree, several pairs of seemingly
unrelated mothers in A appeared as related in H,
highlighting the value of capturing historical pedigree
through their DNA fingerprints resulting from related-
ness among their offspring in G matrix. Therefore, this
methodology is advantageous even when molecular
information from the parents is lacking as it offers a
backward projection of the relationships between geno-
typed offspring towards the relationship between
mothers.

From a breeding perspective, the accuracy of the
selection criteria is important for the realized genetic
progress (Loberg et al. 2015). It is thus essential to know
how relationship matrices (pedigree or combined) using

different individual-tree mixed models affect the accu-
racy of the breeding values. Although conventional
selection using pedigree information has been shown
to effectively improve growth traits in E. grandis
(Marcó andWhite 2002; Harrand et al. 2009), including
more information (i.e., genomic) is expected to increase
the accuracy and therefore the probability of correct
ranking of selection candidates. However, the increase
in the accuracy of breeding values in forest tree breeding
populations based on joint phenotypic, pedigree, and
genomic information remains uncertain. For both traits
(DBH and TH), our results showed that the combined
approach led to an increase in the average of theoretical
accuracies for genotyped offspring, but also for non-
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Fig. 2 Estimated theoretical
accuracy of breeding values for
mothers for the pedigree (A
matrix) and the combined (H
matrix) approaches using the
standard, spatial, and competition
individual-tree mixed models vs.
the number of phenotyped
offspring per mother for (a)
diameter at breast height (DBH)
and (b) total height (TH). The
trend lines are logarithmic curves
and show the increment in the
estimated accuracy with the
increment in the number of
phenotyped offspring per mother
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genotyped offspring and mother trees using the TM and
SM models. These results confirmed that the incorpora-
tion of genomic information (i.e., DArT markers) in-
creased the accuracies with respect to a pedigree-based
approach. Several studies in animal breeding showed
that the accuracy of the combined approach is greater
than that of the pedigree approach (from 16.7 to 94.4%)
for both phenotyped and non-phenotyped individuals
(see Table 1 in Legarra et al. 2014). It should be pointed
out that the number of genetic markers used in genotyp-
ing is essential in resolving historical relationships as
indicated by the lack of accuracy improvement when a
modest number of markers was used when compared to
conventional pedigree approach (831 SNPs; Legarra
et al. 2011). The authors (Legarra et al. 2011) argued
that denser SNP marker coverage of the genome and a
greater number of animals were needed to improve the
accuracy of genomic prediction.

Genomic selection is promising for low-heritability
traits (e.g., Calus et al. 2008; Grattapaglia and Resende
2011). Thus, for these traits, genomic selection should
be more efficient than standard pedigree selection. Our
results showed that the advantage of the combined over
pedigree approach was larger under low-heritability
traits (TH) than in high-heritability traits (DBH).
However, the variation (i.e., standard deviation) in the
accuracy of breeding values of genotyped and non-
genotyped offspring from the combined approach in-
creased for the low-heritability trait (TH) with respect to
the pedigree-based approach for the two mixed models
studied (TM and SM; Table 3). Even under this condi-
tion, however, the combined approach was more accu-
rate than the pedigree approach in all cases. These
findings confirm that genomic selection is particularly
beneficial for low-heritability traits, even when using
the more complex mixed model with competition ge-
netic effects or environmental heterogeneity.

Genetic and environmental competition effects
and environmental heterogeneity can affect the pre-
cision of the predicted breeding value and need to be
considered for obtaining accurate breeding value pre-
dictions. Accounting for competition and spatial ef-
fects has been shown to increase the accuracy of
breeding values for both parents and offspring when
pedigree was used (Dutkowski et al. 2006; Costa e
Silva and Kerr 2013). Although with lower incre-
ments, our results suggest that it is also true for the
E. grandis evaluation using the proposed combined
approach. To our knowledge, this is the first study

applying competition or spatial analysis with the
combined genomic selection method in forest genetic
trials. Therefore, making comparisons with other
studies is not possible. In a crop breeding context,
Lado et al. (2013) used different models to adjust a
spatial trend in phenotypic data of 384 wheat
(Triticum aestivum) genotypes and concluded that a
correction of spatial variation is an essential to in-
creasing the prediction accuracy in genomic selection
models.

The scaled G matrix reflects a translation from the
relationships relative to the genotyped trees to relation-
ships relative to the base population defined by pedigree
(i.e., mothers). An incorrect scale of G matrix can bias
the predicted breeding values of genotyped individuals
relative to those of the non-genotyped ones (Chen et al.
2011; Forni et al. 2011; Simeone et al. 2011; Vitezica
et al. 2011; Christensen et al. 2012). We scaled the
genomic relationship matrix G following closely the
work of Christensen et al. (2012). In a simulation study,
Vitezica et al. (2011) observed less accurate genomic
breeding values with incorrectly scaledG but only under
strong selection (i.e., non-random) of genotyped indi-
viduals and when genotyping was across 10 genera-
tions. However, in the present study, the genotyped trees
were randomly selected (i.e., unselected). Moreover,
when different scale parameters (λ) were used to test
the effects of the differences between genomic and
pedigree-based information on the dispersion parame-
ters (Aguilar et al. 2010), only slight differences were
found in both studied traits (see an example for DBH in
Online Resource 2).

Although the small number of genotyped trees (188
out of 2026) and relatively low number of markers
assayed (2816 DArT markers) is still less than optimal
for a powerful genomic selection study, the combined
approach used for the current generation should be
applied to the subsequent generation to test the predic-
tive ability of these DArT markers. Cross-validation is
difficult to implement due to the scarcity of available
trees with genomic information. However, preliminary
results on genotyped offspring without phenotype infor-
mation showed, for the two traits analyzed, that the
theoretical accuracy of breeding values from the com-
bined approach decreased (with respect to the offspring
with phenotype) but remained always higher than that
obtained by the pedigree approach in all the mixed
models studied (results not shown). For example, under
TM, the accuracies for the non-phenotyped and
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genotyped offspring were 0.41 for DBH and 0.33 for
TH using the combined approach, while for the pedi-
gree, the respective values were 0.33 and 0.27. Results
from this preliminary study indicate that the H matrix
also has superiority over the A matrix in the prediction
for non-phenotyped and genotyped offspring. These
predictive abilities are lower (0.54 and 0.51 for DBH
and TH, respectively) than those reported by Resende
et al. (2012) for two Eucalyptus populations genotyped
with more than 3000 DArT markers. However, these
values were obtained for small effective population size
(11 and 51) and high heritabilities (0.53 and 0.42 for
DBH and TH, respectively). The predictive ability of the
proposed genomic selection method needs to be inves-
tigated under higher number of genotyped trees and
denser DArT marker coverage of the genome.

Conclusions

The combined approach provides a simple and efficient
genomic selection methodology to jointly evaluate ge-
notyped and non-genotyped trees, evenwhen phenotype
has not been assessed for parental trees. The method can
be easily extended to competition or spatial individual-
tree mixed model analysis. This empirical study shows
the importance of using all available information (i.e.,
phenotype, pedigree, and genomic) to improve the ac-
curacy of breeding values for growth traits with low to
moderate heritability in an E. grandis population.
Genomic prediction using an individual-tree mixed
model that takes into account competition effects or
environmental heterogeneity was more accurate than a
prediction based on the standard individual-tree mixed
model. These results indicated that genomic selection
for E. grandis is promising. However, using a higher
number of markers and more trees would allow a more
efficient evaluation of the genomic selection potential
for growth traits in the E. grandis population.
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