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Phase-space approach to the study of decoherence in quantum walks
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We analyze the quantum walk on a cycle using discrete Wigner functions as a way to represent the states and
the evolution of the walker. The method provides some insight on the nature of the interference effects that
make quantum and classical walks different. We also study the behavior of the system when the quantum coin
carried by the walker interacts with an environment. We show that for this system quantum coherence is robust
for initially delocalized states of the walker. The use of phase-space representation enables us to develop an
intuitive description of the nature of the decoherence process in this system.
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I. INTRODUCTION

Quantum walks@1# have been proposed as potentia
useful components of quantum algorithms@2#. In recent
years these systems have been studied in detail and s
progress has been made in developing new quantum a
rithms using either continuous@3# or discrete@4# versions of
quantum walks. The key to the potential success of quan
walks seems to rely on the ability of the quantum walker
efficiently spread over a graph~a network of sites! in a way
that is much faster than any algorithm based on classical
tosses.

Quantum interference plays an important role in quant
walks being the crucial ingredient enabling a faster than c
sical spread. For this reason, some effort was made in re
years in trying to understand the implications of the proc
of decoherence for quantum walks@5–7#. Decoherence, an
essential ingredient to understand the quantum-classical
sition @8#, could turn the quantum walk into an algorithm
inefficient as its classical counterpart. The models studie
this context can be divided in two classes depending on h
the coupling with an external environment is introduced.
fact, a quantum walk consists of a quantum particle that
occupy a discrete set of points on a lattice. In the discr
version, the walker carries a quantum coin, which in
simplest case can be taken as a spin-1/2 degree of free
The algorithm proceeds so that the walker moves in one
two possible directions depending on the state of the s
~for more complex regular arrays, a higher spin is require!.
So, in this context it is natural to consider some decohere
models where the spin is coupled to the environment
others where the position of the walker is directly coupled
external degrees of freedom. The specific system in wh
the algorithm is implemented in practice will dictate whic
of these two scenarios is more relevant. Several experime
proposals to implement discrete quantum walks in syste
such as ion traps@9#, cavity QED @10#, and optical lattices
@11# have been analyzed~see also Ref.@12# for a recent
NMR implementation of a continuous quantum walk!.

The main effect of decoherence on quantum walks
rather intuitive: as the interaction with the environme
washes out quantum interference effects, it restores s
aspects of the classical behavior. For example, it has b
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shown that the spread of the decohered walker becomes
fusion dominated proceeding slower than in the pure qu
tum case. This result was obtained both for models w
decoherence in the coin and in the position of the wal
@5–7#. However, it is known that classical correspondence
these systems has some surprising features. For exampl
models with some decoherence in the quantum coin
asymptotic dispersion of the walker grows diffusively b
with a rate that does not coincide with the classical one@6#.
Also, a small amount of decoherence seems to be usefu
achieve a quantum walk with a significant speedup@5,7#.

In this work we will revisit the quantum walk on a cycl
~and on a line! considering models where the quantum co
interacts with an environment. The aim of our work is tw
fold. First we will use phase-space distributions~i.e., discrete
Wigner functions! to represent the quantum state of t
walker. The use of such distributions in the context of qua
tum computation has been proposed in Ref.@13#, where
some general features about the behavior of quantum a
rithms in phase space were noticed. A phase-space repre
tation is natural in the case of quantum walks, where b
position and momentum play a natural role. Our second g
is to study the true nature of the transition from quantum
classical in this kind of model. We will show that mode
where the environment is coupled to the coin are not able
induce a complete transition to classicality. This is a con
quence of the fact that the preferred observable selecte
the environment is the momentum of the walker. This o
servable, which is the generator of discrete translations
position, plays the role of the ‘‘pointer observable’’ of th
system@8,14#. Therefore, as we will see, the interaction wi
the environment being very efficient in suppressing interf
ence between pointer states preserves the quantum inte
ence between superpositions of eigenstates of the conju
observable to momentum~i.e., position!. Again, the use of
phase-space representation of quantum states will be he
in developing an intuitive picture of the effect of decohe
ence in this context. The paper is organized as follows:
Sec. II we review some basic aspects of the quantum walk
the cycle. We also introduce there the phase-space repre
tation of quantum states for the quantum walk and disc
some of the main properties of the discrete Wigner functio
for this system. In Sec. III we introduce a simple decoh
©2003 The American Physical Society05-1
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C. C. LÓPEZ AND J. P. PAZ PHYSICAL REVIEW A68, 052305 ~2003!
ence model and show the main consequences on the qua
walk algorithm. In Sec. IV we present a summary and o
conclusions.

II. QUANTUM WALKS AND THEIR PHASE-SPACE
REPRESENTATION

A. Quantum walks on the cycle

The quantum walks on an infinite line or in a cycle withN
sites are simple enough systems to be exactly solvable.
the infinite line the exact solution was presented in Ref.@15#.
The case of the cycle was first solved in Ref.@2#. However,
the exact expressions are involved enough to require num
cal evaluation to study their main features. Here we w
review the main properties of this system presenting them
a way which prepares the ground to use phase-space r
sentation for quantum states~we will focus on the case of a
cycle, the results for the line can be recovered from ours w
t<N).

For a quantum walk in a cycle ofN sites, the Hilbert
space isH5HN^ H2, whereHN is the space of states of th
walker ~an N-dimensional Hilbert space! andH2 is the two-
dimensional Hilbert space of the quantum coin~a spin 1/2).
The algorithm is defined by a unitary evolution opera
which is the iteration of the following map:

Uwalk5UszH. ~1!

HereH is the Hadamard operator acting on the Hilbert sp
of the quantum coin@H5(sx1sz)/A2, s i being the usual
232 Pauli matrices#. The operatorU is the cyclic translation
operator for the walker, which in the position basis is defin
as Uun&5un11&(modN). It is worth stressing that the op
eratorUsz is nothing but a spin-controlled translation actin
asUszun& ^ u1

0&5un61& ^ u1
0&. So, the mapUwalk consists of a

spin-controlled translation preceded by a coin toss, whic
implemented by the Hadamard operation~the use of the Had-
amard operator in this context is not essential and can
replaced by almost any unitary operator on the coin@1#!.

The notion of phase-space is natural in the context of
kind of quantum walk. In fact, the position eigenstat
$un&,n50, . . . ,N21% form a basis of the walkers’ Hilber
spaceHN . The conjugate basis is the so-called moment
basis$uk&,k50, . . . ,N21%. Position and momentum base
are related by the discrete Fourier transform, i.e.,

^nuk&5
1

AN
exp~2p ink/N!. ~2!

The cyclic translation operatorU that plays a central role in
the quantum walk is diagonal in momentum basis sin
Uuk&5exp(2i2pk/N)uk&. This simply indicates that momen
tum is nothing but the generator of finite translations. A
consequence of this, the total unitary operator defining
quantum walk algorithm is also diagonal in such basis. T
fact, which was noticed before by several authors, enabl
simple exact solution of the quantum walk dynamics. Inde
we can write the initial state of the system using the mom
05230
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tum basis of the walker as~belowr denotes the total densit
matrix of the system formed by the walker and the coin!

r~0!5 (
k,k850

N21

ck,k8uk&^k8u ^ r2~0!, ~3!

where r2(0) is the initial state of the quantum coin~we
assume that the initial state of the combined system i
product, but this assumption can be relaxed!. After t itera-
tions of the quantum map the reduced density matrix of
walker ~denoted asrw) is

rw~ t !5 (
k,k850

N21

ck,k8 f ~k,k8,t !uk&^k8u, ~4!

f ~k,k8,t !5Tr2@Mk
t r2~0!Mk8

† t
#, ~5!

where the operatorMk is defined as

Mk5exp~2 i2pksz /N!H. ~6!

All the temporal dependence is contained in the funct
f (k,k8,t) which can be exactly computed in a straightfo
ward way: One should first expand the initial stater2(0) in
a ~nonorthogonal! basis of operators of the formufk

l &^fk8
m u

( l ,m51,2), whereufk
l & are the eigenstates of the operat

Mk ~i.e.,Mkufk
l &5lk,l ufk

l &). The explicit expressions for the
eigenstatesufk

l & and the eigenvalueslk,l will not be given
here since they can be found in the literature~see, for ex-
ample, Ref.@15#!. After doing this the evolution of the quan
tum state is fully determined by the equation

f ~k,k8,t !5 (
l ,m51,2

~lk,llk8,m
* ! t^fk

l ur2~0!ufk8
m &^fk8

m ufk
l &.

~7!

Below we will describe the properties of this solution using
phase-space representation for the quantum state of the
tem.

B. Phase-space representation

Wigner functions@16# are a powerful tool to represent th
state and the evolution of a quantum system. For syst
with a finite-dimensional Hilbert space, the discrete vers
of Wigner functions was introduced using different metho
~see Ref.@17#!. We will follow the approach and notation
used in Ref.@13#, where these phase-space distributions w
applied to study properties of quantum algorithms. For co
pleteness, we will give here the necessary definitions
outline some of the most remarkable properties of the d
crete Wigner functions.

For a system with anN-dimensional Hilbert space th
discrete Wigner function can be defined as the compon
of the density matrix in a basis of operators defined as

A~q,p!5UqRV2p exp~ ippq/N!. ~8!

These are the so-called phase-space point operators. The
defined in terms of the cyclic shiftU ~which in the position
5-2
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PHASE-SPACE APPROACH TO THE STUDY OF . . . PHYSICAL REVIEW A 68, 052305 ~2003!
basis acts asUun&5un11&), the reflection operatorR
~which in the position basis acts asRun&5u2n&), and the
momentum shiftV ~which generates cyclic displacements
the momentum basis, i.e.,Vuk&5uk11&). Phase-space op
erators are unitary, Hermitian, and form a complete ortho
nal basis of the space of operators„they are orthogonal in the
Hilbert-Schmidt inner product since they satisfy th
Tr@A(q,p)A(q8,p8)#5Ndq,q8dp,p8…. Expanding the quan
tum state in theA(q,p) basis as

r5 (
q,p50

N21

W~q,p!A~q,p!, ~9!

the coefficientsW(q,p) are the discrete Wigner functions o
the quantum state, which are obtained as

W~q,p!5
1

N
Tr@rA~q,p!#. ~10!

This function has three remarkable properties that alm
give it the status of a probability distribution. The first tw
properties are evident: Wigner functions are real number~a
consequence of the Hermiticity of the phase-space opera!
and they provide a complete description of the quantum s
~a consequence of the completeness of the basis of such
erators!. The third property is less obvious: marginal pro

FIG. 1. ~Color! Wigner functionsW(q,p) for a localized state
~up! and for a delocalized superposition state~down!. The dimen-
sion of the Hilbert space isN541. The horizontal~vertical! axis
corresponds to position~momentum!. Color code is such that red
~blue! regions correspond to positive~negative! values while white
corresponds to zero (n058, n156, n259).
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ability distributions can be obtained by adding values of
Wigner function along lines in phase-space. For this to
possible, it turns out that the phase-space has to be defin
a grid of 2N32N points whereW(q,p) is given at each
point precisely by Eq.~10!. Thus, adding the values of th
Wigner function over all points satisfying the conditionaq
2bp5c one gets the probability to detect an eigenstate
the operatorD(b,a)5UbVa exp(ipab/N) with eigenvalue
exp(ipc/2N) ~the sum is equal to zero if such eigenval
does not exist!. In particular, adding the Wigner functio
along vertical linesq5c one obtains the probability to detec
eigenstates of the operatorD(0,1)5V, with eigenvalues
given by exp(ipc/2N). These numbers are equal to zero ifc
is odd and they are equal to the probability for measuring
position eigenstateuc/2& when c is even. Complementary
adding values of the Wigner function along horizontal lin
enables us to compute the probability to detect a momen
eigenstate.

A final remark about properties of the discrete Wign
function is in order. Figure 1 shows the Wigner function o
position eigenstateun0& and of a superposition of two pos
tion eigenstates, such as (un1&1un2&)/A2. As we see, in the
first case the function is positive on a vertical line located
q52n0 and is oscillatory on a vertical line located atq
52n01N. The interpretation of these oscillations is clear.
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FIG. 2. Discrete Wigner functionW(q,p) at different times. The
initial state of the walker is localized atn0520 ~the dimension of
the Hilbert space isN541). The quantum coin is in an unbiase
initial state. Horizontal~vertical! axis corresponds to position~mo-
mentum!.
n

FIG. 3. ~Color! Probability distribution in position aftert5100 iterations for an initially localized walker with unbiased spin.N5301,

n05150. We only plot the function for sites such thatn1t1n0 adds to an even number~solid!, and also include the classical distributio
~dotted!.
5-3
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FIG. 4. ~Color! Discrete Wigner functionW(q,p) at different times, for an initial state of the walker which is a superposition
two position eigenstates (N581,n1528,n2552) and an unbiased initial quantum coin. In~a! we plot the complete Wigner function
~horizontal axis and vertical axis correspond to position and momentum, respectively!. In ~b! and~c! we only plot the Wigner function in the
phase-space region defined by the black rectangle shown in~a!. In this way the small scale oscillations of the Wigner function can
observed in detail.
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is well known that Wigner functions display oscillatory r
gions whenever there is interference between two pieces
wave packet. In this case, the cyclic boundary conditions
are imposing~that originate from the fact thatU and V are
cyclic shift operators! generate a mirror image for ever
phase-space point. Thus, the oscillating strip can be in
preted as the interference between the positive strip an
mirror image. For the case of a quantum state which i
superposition of two position eigenstates, we observe
positive vertical lines with the usual interference fringes
between them. All these vertical lines have their correspo
ing oscillatory counterparts originated from the bounda
conditions which are located at a distanceN. In what follows
we will show Wigner functions for typical states of a qua
tum walker.

For an initial state where the walker starts at a given
sition and the spin is initially unbiased@ uc(0)&25(u0&
1 i u1&)/A2], the behavior of the quantum walker starts
deviate from its classical counterpart at early times~in this
paper we will only consider unbiased initial states for t
quantum coin!. The phase-space representation of the sta
shown in Fig. 2 and makes evident that a peculiar patter
quantum interference fringes develops between the diffe
pieces of the wave packet. The consequence of these i
ference effects is evident also when one looks at the p
05230
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ability distribution for different positions. This distribution i
shown in Fig. 3 and has been previously studied in the
erature~see Refs.@5,6,11,15#!. Like its classical counterpart
at a given timet the state initially located atn0 has support
only on statesn satisfying thatn1t1n0 adds up to an even
number. However, in general the quantum distribution diff
from the classical one, exhibiting peaks located atn5
6t/A2 and a plateau of height 1/A2t aroundn0. After some
time the Wigner function of the quantum walker develops
shape that resembles a thread, as it is clear in the pictu
For this reason we will call this a thread state.

It is also interesting to analyze the evolution of the qua
tum walk for delocalized initial states. In particular, we w
consider an initial state that is a coherent superposition
two position eigenstates~whose Wigner function was alread
displayed in Fig. 1!. We find a Wigner function that develop
into a sum of two threads with a region in between whe
interference fringes are evident. This is displayed in Fig.
Some properties of the quantum walk for this kind of de
calized initial states were analyzed in Ref.@18# where it was
noticed that the asymptotic probability distribution can
rather different from the one obtained from a localized init
state. Below, we will show that the process of decohere
affects localized and delocalized initial states in a rather
ferent way.
the
respec-
FIG. 5. ~Color! Discrete Wigner functionW(q,p) for a fixed time (t511) and different values of the strength of the coupling to
environment (a). The initial spin is in an unbiased state. Horizontal axis and vertical axis correspond to position and momentum,
tively ~total dimension of the Hilbert space isN541 and the initial state is located atn0520).
5-4
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III. DECOHERENCE AND THE TRANSITION
FROM QUANTUM TO CLASSICAL

A. The decoherence model

We will consider a quantum walk where the quantum c
couples to an environment. To describe such coupling
will use a model which was introduced and studied in de
in Ref. @19#. In that paper it was shown that one can mim
the coupling to an external environment by a sequence
random rotations applied to the quantum coin, which ha
the effect of scrambling the spin polarization. More pr
cisely, these kicks will be generated by the evolution ope
tor

K j5exp~2 i e j n̂•sW !, ~11!

where the anglese j take random values andn̂ is a fixed
vector specifying the rotation axis. The virtue of this mod
is not only its simplicity but also the fact that can be expe
mentally implemented in a controllable manner using,
example, NMR techniques.

After the application of one step of the quantum wa
algorithm and one kick the evolution of the total system

r~ t11!5K jU
szHr~ t !HU2szK j

†. ~12!

To obtain a closed expression for the reduced density ma
of the walker for an ensemble of realizations of the rand
variablese j we follow the method proposed in Ref.@19# ~see
Ref. @6# for a similar approach!: Assuming that these angle
are randomly distributed in an interval (2a,1a), this den-
sity matrix is

rw~ t !5Tr2F E
2a

a de t

2a
•••E

2a

a de1

2a
KtU

szH•••K1UszH

3rw~0! ^ r2~0!HU2szK1
†
•••HU2szKt

†G . ~13!

Expanding the initial state in the momentum basis as be
enables us to simplify this expression. In fact, after do
this one can integrate over the random variables to find

rw~ t !5 (
k,k850

N21

ck,k8 f̃ n~k,k8,t !uk&^k8u, ~14!

f̃ n~k,k8,t !5Tr2@On
t
„r2~0!…#. ~15!

HereOn is a superoperator acting on the spin state~depend-
ing on directionn̂ of the kicks! as

On~r2!5
~11g!

2
Mkr2Mk8

†
1

~12g!

2
snMkr2Mk8

† sn ,

~16!

whereg5sin(2a)/(2a) is a parameter related to the streng
of the noise~notice thatg51 corresponds to unitary evolu
tion, i.e., toa50). One can find a simple matrix represe
tation for the superoperatorOn for different choices of the
05230
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rotation axis by writingr2(0) in the basis formed by the
identity and the Pauli operators. In the Appendix we sh
the explicit form of this matrix representation, which is hel
ful in finding exact and numerical solutions to the proble
In what follows we will show results for the casen̂5 ŷ ~the
other cases are qualitatively similar!. To find the state of the
walker at arbitrary times we simply need to find eigensta
and eigenvalues of the superoperatorOn . This can always be
done numerically and also analytically in the interesting c
of g50, which can be denoted as ‘‘total decoherence.’’
such case, the exact solution turns out to be

f̃ y~k,k8,t !5cost@2p~k2k8!/N#

3S 12 ipx

sin@2p~k2k8!/N#

cos@2p~k2k8!/N#
D . ~17!

Several features of the decoherence effect are evident in
above formula. The environment produces a tendency
wards diagonalization of the density matrix of the walker
the momentum basis~matrix elements withk2k85N/4 are
maximally suppressed!. The decay of nondiagonal elemen
is exponential in time, as already discussed in Ref.@19#. It is
also clear that momentum eigenstates are not affected by
interaction since they are eigenstates of the full evolution@in
fact, from Eqs.~15! and ~16! follows f̃ n(k,k,t)51]. In this
sense they are perfect pointer states for this model. In w
follows we will present results concerning the evolution
several initial quantum states.

B. Decoherence, pointer states, and the transition
from quantum to classical

The effect of decoherence on the evolution of states wh
are initially localized in position has been analyzed el
where@5–7#. As shown in Fig. 5, the Wigner function of th
evolved quantum state gradually loses its oscillatory natu
Thus, instead of a thread state the interaction with the e
ronment gradually produces a mixed state with a binom
distribution in the position direction~which has an approxi-
mately Gaussian shape for larget) but remains constan
along the momentum direction. It is worth noticing that f
any value ofg the resulting state has support only on po
tion eigenstates satisfying that the sumn01n1t is equal to
an even number, as it was already pointed out for both
classical distribution (g50) and the purely quantum on
(g51) in the preceding section. It is interesting to noti
that the process of decoherence has a rather simple inte
tation when represented in phase space: Decoherenc
phase-space is roughly equivalent to diffusion in the posit
direction. This is not unexpected: In fact, in ordinary qua
tum Brownian motion models a coupling to the environme
through position~momentum! gives rise to a momentum~po-
sition! diffusion term in the evolution equation for th
Wigner function. The situation here is quite similar, since t
walker effectively couples with the environment through
momentum. This is indeed the case because the environm
interacts with the quantum coin which is itself coupled w
the walker through the displacement operator which is di
5-5
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C. C. LÓPEZ AND J. P. PAZ PHYSICAL REVIEW A68, 052305 ~2003!
onal in the momentum basis. Therefore, the decoherenc
fect on the Wigner function is expected to correspond
diffusion along the position direction.

As noticed before, if one considers initial states where
walker is localized in a well defined position, one can s
that the probability distribution for the different positions
the walker gradually tends to the classical one by increas
the coupling strengtha from a50 ~no kicks! to a5p/2.
This is shown in Fig. 6.

0 100 200 3000

0.03

0.06

0.09

0 100 200 3000

0.03

0.06

0.09

0 100 200 3000

0.03

0.06

0.09

FIG. 6. Probability distribution in position att5100, for differ-
ent values of the coupling to the environment~parametrized bya).
The initial state of the quantum coin is unbiased (N5301, n0

5150, andn̂5 ŷ). We only plot the function for sites such thatn
1t1n0 adds to an even number~solid!, and also include the clas
sical distribution~dotted!. Figure 3 shows the same plot withou
decoherence.
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From the above analysis we could be tempted to concl
that the interaction between the quantum coin and the e
ronment induces the classicalization of the walker. Howev
this is not the case. The process of decoherence induce
this way is not complete. This is most clearly seen by a
lyzing how it is that the interaction with the environme
affects initial states of the quantum walker which are n
initially localized. In Fig. 7 we show the Wigner function o
an initially delocalized state~shown in Fig. 1! under full
decoherence. We can clearly see that decoherence doe
erase all quantum interference effects. In fact, as mentio
above, the interaction with the environment induces diffus
along the position direction. Therefore, interference fring
which are aligned along the position direction are immune
decoherence. Thus, the final state one obtains from a su
position of two position eigenstates is not the mixture of tw
binomial states but a coherent superposition of them. T
peculiar behavior is easily understood by noticing that this
a simple consequence of the fact that momentum eigens
are pointer states: Decoherence is effective in destroying
perpositions of pointer states but highly inefficient in d
stroying superpositions of eigenstates of the conjugate
servable~position!.

C. Entropy

By analyzing the entropy of the reduced density matrix
the walker one can get a more quantitative measure of
degree of decoherence achieved as a consequence of th
teraction with the environment. For convenience we will n
examine the von Neumann entropySV but concentrate on the
linear entropy defined asSL52 ln(Tr@rw

2 #), which is easier
to calculate. This entropy provides a lower bound toSV @20#.
It is possible to show that almost no entropy is produced
the decay of the coherence present in the initially delocali
superposition state. In fact, this can be seen by compa
the entropy produced from the initially delocalized superp
sition and the one originated from an initial state in whi
the walker is prepared in an equally weighted mixture of t
positions. These entropies can be seen in Fig. 8. The in
entropy of the mixture is 1 bit@ ln(2)#. It is quite clear from
the curves shown in such figure that the entropy arising fr
the initial mixture remains to be 1 bit higher than the o
originated from the initial coherent superposition. Thus,
quantum coherence present in the initial state is robust un
the interaction with the environment and does not decay
all.

Figure 8 shows another interesting feature: One wo
naively expect a monotonic dependence of the entropy w
the coupling to the environment~which is parametrized by
a). However this is not the case since the curves in Fig
intersect. This peculiar effect is made more evident in Fig
where we study the entropy at a fixed time as a function
the coupling strength. In this figure a clear indication of
nontrivial behavior is seen: For early times the entro
grows slowly with a and exhibits a flat plateau for larg
values ofa. However, as time progresses a peak develo
The largest value of entropy at a given time is not achiev
by the largest coupling. To the contrary, the largest entrop
5-6
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FIG. 7. ~Color! Absolute value of the density matrix in the position basis~left! and discrete Wigner functionW(q,p) ~center! for a state
evolving from an initially delocalized state of the quantum walker under full decoherence (t56, a50.5p, n1538, n2562, N5101). The
presence of quantum interference is manifested in the nondiagonal terms of the density matrix and in the oscillations of the Wigner
The small scale oscillations of the Wigner function are shown in the right plot, which showsW(q,p) in the phase-space region defined
the black rectangle depicted in the center plot.
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attained by an intermediate couplingac , whose value de-
creases with time.

The fact that for a given time the maximal entropy is n
achieved by the maximal coupling to the environment
counterintuitive. As entropy is a measure of the spread o
distribution, this strange behavior can be rephrased a
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FIG. 8. Linear entropy as a function of time for various valu
of the system-environment coupling strength:a50 ~solid!, 0.1p
~dotted!, 0.2p ~dash dotted!, 0.5p ~dashed!. The top ~down! plot
corresponds to an initial state which is an equally weighted mixt
~superposition! of two position eigenstates.N5401, n15150, and
n25250.
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manifestation of the counterintuitive fact that the decohe
state~which is approximately diagonal in position basis! has
a probability distribution that is more spread fora5ac than
for a.ac . A possible explanation for this peculiar behavi
is the following: For high values of the coupling to the e
vironment the state rapidly becomes classical and the sp
in position grows diffusively, as in the classical rando
walk. When the coupling to the environment is not stron
our result seems to indicate that the state of the walker
mains ‘‘quantum’’ for a longer time during which it spread
at a rate faster than classical. When this quantum state fin
decoheres it may end up having a larger entropy than the
attained for high coupling simply because it is spread ove
wider range of positions. We speculate that there could b
relation between this peculiar feature and the properties
make some degree of decoherence useful for quantum w
as discussed by Kendon and Tregenna in Refs.@5,7#. The
value of theac introduced above depends on bothN and t
and could be related to the position of the minima reported

e
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FIG. 9. Linear entropy as a function of the coupling strengtha
for various values of time:t55 ~solid!, 10 ~dashed!, 50 ~dotted!,
100 (h), 300 (3), 500 ~dash dotted!. The initial state of the
walker is well localized and the initial state of the quantum coin
unbiased.N5401 and all the curves are below the saturation
gime @ ln(N)'5.994#. It is evident that, after some time, the max
mum value of the entropy is not achieved by the maximum value
the coupling strength.
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C. C. LÓPEZ AND J. P. PAZ PHYSICAL REVIEW A68, 052305 ~2003!
Refs.@5,7#. For example, in a cycle regime (t@N) ac dimin-
ishes with increasingN as it is also the case for the positio
of the minima of the so-calledquantum mixing time@1,5,7#.

IV. CONCLUSIONS

The use of phase-space representation enables us t
velop some intuition about the nature of the decohere
process in the kind of quantum walk analyzed in this pap
By coupling the quantum coin to an environment we obtai
decoherence model which is roughly equivalent to posit
diffusion. As we mentioned above, this is a natural res
whose origin can be traced back to the way in which
system effectively couples to the environment~via the mo-
mentum operator!. The relation between decoherence a
position diffusion can also be established by analyzing
more detail the structure of the superoperatorOn @given in
Eq. ~16!#. Let us consider the form of the superoperator af
t iterations. If we use Eq.~16! we can easily see that, as ea
iteration doubles the number of terms, we will have an
pression with 2t terms each one of which has Pauli operat
applied at different times. To obtain the functionf̃ n(k,k8,t)
one should compute the trace over the quantum coin. In e
of the 2t terms we can move the Pauli operatorsn towards
the outside of the expression and cancel them due to
cyclic property of the trace. For the casen̂5 ŷ it is easy to
show that the only remaining effect of the Pauli operat
~that in this case anti–commute with the Hadamard opera!
is to reverse the direction of the rotation inMk defined in Eq.
~6!. The final expression can be shown to be

Tr@Oy
t ~r!#5 (

a t50,1
••• (

a150,1

1

2t~11g! t2ā t~12g!ā t

3Tr~Mkt
•••Mk1

rMk
18

†
•••Mk

t8
†

!, ~18!

where ā j5a11•••1a j and kj5(21)ā j 21k ~we use the
conventionā0[0). Therefore, the superoperator is the su
of 2t terms each one of which contains a contribution tha
identical to that of a quantum walk where the direction of t
walker is chosen at random after the first step. Each of tht

terms is labeled by at-bit string (a1 , . . . ,an) and corre-
sponds to a quantum walk where the direction of thej th step
( j >2) is reversed if and only if~iff ! ā j 21 is odd. In the limit
of total decoherence each of these terms has equal we
Therefore the final state is simply the average over an
semble where each member corresponds to each of thet21

possible choices of two directions~forward or backward! for
the t21 steps~notice that the direction of the first step is n
affected by the decoherence model we chose!. For this type
of decoherence it is clear that the quantum walk becom
random walk. The relation between decoherence and pos
diffusion is quite evident in this way. It is worth pointing ou
that similar models of decoherence were considered in R
@21# in a different context.

Other decoherence models have been analyzed for q
tum walks@5,7,11#, where the effective coupling to the env
ronment is through the position observable. In such case
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expect decoherence to correspond to diffusion along the
mentum direction. Combining the two types of decoheren
~i.e., considering coupling to the environment via the qua
tum coin and the position of the quantum walker! the initial
state corresponding to a superposition of two positio
would finally decay into a mixture of two binomial state
~see Ref.@21# for similar results obtained when studying d
coherence models with a natural phase-space represent
in a finite quantum system evolving under various quant
maps!.

The above conclusions are generic for any model
which decoherence is due to the coupling of the quant
coin to an environment. An interesting class of models, ba
on the use of quantum multi-Baker maps@22#, has been stud-
ied. In such models one replaces the quantum coin wit
quantum system with a higher-dimensional Hilbert spa
The total space of states is thenH5HN^ HM . HereM is the
dimensionality of the system which plays the role of t
quantum coin and is considered to be an even numberM
52m, so that we can always considerHM5H2^ Hm). The
dynamics for a quantum multi-Baker map is defined in ter
of the unitary operator@that replaces Eq.~1!#:

Umulti-Baker5UszBM , ~19!

where BM is the unitary operator defining the so-calle
‘‘quantum Baker map’’~see Refs.@21,23#! andsz is a Pauli
operator acting on the Hilbert spaceH2 ~the most significant
qubit of the internal spaceHM5H2^ Hm). The properties of
the operatorBM have been widely studied in the literatu
@23#: The map faithfully represents a classically chaotic s
tem ~in the largeM limit !. From the point of view of the
quantum walker the situation is quite similar to the one
studied in this paper. One can describe a quantum m
Baker map as an ordinary quantum walk where the quan
coin ~whose Hilbert space isH2) interacts with an environ-
ment ~whose Hilbert space isHm). The interaction is mod-
eled by the quantum Baker map acting on the total inter
Hilbert spaceHM , which also replaces the usual Hadama
step in Eq.~1!. As the quantum Baker map is chaotic, th
state of the quantum coin will be roughly randomized af
each iteration. Thus, the effect should be similar to the o
we described here~where the quantum coin is subject to
noisy evolution!. However, after a large number of iteration
~of the order ofM ) all the possible orthogonal direction
available in the internal space of the quantum coin wo
have been explored. One should therefore expect that
model will stop being effective in producing decoheren
after such time. Recent studies of quantum multi-Baker s
tems agree with these expectations~see Ref.@22# where a
transition from diffusive to ballistic behavior after a time o
the order ofM has been analyzed!. In any case, based on th
results of our work we believe that in quantum multi-Bak
systems the relative stability of initially delocalized superp
sitions will also be observable.
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APPENDIX: DENSITY MATRIX UNDER DECOHERENCE

A matrix representation for the superoperatorOn can be

obtained forn̂5 x̂,ŷ,ẑ. We will write this superoperator in
the basis formed by the identity and the Pauli matrices~we
use the standard ordering of the basis as$I ,sx ,sy ,sz%). In
such basis the matrix ofOn is

Oy5S cos~2 ! 2 i sin~2 ! 0 0

0 0 g sin~1 ! g cos~1 !

0 0 2cos~1 ! sin~1 !

2g i sin~2 ! g cos~2 ! 0 0

D ,

where (6)5@2p(k6k8)/N#.
Similar results are obtained forn̂5 x̂,ẑ:
o-
o

nd
o

C.

h

ys
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Ox5S cos~2 ! 2 i sin~2 ! 0 0

0 0 sin~1 ! cos~1 !

0 0 2g cos~1 ! g sin~1 !

2g i sin~2 ! g cos~2 ! 0 0

D ,

Oz5S cos~2 ! 2 i sin~2 ! 0 0

0 0 g sin~1 ! g cos~1 !

0 0 2g cos~1 ! g sin~1 !

2 i sin~2 ! cos~2 ! 0 0

D .

Notice they all converge to the same matrix wheng51 ~no
decoherence!.

To compute Eq.~15! we need to diagonalizeOn . Al-
though the matrix representation of the superoperato
rather sparse, the eigenvalues and eigenvectors are
cumbersome for an arbitrary value ofg ~includingg51, no
decoherence!, so it was more convenient to use numeric
techniques. However, for the special case of complete de
herence (g50) it is possible to obtain a simple formula an
the final result forf̃ n(k,k8,t). The result forn̂5 ŷ,ẑ is given
in Eq. ~17!.
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