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Phase-space approach to the study of decoherence in quantum walks

Cecilia C. LgpeZ and Juan Pablo P5Z
1Departamento de Bica “J. J. Giambiagi,” FCEyN UBA, Pabello1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Theoretical Division, MSB210, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 1 August 2003; published 3 November 2003

We analyze the quantum walk on a cycle using discrete Wigner functions as a way to represent the states and
the evolution of the walker. The method provides some insight on the nature of the interference effects that
make quantum and classical walks different. We also study the behavior of the system when the quantum coin
carried by the walker interacts with an environment. We show that for this system quantum coherence is robust
for initially delocalized states of the walker. The use of phase-space representation enables us to develop an
intuitive description of the nature of the decoherence process in this system.
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[. INTRODUCTION shown that the spread of the decohered walker becomes dif-
fusion dominated proceeding slower than in the pure quan-
Quantum walks[1] have been proposed as potentially tum case. This result was obtained both for models with
useful components of quantum algorithrfiz]. In recent decoherence in the coin and in the position of the walker
years these systems have been studied in detail and sorffe-7]. However, it is known that classical correspondence in
progress has been made in developing new quantum algthese systems has some surprising features. For example, for
rithms using either continuoU8] or discretg4] versions of models with some decoherence in the quantum coin the
quantum walks. The key to the potential success of quanturasymptotic dispersion of the walker grows diffusively but
walks seems to rely on the ability of the quantum walker towith a rate that does not coincide with the classical [gle
efficiently spread over a grapgla network of sitesin a way  Also, a small amount of decoherence seems to be useful to
that is much faster than any algorithm based on classical coiachieve a quantum walk with a significant speefbiy].
tosses. In this work we will revisit the quantum walk on a cycle
Quantum interference plays an important role in quantuniand on a ling considering models where the quantum coin
walks being the crucial ingredient enabling a faster than clasinteracts with an environment. The aim of our work is two-
sical spread. For this reason, some effort was made in recefdld. First we will use phase-space distributidns., discrete
years in trying to understand the implications of the proces$Vigner function$ to represent the quantum state of the
of decoherence for quantum walks—7]. Decoherence, an walker. The use of such distributions in the context of quan-
essential ingredient to understand the quantum-classical tratum computation has been proposed in Réf3], where
sition [8], could turn the quantum walk into an algorithm as some general features about the behavior of quantum algo-
inefficient as its classical counterpart. The models studied imithms in phase space were noticed. A phase-space represen-
this context can be divided in two classes depending on howation is natural in the case of quantum walks, where both
the coupling with an external environment is introduced. Inposition and momentum play a natural role. Our second goal
fact, a quantum walk consists of a quantum particle that cais to study the true nature of the transition from quantum to
occupy a discrete set of points on a lattice. In the discretelassical in this kind of model. We will show that models
version, the walker carries a quantum coin, which in thewhere the environment is coupled to the coin are not able to
simplest case can be taken as a spin-1/2 degree of freedoinduce a complete transition to classicality. This is a conse-
The algorithm proceeds so that the walker moves in one ofjuence of the fact that the preferred observable selected by
two possible directions depending on the state of the spitthe environment is the momentum of the walker. This ob-
(for more complex regular arrays, a higher spin is required servable, which is the generator of discrete translations in
So, in this context it is natural to consider some decoherencposition, plays the role of the “pointer observable” of the
models where the spin is coupled to the environment andystem[8,14]. Therefore, as we will see, the interaction with
others where the position of the walker is directly coupled tothe environment being very efficient in suppressing interfer-
external degrees of freedom. The specific system in whiclence between pointer states preserves the quantum interfer-
the algorithm is implemented in practice will dictate which ence between superpositions of eigenstates of the conjugate
of these two scenarios is more relevant. Several experimentabservable to momenturi.e., position. Again, the use of
proposals to implement discrete quantum walks in systemphase-space representation of quantum states will be helpful
such as ion trapf9], cavity QED[10], and optical lattices in developing an intuitive picture of the effect of decoher-
[11] have been analyze(see also Ref[12] for a recent ence in this context. The paper is organized as follows: In
NMR implementation of a continuous quantum walk Sec. Il we review some basic aspects of the quantum walk on
The main effect of decoherence on quantum walks ighe cycle. We also introduce there the phase-space represen-
rather intuitive: as the interaction with the environmenttation of quantum states for the quantum walk and discuss
washes out quantum interference effects, it restores sonsmme of the main properties of the discrete Wigner functions
aspects of the classical behavior. For example, it has beéor this system. In Sec. Ill we introduce a simple decoher-
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ence model and show the main consequences on the quantdom basis of the walker a®elow p denotes the total density
walk algorithm. In Sec. IV we present a summary and oumatrix of the system formed by the walker and the ¢oin

conclusions. N_1

0)= Cy | K)(K'|®p2(0), 3
Il. QUANTUM WALKS AND THEIR PHASE-SPACE p(0) k,kzzo k’k| HK'|®p2(0) ®

REPRESENTATION , o _
where p,(0) is the initial state of the quantum coifwe

A. Quantum walks on the cycle assume that the initial state of the combined system is a
The quantum walks on an infinite line or in a cycle with ~ Product, but this assumption can be relaxefter t itera-
sites are simple enough systems to be exactly solvable. Féens of the quantum map the reduced density matrix of the
the infinite line the exact solution was presented in RE§].  walker (denoted ap,,) is

The case of the cycle was first solved in Rgf]. However, N-1

the exact expressions are involved enough to require numeri- _ / ,

cal evaluation to study their main features. Here we will pult k'k2=0 i TR DK, @
review the main properties of this system presenting them in

a way which prepares the ground to use phase-space repre- f(k,k’,t)=Tr2[MLp2(O)Ml,t], (5)

sentation for quantum statése will focus on the case of a
cycle, the results for the line can be recovered from ours witlwhere the operata¥, is defined as
t<N).

For a quantum walk in a cycle df sites, the Hilbert My =exp —i2mka,/N)H. (6)
space isH="Hy® H,, whereH, is the space of states of the
walker (an N-dimensional Hilbert spageand, is the two-
dimensional Hilbert space of the quantum c@nspin 1/2).
The algorithm is defined by a unitary evolution operator

All the temporal dependence is contained in the function
f(k,k’,t) which can be exactly computed in a straightfor-
ward way: One should first expand the initial stat€0) in

which is the iteration of the following map: a (nonorthogonal basis of operators of the forfw)( |
(1,m=1,2), where|¢}) are the eigenstates of the operator
Upaik=U"H. D) M e, Ml =N | Bl)). The explicit expressions for the

) ) ) eigenstatese})) and the eigenvalues, ; will not be given

HereH is the Hadamard operator acting on the Hilbert spacg,ere since they can be found in the literatgsee, for ex-
of the quantum coiiH= (o +0)/\2, o} being the usual  ample, Ref[15]). After doing this the evolution of the quan-
2X 2 Pauli matriceb The operatot is the cyclic translation  tum state is fully determined by the equation
operator for the walker, which in the position basis is defined
asU|n)=|n+1)(modN). It is worth stressing that the op- e * | My, amy
eratorL>J"Z is nozching but a spin-controlled translation acting | (K’ ’t)_l,mz'l,z NN m) (Bl p2(0) B0 ) (b i)
asU%n)®@|=|n+1)®|?). So, the mapi,,, consists of a 7
spin-controlled translation preceded by a coin toss, which is
implemented by the Hadamard operatitite use of the Had- Below we will describe the properties of this solution using a
amard operator in this context is not essential and can bBhase-space representation for the quantum state of the sys-
replaced by almost any unitary operator on the d¢aip. tem.

The notion of phase-space is natural in the context of this
kind of quantum walk. In fact, the position eigenstates B. Phase-space representation

{In),n=0,... N—1} form a basis of the walkers’ Hilbert Wigner functiong16] are a powerful tool to represent the
spaceHy . The conjugate basis is the so-called momentunyae ‘and the evolution of a quantum system. For systems
basis{|k),k=0, ... N—1}. Position and momentum bases \yith a finite-dimensional Hilbert space, the discrete version
are related by the discrete Fourier transform, i.e., of Wigner functions was introduced using different methods
(see Ref[17]). We will follow the approach and notation
1 ) used in Ref[13], where these phase-space distributions were
(nlk)y= \/—Nex;:(Zmnk/N). (2 applied to study properties of quantum algorithms. For com-
pleteness, we will give here the necessary definitions and
The cyclic translation operatdy that plays a central role in g:gilen?/ws;rzg? f?j:]::rt]i?)n”s]OSt remarkable properties of the dis
the quantum walk is diagonal in momentum basis since For a system with .alN-dimensionaI Hilbert space the

U|k>.=exp(—.|27-rk/N)|k>. This simply m@pates that MOMEN- yiscrete Wigner function can be defined as the components
tum is nothing but the generator of finite translations. As f the density matrix in a basis of operators defined as
consequence of this, the total unitary operator defining the

guantum walk algorithm is also diagonal in such basis. This A(q,p)=UIRV Pexp(impg/N). (8)

fact, which was noticed before by several authors, enables a

simple exact solution of the quantum walk dynamics. IndeedThese are the so-called phase-space point operators. They are
we can write the initial state of the system using the momeneéefined in terms of the cyclic shif (which in the position
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FIG. 1. (Color) Wigner functionsW(q,p) for a localized state % % 500 300
(up) and for a delocalized superposition stétewn). The dimen- position n
sion of the Hilbert space isl=41. The horizontalvertica) axis
corresponds to positiofmomentum. Color code is such that red FIG. 2. Discrete Wigner functiow/(q,p) at different times. The
(blue) regions correspond to positiveegative values while white initial state of the walker is localized at,= 20 (the dimension of
corresponds to zera=8, n;=6, n,=9). the Hilbert space isN=41). The quantum coin is in an unbiased

initial state. Horizontalvertical) axis corresponds to positigmo-
basis acts asU|n)=|n+1)), the reflection operatoR  mentum.

(which in the position basis acts &n)=|-n)), and the  apjjity distributions can be obtained by adding values of the
momentum shifty (which generates cyclic displacements in Wigner function along lines in phase-space. For this to be
the momentum basis, i.eV[k)=|k+1)). Phase-space op- possible, it turns out that the phase-space has to be defined as
erators are unitary, Hermitian, and form a complete (_)rthogoél grid of 2NX 2N points whereW(q,p) is given at each

nal basis of the space of operatéiisey are orthogonal in the  hoint precisely by Eq(10). Thus, adding the values of the
Hilbert-Schmidt inner product since they satisfy thatyyigner function over all points satisfying the conditiam
TILA(Q,P)A(Q’,p") J=N&g ¢ 6p,p1). Expanding the quan- _pp—c one gets the probability to detect an eigenstate of

tum state in theA(q,p) basis as the operatorD(b,a)=UP"V®exp(mab/N) with eigenvalue
N—1 exp(mc/2N) (the sum is equal to zero if such eigenvalue
_ does not exist In particular, adding the Wigner function
P q,pzzo W(a.p)AG.p), © along vertical linegj=c one obtains the probability to detect

eigenstates of the operat®(0,1)=V, with eigenvalues
the coefficientdV(q,p) are the discrete Wigner functions of given by exp{mc/2N). These numbers are equal to zere if
the quantum state, which are obtained as is odd and they are equal to the probability for measuring the
position eigenstatéc/2) when ¢ is even. Complementary,
adding values of the Wigner function along horizontal lines
W(a.p)= NTr[pA(q,p)]. (10 enablgs us to compute t%e probability to dgtect a momentum
eigenstate.
This function has three remarkable properties that almost A final remark about properties of the discrete Wigner
give it the status of a probability distribution. The first two function is in order. Figure 1 shows the Wigner function of a
properties are evident: Wigner functions are real numkteers position eigenstaténg) and of a superposition of two posi-
consequence of the Hermiticity of the phase-space opefatortion eigenstates, such agi()+|n,))/y2. As we see, in the
and they provide a complete description of the quantum statfirst case the function is positive on a vertical line located at
(a consequence of the completeness of the basis of such op=2n, and is oscillatory on a vertical line located qt
erator$. The third property is less obvious: marginal prob- =2ny,+ N. The interpretation of these oscillations is clear. It
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FIG. 3. (Color) Probability distribution in position after= 100 iterations for an initially localized walker with unbiased spii= 301,
ny=150. We only plot the function for sites such that t+ny adds to an even numbésolid), and also include the classical distribution
(dotted.
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FIG. 4. (Color) Discrete Wigner functionVN(q,p) at different times, for an initial state of the walker which is a superposition of
two position eigenstatesN(=81n,;=28n,=52) and an unbiased initial quantum coin. (& we plot the complete Wigner function
(horizontal axis and vertical axis correspond to position and momentum, respéectindly and(c) we only plot the Wigner function in the
phase-space region defined by the black rectangle showa).ifin this way the small scale oscillations of the Wigner function can be
observed in detail.

is well known that Wigner functions display oscillatory re- ability distribution for different positions. This distribution is
gions whenever there is interference between two pieces ofghown in Fig. 3 and has been previously studied in the lit-
wave packet. In this case, the cyclic boundary conditions werature(see Refs[5,6,11,159). Like its classical counterpart,
are imposing(that originate from the fact thd andV are  at a given timet the state initially located at, has support
cyclic shift operators generate a mirror image for every only on states satisfying thain+t+ng adds up to an even
phase-space point. Thus, the oscillating strip can be intemumber. However, in general the quantum distribution differs
preted as the interference between the positive strip and ifsom the classical one, exhibiting peaks located nat
mirror image. For the case of a quantum state which is a-t//2 and a plateau of height+[2t aroundn,. After some
superposition of two position eigenstates, we observe tw@me the Wigner function of the quantum walker develops a
positive vertical lines with the usual interference fringes inshape that resembles a thread, as it is clear in the pictures.
between them. All these vertical lines have their correspondror this reason we will call this a thread state.
ing oscillatory counterparts originated from the boundary |t is also interesting to analyze the evolution of the quan-
conditions which are located at a distai:en what follows  tum walk for delocalized initial states. In particular, we will
we will show Wigner functions for typical states of a quan- consider an initial state that is a coherent superposition of
tum walker. two position eigenstatgsvhose Wigner function was already
For an initial state where the walker starts at a given podisplayed in Fig. L We find a Wigner function that develops
sition and the spin is initially unbiasefl#(0)),=(|0) into a sum of two threads with a region in between where
+i|1>)/\/§], the behavior of the quantum walker starts tointerference fringes are evident. This is displayed in Fig. 4.
deviate from its classical counterpart at early tinfiesthis ~ Some properties of the quantum walk for this kind of delo-
paper we will only consider unbiased initial states for thecalized initial states were analyzed in Rgff8] where it was
quantum coii The phase-space representation of the state isoticed that the asymptotic probability distribution can be
shown in Fig. 2 and makes evident that a peculiar pattern ofather different from the one obtained from a localized initial
guantum interference fringes develops between the differerdtate. Below, we will show that the process of decoherence
pieces of the wave packet. The consequence of these inteaiffects localized and delocalized initial states in a rather dif-
ference effects is evident also when one looks at the probferent way.
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FIG. 5. (Color) Discrete Wigner functiotW(q,p) for a fixed time ¢(=11) and different values of the strength of the coupling to the

environment ¢). The initial spin is in an unbiased state. Horizontal axis and vertical axis correspond to position and momentum, respec-

tively (total dimension of the Hilbert space =41 and the initial state is located a§=20).
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[ll. DECOHERENCE AND THE TRANSITION rotation axis by writingp,(0) in the basis formed by the
FROM QUANTUM TO CLASSICAL identity and the Pauli operators. In the Appendix we show
the explicit form of this matrix representation, which is help-
ful in finding exact and numerical solutions to the problem.
We will consider_a quantum walk wh_ere the quantum coiNyL what follows we will show results for the ca§c-§/ (the
couples to an environment. To describe such coupling Weher cases are qualitatively similaffo find the state of the
will use @ model which was introduced and studied in detailyker at arbitrary times we simply need to find eigenstates
in Ref. [19]. In that paper it was ;hown that one can mimic 5,4 eigenvalues of the superoperadgy. This can always be
the coupling o an ext_ernal environment by a S€QUeNnce Ofone numerically and also analytically in the interesting case
random rotations applied to the quantum coin, which haveof y=0, which can be denoted as “total decoherence.” In

the effect of gcrampling the spin polarization. More Pr€-such case, the exact solution turns out to be
cisely, these kicks will be generated by the evolution opera-

A. The decoherence model

tor T,k ,t)=cod[2m(k—k')/N]
Ki=exp(—ien- o), (11) x( o Si2atekoN)
Ipxcos{Zfr(k—k')/N] '

where the angleg; take random values and is a fixed
vector specifying the rotation axis. The virtue of this model . :
is not only its simplicity but also the fact that can be eXperi_Several features of the decoherence effect are evident in the

mertaly plemerted i a convolable mamer Usng, 0se UL, T8 STATTEN, procces = enveney b
example, NMR techniques. 9 y

After the application of one step of the quantum Walkthe momentum basignatrix elements wittk—k’=N/4 are

algorithm and one kick the evolution of the total system is _maX|maIIy s_uppre_sse)dThe decay O.f nondlagonal elements
is exponential in time, as already discussed in REJ]. It is

p(t+1)=K;U"Hp(t)HU —aZKJ_‘r_ (12) also clear that momentum eigenstates are not affected by the
interaction since they are eigenstates of the full evolution
To obtain a closed expression for the reduced density matrifact, from Egs.(15) and (16) follows f,,(k,k,t)=1]. In this
of the walker for an ensemble of realizations of the randonsense they are perfect pointer states for this model. In what
variablese; we follow the method proposed in R¢l9] (see  follows we will present results concerning the evolution of
Ref. [6] for a similar approach Assuming that these angles several initial quantum states.
are randomly distributed in an intervat-(, + «), this den-

sity matrix is B. Decoherence, pointer states, and the transition
from quantum to classical
a de; a de; . .
pw(t)=Tr, 5 ——KU%H - .- K;U%2H The effect of decoherence on the evolution of states which
—qla —qla - . - o
are initially localized in position has been analyzed else-

where[5-7]. As shown in Fig. 5, the Wigner function of the
Xpw(0)®p2(O)HU*"zK{- : -HU*"ZK;r . (13 evolved quantum state gradually loses its oscillatory nature.
Thus, instead of a thread state the interaction with the envi-

Expanding the initial state in the momentum basis as beforronment gradually produces a mixed state with a binomial
P 9 Gistribution in the position directiofwhich has an approxi-

enables us to simplify this expression. In fact, after doing : .
. : : ' mately Gaussian shape for largg but remains constant
this one can integrate over the random variables to find oo . S
along the momentum direction. It is worth noticing that for

N-1 any value ofy the resulting state has support only on posi-
pu()= > Croer (kK D) K)(K'], (14)  tion eigenstates satisfying that the sog+n+t is equal to
kk'=0 an even number, as it was already pointed out for both the
classical distribution Y=0) and the purely quantum one
Tr(k, k', t)=Tr[OL(p,(0))]. (15  (y=1) in the preceding section. It is interesting to notice

that the process of decoherence has a rather simple interpre-
HereO, is a superoperator acting on the spin staepend- tation when represented in phase space: Decoherence in
ing on directionn of the kicks as phase-space is roughly equivalent to diffusion in the position
direction. This is not unexpected: In fact, in ordinary quan-
(1+7y) v (1=v) t tum Brownian motion models a coupling to the environment
On(p2)= T MkP2My + T‘TnM k02M 0, through positio(momentun) gives rise to a momentuipo-
(16)  sition) diffusion term in the evolution equation for the
Wigner function. The situation here is quite similar, since the
wherey=sin(2x)/(2«) is a parameter related to the strengthwalker effectively couples with the environment through its
of the noise(notice thaty=1 corresponds to unitary evolu- momentum. This is indeed the case because the environment
tion, i.e., toa=0). One can find a simple matrix represen- interacts with the quantum coin which is itself coupled with
tation for the superoperatdd, for different choices of the the walker through the displacement operator which is diag-
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0.09 : : : From the above analysis we could be tempted to conclude
that the interaction between the quantum coin and the envi-
ronment induces the classicalization of the walker. However,
i this is not the case. The process of decoherence induced in
0.06 b this way is not complete. This is most clearly seen by ana-
P lyzing how it is that the interaction with the environment
affects initial states of the quantum walker which are not
initially localized. In Fig. 7 we show the Wigner function of

an initially delocalized statéshown in Fig. 1 under full
decoherence. We can clearly see that decoherence does not
erase all quantum interference effects. In fact, as mentioned
‘ L ‘ above, the interaction with the environment induces diffusion
O0 100 200 300 along the position direction. Therefore, interference fringes
which are aligned along the position direction are immune to
0.09 ‘ ‘ ‘ decoherence. Thus, the final state one obtains from a super-
position of two position eigenstates is not the mixture of two
binomial states but a coherent superposition of them. This
peculiar behavior is easily understood by noticing that this is
a simple consequence of the fact that momentum eigenstates
are pointer states: Decoherence is effective in destroying su-
perpositions of pointer states but highly inefficient in de-
stroying superpositions of eigenstates of the conjugate ob-
servable(position.

0.03r

0.06" i

003" 1

C. Entropy

% 00 200 300 By analyzing the entropy of the reduced density matrix of
the walker one can get a more quantitative measure of the

0.09 ‘ ‘ ‘ degree of decoherence achieved as a consequence of the in-

teraction with the environment. For convenience we will not

examine the von Neumann entrofy but concentrate on the

i linear entropy defined aS, = —In(Tr[pfv]), which is easier

0.06 7 to calculate. This entropy provides a lower boundyd 20].

P It is possible to show that almost no entropy is produced by
the decay of the coherence present in the initially delocalized
superposition state. In fact, this can be seen by comparing
the entropy produced from the initially delocalized superpo-
sition and the one originated from an initial state in which
the walker is prepared in an equally weighted mixture of two

R positions. These entropies can be seen in Fig. 8. The initial
0o 100 200 300 entropy of the mixture is 1 bitin(2)]. It is quite clear from
the curves shown in such figure that the entropy arising from
the initial mixture remains to be 1 bit higher than the one
originated from the initial coherent superposition. Thus, the
guantum coherence present in the initial state is robust under
the interaction with the environment and does not decay at
all.

Figure 8 shows another interesting feature: One would
naively expect a monotonic dependence of the entropy with
the coupling to the environmertivhich is parametrized by
onal in the momentum basis. Therefore, the decoherence eft). However this is not the case since the curves in Fig. 8
fect on the Wigner function is expected to correspond tantersect. This peculiar effect is made more evident in Fig. 9
diffusion along the position direction. where we study the entropy at a fixed time as a function of

As noticed before, if one considers initial states where théhe coupling strength. In this figure a clear indication of a
walker is localized in a well defined position, one can seenontrivial behavior is seen: For early times the entropy
that the probability distribution for the different positions of grows slowly with « and exhibits a flat plateau for large
the walker gradually tends to the classical one by increasingalues ofa. However, as time progresses a peak develops:
the coupling strengthr from a=0 (no kickg to a= /2. The largest value of entropy at a given time is not achieved
This is shown in Fig. 6. by the largest coupling. To the contrary, the largest entropy is

0.031

FIG. 6. Probability distribution in position at=100, for differ-
ent values of the coupling to the environméparametrized byy).
The initial state of the quantum coin is unbiased=301, n,
=150, andn=y). We only plot the function for sites such that
+t+ngy adds to an even numbésolid), and also include the clas-
sical distribution(dotted. Figure 3 shows the same plot without
decoherence.
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FIG. 7. (Color) Absolute value of the density matrix in the position ba$t) and discrete Wigner functiow(q,p) (centej for a state
evolving from an initially delocalized state of the quantum walker under full decoherénd®, (@=0.5m, n;=38, n,=62, N=101). The
presence of quantum interference is manifested in the nondiagonal terms of the density matrix and in the oscillations of the Wigner function.
The small scale oscillations of the Wigner function are shown in the right plot, which sWfgs) in the phase-space region defined by
the black rectangle depicted in the center plot.

attained by an intermediate coupling., whose value de- manifestation of the counterintuitive fact that the decohered
creases with time. state(which is approximately diagonal in position badgs

The fact that for a given time the maximal entropy is nota probability distribution that is more spread for «. than
achieved by the maximal coupling to the environment isfor a>a.. A possible explanation for this peculiar behavior
counterintuitive. As entropy is a measure of the spread of & the following: For high values of the coupling to the en-
distribution, this strange behavior can be rephrased as dronment the state rapidly becomes classical and the spread

in position grows diffusively, as in the classical random

5 : : : walk. When the coupling to the environment is not strong,

T TIITITIT T ] our result seems to indicate that the state of the walker re-

e mnEE R mains “quantum” for a longer time during which it spreads
o at a rate faster than classical. When this quantum state finally
Gt | decoheres it may end up having a larger entropy than the one
" attained for high coupling simply because it is spread over a
wider range of positions. We speculate that there could be a
relation between this peculiar feature and the properties that
] make some degree of decoherence useful for quantum walks
—" as discussed by Kendon and Tregenna in R&s/]. The
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1 i value of thea, introduced above depends on bdthandt
I and could be related to the position of the minima reported in
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steps (time) FIG. 9. Linear entropy as a function of the coupling strength

for various values of timet=5 (solid), 10 (dasheg, 50 (dotted,
FIG. 8. Linear entropy as a function of time for various values100 (), 300 (X), 500 (dash dotted The initial state of the
of the system-environment coupling strength=0 (solid), 0.17 walker is well localized and the initial state of the quantum coin is
(dotted, 0.2 (dash dotted 0.5+ (dashedl The top(down plot unbiased N=401 and all the curves are below the saturation re-
corresponds to an initial state which is an equally weighted mixturegime [In(N)=5.994. It is evident that, after some time, the maxi-
(superposition of two position eigenstate®N=401, n;=150, and  mum value of the entropy is not achieved by the maximum value of
n,=250. the coupling strength.
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Refs.[5,7]. For example, in a cycle regimés N) a. dimin-  expect decoherence to correspond to diffusion along the mo-
ishes with increasingyl as it is also the case for the position mentum direction. Combining the two types of decoherence
of the minima of the so-calledquantum mixing timé¢1,5,7]. (i.e., considering coupling to the environment via the quan-
tum coin and the position of the quantum walkére initial
IV. CONCLUSIONS state corresponding to a superposition of two positions
_ would finally decay into a mixture of two binomial states
The use of phase-space representation enables us to dgge Ref[21] for similar results obtained when studying de-

velop some intuition about the nature of the decoherencgpnherence models with a natural phase-space representation
process in the kind of quantum walk analyzed in this paperin 3 finite quantum system evolving under various quantum
By coupling the quantum coin to an environment we obtain amaps.
decoherence model which is roughly equivalent to position The apove conclusions are generic for any model in
diffusion. As we mentioned above, this is a natural resuliyhich decoherence is due to the coupling of the quantum
whose origin can be traced back to the way in which thein to an environment. An interesting class of models, based
system effectively couples to the environmewir the mo- g the use of quantum multi-Baker md@€], has been stud-
mentum operator The relation between decoherence andied, In such models one replaces the quantum coin with a
position diffusion can also be established by analyzing inguantum system with a higher-dimensional Hilbert space.
more detail the structure of the superopera@yr[given in  The total space of states is thefi- Hy® H,, . HereM is the
Eq.(16)]. Let us consider the form of the superoperator aftelgimensionality of the system which plays the role of the
titerations. If we use Eq16) we can easily see that, as each quantum coin and is considered to be an even numikr (
iteration doubles the number of terms, we will have an ex-—om, so that we can always considif, = H,®H,,). The
pression with 2terms each one of which has Pauli operatorsgynamics for a quantum multi-Baker map is defined in terms
applied at different times. To obtain the functiof(k,k’,t)  of the unitary operatofthat replaces Eql)]:
one should compute the trace over the quantum coin. In each
of the 2 terms we can move the Pauli operatgy towards Unutti-aker=U"?Bw , (19

the outside of the expression and cancel them due to the . : .
. N where By, is the unitary operator defining the so-called
cyclic property of the trace. For the case vy it is easy to

o . “quantum Baker map’(see Refs[21,23) and o, is a Pauli
show that the only remaining effect of the Pauli operators quant Pl [ 3 Tz | -

(that in this case gnti—pommute with .the'Hadamard.operator((;ggirf ct:f)rﬂ?: Ewt%%réltf;gal-égjr:t ;2%%5??&03::‘;9;3;32;
Is to reverse the dwecjuon of the rotationMy defined in Eg. the operatoB,, have been widely studied in the literature
(6). The final expression can be shown to be [23]: The map faithfully represents a classically chaotic sys-
1 B B tem (in the largeM limit). From the point of view of the
Tr[O;(p)]z > D 1yt ey« guantum walker the situation is quite similar to the one we
a=01  a;=012 studied in this paper. One can describe a quantum multi-
+ + Baker map as an ordinary quantum walk where the quantum
XTr (M- MklpMki. o Mkt’)’ 18 coin (whose Hilbert space i%(,) interacts with an environ-
B ment (whose Hilbert space i%{(,,). The interaction is mod-
Where;j:al+ -+++a; and kj=(—1)“-1k (we use the e[ed by the quantum_Baker map acting on the total internal
conventiona,=0). Therefore, the superoperator is the sumHilbert spaceiy, , which also replaces the usual Hadamard
of 2! terms each one of which contains a contribution that iSteP in EQ.(1). As the quantum Baker map is chaotic, the
identical to that of a quantum walk where the direction of theStat€ of the quantum coin will be roughly randomized after
walker is chosen at random after the first step. Each of the 22@Ch iteration. Thus, the effect should be similar to the one
terms is labeled by &bit string (ay, . . .,a,) and corre- we described heréwhere the quantum coin is subject to a

sponds to a quantum walk where the direction ofjtestep noisy evolution. However, after a large number of iterations
(i=2) is reversed if and onl iff) @, , is odd. In the limit (of the order ofM) all the possible orthogonal directions
1= y -1 : available in the internal space of the quantum coin would

of total decoherence each of these terms has equal We'glﬂave been explored. One should therefore expect that this

Thert()alforehthe flnalhstate LS simply the gverage ﬁvefﬁfﬁg ze%odel will stop being effective in producing decoherence
semble where each member corresponds to each o after such time. Recent studies of quantum multi-Baker sys-

possible choices .Of two directiprﬁtorward or bgckwar}jfpr tems agree with these expectatioisee Ref[22] where a
thet—1 steps(notice that the direction of the first step is not transition from diffusive to ballistic behavior after a time of

affected by the decoherence model we chober this type e order ofvl has been analyzedn any case, based on the
of decoherence it is clear that the quantum walk becomes aqits of our work we believe that in quantum multi-Baker

“’?‘”d"_m vyalk. T he r_e'a“OT‘ bet_ween de(_:oherence gnq pos't'°§$/stems the relative stability of initially delocalized superpo-
diffusion is quite evident in this way. It is worth pointing out Fitions will also be observable

that similar models of decoherence were considered in Ref.
[21] in a different context.

Other decoherence models have been analyzed for quan-
tum walks[5,7,11], where the effective coupling to the envi-  We thank Marcos Saraceno and Augusto Roncaglia for
ronment is through the position observable. In such case, weaseful discussions and assistance during several stages of this
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cion Antorchas, Anpcyt and Ubacyt. cog—)  ~isin(-) 0 0
0 0 sin+) cog+)
Ox= 0 0 —ycod+) ysin(+)
APPENDIX: DENSITY MATRIX UNDER DECOHERENCE —yisin(—) ycog—) 0 0
A matrix representation for the superoperafy can be co{—) —isin(—) 0 0
obtained forﬁ=§<,§/,2. We will write this superoperator in 0 0 ysin(+) ycog+)
the basis formed by thg identity and .the Pauli matrigces z— 0 0 —ycog+) ysin(+)
use the standard ordering of the basi§lag,oy,0,}). In _isin—) cog—) 0 0

such basis the matrix dd,, is
Notice they all converge to the same matrix whgal (no

o decoherencge
cog —) —isin(—) 0 0 To compute Eq.(15) we need to diagonaliz®,,. Al-
0 0 ysin(+) ycog+) though the matrix representation of the superoperator is
O.= _ 1 ; . )
y 0 0 _cog+)  sin(+) rather sparse, the e|g(_anvalues and .elgen.vecto_rs are quite
o cumbersome for an arbitrary value f(including y=1, no
—yisin(—) ycog—) 0 0 decoherende so it was more convenient to use numerical
techniques. However, for the special case of complete deco-
herence §=0) it is possible to obtain a simple formula and
where (£)=[2m(k=k')/N]. the final result forf ,(k,k’,t). The result fom=y,z is given
Similar results are obtained for=x,z: in Eq. (17).
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