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In ordinary computers, it is sometimes useful to flip a
coin. Non–deterministic algorithms (those programs that
involve making such random choices at some steps) can
be far more efficient in finding solutions to a variety of
problems [1]. The generalization of this kind of methods
seems to be useful also for quantum computers where
some randomized algorithms have recently been proposed
[2, 3]. However, the situation in quantum computation
is more involved: To introduce a random evolution in a
quantum computer one needs much more than a coin,
a dice or a roulette! In fact, the operations available
for a quantum computer are not only infinite but also
form a continuous set (i.e., they are uncountably infinite).
However, the recent work by J. Emerson and coauthors
[4] shows that enforcing a (pseudo) random evolution on
a quantum computer is not as hard as one may believe. In
fact, in their paper the authors present a simple method,
an algorithm, to enforce a quasi random evolution by only
acting on individual quantum bits and controlling simple
two–body interactions between neighboring qubits.

The usefulness of coin–flipping in classical computa-
tion could be rather counterintuitive at first sight. How
is it, one may ask, that we can resort to randomness to
find the answer to a well defined mathematical problem?
Randomized algorithms turn out to be efficient ways of
finding solutions to some problems if we can tolerate er-
roneous answers with low probability. This is indeed the
case for some problems for which it is easy to check if
the solution provided by our computer, which may be
erroneous, is indeed a correct solution. (Some problems
of this class, which is known as NP [1], can be more
efficiently solved by randomized algorithms than by de-
terministic ones.) Coin–flipping is also useful in classical
computation when performing calculations that involve
statistical sampling over many realizations of some pro-
cess. This is what one is typically interested in doing
when using computational tools to study properties of
complex natural systems. In this context, the most pop-
ular coin–flipping tool is the technique named after the
most famous roulette: the Monte Carlo method.

Quantum computers are believed to be much more ef-
ficient than classical ones [5]. Randomness enters natu-
rally in quantum computation as it is inherent to quan-
tum systems, which typically give different answers when
subject twice to the same measurement. Due to this fact,
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in a typical quantum algorithm the result of the final
measurement of the state of the computer is not always
the same. Different results are obtained with a probabil-
ity distribution that encodes the answer to the problem
at hand. Quantum algorithms are cleverly designed in
such a way that by running the computation a number
of times, the final measurement reveals just enough prop-
erties of the probability distribution to answer the desired
question (and, for example, factor an integer into prime
numbers). But a typical quantum algorithm is not at all
random, since at every stage before the final measure-
ment the quantum computer evolves according to well
defined deterministic rules. The evolution of the state of
the quantum computer is described by a unitary operator
which, for a system with n quantum bits, is represented
by an N × N unitary matrix (a member of the group
U(N), where N = 2n). Thus, there would be nothing
random in the evolution of a quantum computer running
a typical quantum algorithms.

However, the idea of using random unitary operators
in some quantum algorithms has been recently proposed.
Some solid results have been established in the area of
quantum communication. Indeed, Charles Bennett, Pe-
ter Shor and their coworkers [2, 3] showed that using
random operations one can decrease the communication
cost to achieve tasks such as remote state preparation or
to construct more efficient quantum data hiding schemes.
Also, it is believed that the use of random unitary oper-
ators may be essential to achieve more efficient ways of
characterizing the way in which the quantum computer
is affected by the interaction with its environment. In
general, a complete characterization of the decoherence
process[6] induced by the environment would require the
costly application of both process and state tomography
[5, 7]. However, as Emerson et al argue [4] averaging
over random unitaries, simple benchmarking tools such
as fidelity or purity decay could become independent of
the target operation and properly characterize the most
important aspects of decoherence.

But how is it that one can induce a quantum computer
to evolve in a random way? As mentioned above, this is
much harder than flipping a coin. The reason is that
all N ×N unitary matrices describe quantum evolutions
that are in principle allowed. To sample this continu-
ous set seems to be hard, requiring a number of elemen-
tary operations which was believed to be huge (close to
N2 log2(N2)). The results reported by Emerson et al
[4] show that there is a remarkably simple alternative to
this. In their paper, these authors show that it is pos-



2

sible to device a simple set of operations that generate
an ensemble of pseudo–random unitaries with the same
coarse statistical features of the uniform ensemble over
the group U(N). To achieve this, it is necessary to per-
form m iterations of a proceedure that consists of two
steps. The first step is to rotate randomly each quantum
bit, which can be done by applying a random magnetic
field or a sequence of laser pulses with random intensi-
ties (the direction and the angle of rotation of each qubit
are 3n random variables which are the only inputs the
method requires). The second step is to induce an inter-
action between neighboring pairs of qubits. This interac-
tion creates entanglement between the quantum bits and
is of a very simple nature (in technical terms, it can be
described by the operator U = exp(iπ

∑
j σj

z ⊗ σj+1
z /4)

where σj
z is the Pauli matrix of the j–th qubit). Remark-

ably, this is all one needs to get a fair approximation
to a random ensemble: single qubit rotations and sim-
ple two–body interactions. In their paper, Emerson et
al show that the method produce an ensemble with the

properties one is mostly interested in for quantum infor-
mation. For example, they show that the entanglement
of the states obtained by applying the above process to
simple initial states is indistinguishable from the one cor-
responding to a truly random ensemble (the convergence
between the two ensembles is exponentially fast in m,
the number of iterations). Also, compelling evidence is
shown pointing towards the fact that the distribution of
matrix elements of the unitary operator obtain by the
above proceedure rapidly approaches that of a uniform
ensemble. The simplicity of the method is ilustrated by
the authors of [4] by actually implementing it in a toy
quantum information processor using liquid state NMR
techniques.

Quantum coin–tosses seem now efficiently imple-
mentable, at least in an approximate but still useful way.
Their application in the design of new quantum algo-
rithms and in designing new benchmarking techniques
for characterization of decoherence will certainly be an
active area of research in the near future.
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