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a b s t r a c t

The electrokinetic properties of suspended spherical particles are examined using a modified standard

electrokinetic model, which takes into account the finite ion size and considers that the minimum

approach distance of ions to the particle surface need not be equal to their effective radius in the bulk

solution. We calculate the conductivity increment and the electrophoretic mobility and present a detailed

interpretation of the obtained results, based on the analysis of the equilibrium and field-induced ion con-

centrations, as well as the convective fluid flow in the neighborhood of the particle surface. We show that

when charge reversal takes place, the sign of the concentration polarization remains unchanged while the

sign of the electrophoretic mobility only changes under favorable circumstances.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The classical description of electrokinetic phenomena in colloi-

dal suspensions is based on a series of assumptions that constitute

the standard electrokinetic model: suspended particles are sur-

rounded by a uniform surface density of fixed charge; ions can

be treated as mathematical points; macroscopic permittivity and

viscosity values remain valid at the microscopic scale up to the

very surface of the particle [1–5]. Despite its almost universal

use, this model leads to inconsistencies such as unrealistically high

counterion concentration values near highly charged particles, and

fails to describe some experimental evidence such as the move-

ment of colloidal particles in the opposite direction to that pre-

dicted by the sign of their charge [5].

In a recent work [6] we analyzed the effect of the finite ion size

on the structure of the equilibrium double layer surrounding

suspended particles. We considered that while different ion spe-

cies have the same effective size in the bulk solution, their mini-

mum approach distances to the particle surface have different

values for each species. We showed that this last assumption leads

to important quantitative changes to the structure of the equilib-

rium diffuse double layer. Furthermore, under favorable circum-

stances, a qualitative change should occur: the charge reversal

phenomenon.

Although there are many previous works dealing with the finite

ion size in colloidal suspensions [7–14], they are generally limited

to the equilibrium properties of the system. On the contrary, the

aim of the present work is to account for the effect of the ion size

constraints on the dynamics of the system. We so examine the

behavior of the considered model under the action of an applied

DC electric field. We calculate the conductivity increment and

the electrophoretic mobility, and present a detailed interpretation

of the obtained results based on the analysis of the equilibrium and

field-induced ion concentration and fluid flow profiles in the

neighborhood of the particle.

We show that purely ‘‘physical’’ mechanisms can lead to the

reversal of the electrophoretic mobility, even without taking into

account electrostatic ion–ion or induced particle–ion correlations.

Moreover, the conditions required for this phenomenon to occur

are different from those needed to obtain charge reversal. It is pos-

sible, therefore, to have charge inversion without changing the sign

of the electrophoretic mobility.

2. Theory

We consider a spherical particle of radius a immersed in an

infinite electrolyte solution with m ionic species. The equations

governing the steady-state dynamics of this system are well

known:

(a) Nernst–Planck equations for the ionic flows,

(b) continuity equations for each ionic species,

(c) Poisson equation for the electric potential,

(d) Navier–Stokes equation for a viscous fluid, and

(e) continuity equation for an incompressible fluid.
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For an ideal electrolyte solution, this set of equations together with

the appropriate boundary conditions constitutes the standard elec-

trokinetic model.

In order to treat nonideal solutions taking into account finite ion

size, the activity coefficient ci (ci = 1 for an ideal solution) can be

included in the diffusive term of the Nernst–Planck equations for

the ion flows [15,16]:

cið~rÞ~v ið~rÞ ¼ �Dicið~rÞr ln cið~rÞcið~rÞ½ � þ zi:e

kT
/ð~rÞ

n o

þ cið~rÞ~vð~rÞ: ð1Þ

Here~v i, ci, zi, and Di are the velocity, the local concentration (in mol/

m3), the signed valence, and the diffusion coefficient of the ionic

species i (with i = 1 , . . . ,m). The electric potential is represented

by means of the symbol /, ~v is the fluid velocity, e the elementary

charge, k the Boltzmann constant, and NA the Avogadro number.

As in our earlier works on this subject [6,15,17,18], we shall use

for the activity coefficient an expression that is equivalent to the

Bikerman formula [19],

ci ¼ c ¼ 1

1�Pm
i¼1

ci
cmax
i

; ð2Þ

where cmax
i are the highest possible concentration values for species

i ions. These values are related to the effective ion radii Ri and to the

considered ion packing

NAc
max
i ¼ p

3

4pR3
i

; ð3Þ

where the packing coefficient is p = 1 for perfect packing,

p ¼ p=3
ffiffiffi

2
p

� 0:74 for close packing, p � 0.64 for random close

packing [3], and p = p/6 � 0.52 for simple cubic packing. Combined

with the equilibrium form of Eq. (1), the activity coefficient expres-

sion (2) leads to the following dependence of the ion concentrations

on the dimensionless electric potential y = e//kT:

ci ¼
c1i e�ziy

1þ
Pm

i¼1

c1
i

cmax
i

ðe�ziy � 1Þ
: ð4Þ

On the other hand, due to the finite ionic size and to the ion–

particle surface interactions, we assume that ions of species i can-

not come closer to the particle surface than an effective distance of

minimum approach hi, which need not be equal to their effective

radius Ri. We consider as in [6] that these distances are ordered

in such a way that hj 6 hj+1 for j = (1, 2 , . . .m � 1). Therefore, the

region next to the particle surface can be divided into a series of

layers such that for a 6 r < a + h1 no ion centers are present, for

a + hj 6 r < a + hj+1 only ionic species with i 6 j are allowed, and

for a + hm 6 r all ionic species are allowed.

The equations governing the steady-state dynamics of the sys-

tem are first solved in equilibrium and then under the action of a

weak DC electric field Ea. The perturbed equations are then linear-

ized with respect to the applied field, referring the perturbed

variables to their equilibrium values (upper index 0) plus a pertur-

bation term (preceded by the character d) and keeping in the final

equations only the terms that are linear in the perturbations.

While the equilibrium equations and boundary conditions can

be found in [6], a detailed account of the linearized equations to-

gether with the corresponding boundary conditions is given in

Ref. [20] that deals with the DC behavior of soft particles (un-

charged insulating particles surrounded by a polymer layer bearing

a fixed charge density qv through which ions can freely move while

the fluid flow hindrance is characterized by a parameter k):

� Inside the core of the particle the electric field is uniform.

� At the surface of the core the electric potential and the normal

component of the displacement vector are continuous. The fluid

velocity and the radial component of the ion velocities vanish.

� At the polymer layer–electrolyte solution interface, the electric

potential, the normal component of the displacement vector,

the fluid velocity, the chemical potentials of ions (li = ln (cci)),
the ionic velocities, the vorticity (~X ¼ r�~v), and the pressure

are continuous.

� Far from the particle, the electric potential reduces to that of the

applied field and the fluid velocity to minus the electrophoretic

velocity, while the field-induced perturbations of the ionic con-

centrations and the vorticity vanish.

� The total force acting on the particle vanishes.

From an analytical standpoint, the systems considered in the

present work and in Ref. [20] only differ in the following aspects:

� There is no polymer inside the layer surrounding the particle so

that the fixed charge density vanishes (qv = 0) while the fluid

flow is unhindered (k ¼ 0),

� the particle now bears a fixed surface charge,

� even in the simplest case of only two ion types (m = 2), the sys-

tem includes an additional boundary: at r = a + h1 and r = a + h2,

� the Nernst–Planck equations include the activity coefficients,

Eqs. (1) and (2).

The boundary conditions remain unchanged with one notable

exception: the continuity of the chemical potentials at r = a + hj
leads, in view of Eq. (4), to the discontinuity of the ion concentra-

tions. This modifies the expressions used to determine the first

derivative of the vorticity:

� At r = a + hj: now obtained from the tangential component of the

Navier–Stokes equation evaluated at r ¼ aþ h
�
j and taking into

account the continuity of the pressure:

g
aþ hj

d

dr
ðrXÞ

�

�

�

�

aþh�j

� g
aþ hj

d

dr
ðrXÞ

�

�

�

�

aþhþ
j

¼ eNA

X

m

i¼1

zic
0
i ðaþ h

þ
j Þ �

X

m

i¼1

zic
0
i ðaþ h

�
j Þ

" #

d/ðaþ hjÞ
aþ hj

ð5Þ

� At r = a: now obtained from the condition that the mechanical

and electrical forces acting on the particle must be balanced

and taking into account that the whole system is electroneutral:

eNA

Z 1

a

r2
d/0

dr

X

m

i¼1

zic
0
i

dci
c0i

þ zied/

kT

� �

dr

� eNAa
2
X

m

i¼1

zic
0
i ðaþÞd/ðaÞþga3

dX

dr

�

�

�

�

a

�a2gXðaÞ

þ eNA

X

m

j¼1

ðaþhjÞ2d/ðaþhjÞ
X

m

i¼1

zi c0i ðaþh
�
j Þ� c0i ðaþh

þ
j Þ

h i

( )

¼ 0

ð6Þ

where g is the fluid viscosity.

Note that neglecting the ionic size effects leads to the continuity

of the ionic concentrations at r = a + hi and transforms Eqs. (5) and

(6) into Eqs. (55) and (63) from [20].

These changes were unwillingly omitted in [17] where the con-

ditions based on the original Eqs. (55) and (63) from [20] were

used. Fortunately this had a very small incidence on the presented

results because of the presence of a single boundary besides the

particle surface. However, in the present case that includes at least

two such boundaries, the use of the corrected boundary conditions

is crucial.

The numerical calculations were performed using an algorithm

based on the network simulation method, which consists in
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modeling the governing differential equations by means of an elec-

trical circuit. A full account of the network model used in this work

is given in Ref. [20] and a more general explanation of the method

is given in Ref. [21].

It must be noted that since the electric potential changes rap-

idly near the interface r = a, an appropriate simulation space grid

must be modeled. In this work, the r-space grid is automatically

adapted to the evolution of the electric potential profiles. If, in

the course of the simulation, strong changes of y with r are de-

tected in any r coordinate region, more grid points are added into

that region. Appropriate simulation space grids were calculated in

this way to ensure good accuracy and moderate CPU times.

3. Results and discussion

For sake of simplicity, all the simulations were performed con-

sidering just two ion types (m = 2), and using the parameter values

shown in Table 1 (except when indicated otherwise).

We consider the particular case of a negative surface charge va-

lue because colloidal particles suspended in aqueous electrolyte

solutions usually acquire a negative charge. Therefore counterions

are positive (cations) while co-ions are negative (anions).

It was shown in the literature [22] that the typical value of the

effective ionic solvated diameter, determined from mobility mea-

surements, is approximately 0.6–0.8 nm. However, the effective

ion size to be used in the considered theoretical model should be

larger due to the ion–ion interactions [23]. The value of cmax
i for

the two ionic species was chosen considering an effective solvated

diameter in water of approximately 1 nm. On the other hand, the

minimum approach distance to the particle surface has been cho-

sen as h1 = 0.5 for counterions while, for co-ions, the corresponding

distance was left as a parameter h2P h1.

The dependence on h2 � h1 of the equilibrium properties of the

system has been extensively discussed in a previous paper [6]. The

main qualitative conclusion is that because of the constraint on the

co-ion presence in the h1 < r � a < h2 layer, the total electric charge

of counterions in this layer can surpass the absolute value of the

electric charge of the particle leading to charge reversal (see

Fig. 2 in Ref. [6]). The condition for this phenomenon to occur, un-

der the thin double layer approximation and for cmax
?1, is [6]

h2 � h1 >
1

z1e

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kTee
c11 NA

s

tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
s

2kTeec11 NA

s

: ð7Þ

In what follows we show the behavior of the system under the

action of a DC electric field Ea = 1 V/m. In view that the governing

equations were linearized with respect to the applied field

strength, this particular choice is equivalent to using any other va-

lue and dividing the results by Ea. Fig. 1 represents the field-in-

duced counterion and co-ion concentration (dci) and charge

density (dq) profiles and their dependence on the difference

h2 � h1. For h2 � h1 = 0, the field-induced ion concentrations

(Fig. 1a) have the expected behavior for a negative particle: the

counterion profile starts with a maximum close to the particle

while the co-ion starts with a minimum. The counterion concen-

tration decreases with the distance to the particle while the co-

ion concentration increases so that the two curves cross each other

after which they converge to a common positive value at a distance

of the order of the Debye screening length. At greater distances, of

the order of the particle radius, this common value slowly de-

creases to zero, which corresponds to a positive field-induced

increment of the electrolyte concentration, often referred to as

‘‘concentration polarization.’’

This characteristic behavior strongly changes with increasing

h2 � h1 values: the field-induced counterion concentration close

to the particle decreases while the corresponding co-ion concen-

tration increases. At large h2 � h1 values (larger than those corre-

sponding to charge reversal), counterions and co-ions exchange

their roles so that anions have a higher field-induced concentration

than cations. Note, however, that this concentration behavior does

not fully correspond to that of a positive particle: outside the dou-

ble layer the anion and cation concentrations still converge to a po-

sitive value. On the contrary, for a positively charged particle, the

field-induced electrolyte concentration in the electroneutral region

is negative.

This important qualitative difference is due to the nature of the

equilibrium ion concentrations close to the particle: negative par-

ticles are normally surrounded by an excess layer of cations while

positive particles attract anions. However, in the considered case of

a negative particle and a h2 � h1 value sufficiently large as to pro-

duce charge reversal, the layer surrounding the particle is mostly

formed by cations, not anions. Because of this layer, the steady-

state field-induced cation and anion flows around the particle must

be different: cations must converge toward the particle at a steeper

angle (the cation surface conductivity larger than that of anions).

This behavior requires field-induced ion concentration gradients

at large distances that are similar to those corresponding to a

Table 1

Parameter values used in the calculations except when specified otherwise.

rS = �0.02 C/m2 a = 100 nm z = z1 = �z2 = 1

c11 ¼ 100 mol=m3 h1 = 0.5 nm cmax
1 ¼ 1500 mol=m3

c12 ¼ 100 mol=m3 R1 = R2 = 0.5 nm cmax
2 ¼ 1500 mol=m3

T = 298 K ee = 78.54e0 e0 = 8.854 � 10�12 F/m

k = 1.381 � 10�23 J/K NA = 6.022 � 1023 mol�1 e = 1.602 � 10�19 C
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Fig. 1. Field-induced counterion and co-ion concentration and charge density

profiles for Ea = 1 V/m, and their dependence on the difference h2 � h1. The

remaining parameters are given in Table 1.
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negative particle: positive rather than negative values both for cat-

ions and anions.

Fig. 2 represents the conductivity increment DK defined by

K ¼ Keð1þuDKÞ ¼ Keð1þ 3udÞ

as a function of the difference h2 � h1 and its dependence on the ion

valence. In this expression K and Ke are the conductivities of the sus-

pension and of the suspending medium, respectively, u is the vol-

ume fraction occupied by the particles, and d the dipolar coefficient.

Fig. 2 shows unusually low conductivity increment values, even

lower than those expected for uncharged insulating particles of

radius a in a conducting medium such that ja� 1 since, under

these conditions, the dipolar coefficient would be d = �1/2 so that

DK = �3/2. The obvious reason is that in the considered model all

ions types are excluded from the first layer of thickness h1, which

means that the equivalent insulating particle would have an effec-

tive radius a + h1 rather than a. Therefore, the corresponding con-

ductivity increment should have the value

DK ¼ 3 �1

2

� �

aþ h1

a

� �3

¼ �3

2

105

100

� �3

¼ �1:5226:

As can be seen, all the curves appearing in Fig. 2 have a higher value

than this result, but only for h2 � h1 = 0. This is to be expected since,

for h2 � h1 > 0, the effective radius of the particle becomes even lar-

ger: a + h2 rather than a + h1. The dashed line in Fig. 2 that corre-

sponds to the equation

DK ¼ 3 �1

2

� �

aþ h2

a

� �3

ð8Þ

lies lower than all the remaining curves. For any curve, the differ-

ence with respect to the dashed line is determined by the quotient

of the surface conductivity of the particle and the conductivity of

the suspending medium.

Fig. 3 represents the dimensionless tangential fluid velocity

�vh ¼
ae2g

ðkTÞ2ee
vh

profiles and their dependence on the difference h2 � h1. In this

expression vh are the fluid velocity values calculated at the particle

equator: h = p/2. Note that in this figure the fluid velocity is referred

to infinity, so that it tends to zero for r � a?1. Therefore, the

velocity at the particle surface is proportional to minus the electro-

phoretic velocity, ve. Since in all the examined cases this value is po-

sitive, the resulting electrophoretic mobility is negative and does

not change its sign when charge reversal occurs. As can be seen,

charge reversal only leads to the appearance of a pronounced min-

imum in the velocity profiles close to the particle surface. This

behavior occurs because of the change of the equilibrium charge

density sign for r � a > h2 and sufficiently large h2 � h1 values for

charge reversal to occur (see Fig. 2b in Ref. [6]).

Fig. 4 represents the dimensionless electrophoretic mobility

ue ¼
3eg
2ekT

ve

Ea

as a function of the difference h2 � h1 and its dependence on the ion

valence.

As can be seen, and in agreement with the preceding comments,

the mobility values are always negative, as is usual for a negatively

charged particle. As expected, the mobility decreases in absolute

value with increasing ion valence since the surface potential de-

creases (see Fig. 4a in Ref. [6]). It also decreases with the difference

h2 � h1, but does not reduce to zero and change sign when charge

reversal takes place. While this result suggests that electrophoretic

measurements would never reveal the kind of charge reversal de-

scribed by the present model, this is actually not the case as will be

shown in the following figure.

Fig. 5a and b represents the electrophoretic mobility and the

conductivity increment as functions of the particle charge and their

dependence on the difference h2 � h1. It should be noted that in

these figures lower index 1 (2) corresponds to anions (cations)

rather than to counterions (co-ions), as is the case in the rest of this
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Fig. 2. Conductivity increment as a function of the difference h2 � h1 and its

dependence on the ion valence. The remaining parameters are given in Table 1. The

dashed line corresponds to the analytical solution, Eq. (8).
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work. Therefore, when the particle charge changes from negative

to positive, the first layer becomes populated only by co-ions

rather than counterions. As expected, the mobility and conductiv-

ity increment curves corresponding to h2 � h1 = 0 are symmetrical

with respect to the sign of the particle charge. On the contrary, this

symmetry is lost for all the other h2 � h1 values.

The dashed line in Fig. 5a corresponds to the analytical solution

for the electrophoretic mobility that is only valid for h2 � h1 = 0

and weakly charged particles. Under these conditions, Eqs. (4)

and (7)–(10) in [6] lead to the following expression for the equilib-

rium dimensionless surface potential

y0 ¼ ers

kTee

1

j
þ h2

� �

which, combined with the Smoluchowsky expression

ue ¼
3

2
y0

gives

ue ¼
3e

2kTee

Q s

4pa2
1

j
þ h2

� �

:

Fig. 5a shows that for h2 � h1 > 0, the electrophoretic mobility

can become positive even for negative values of the particle charge.

However, this only occurs for sufficiently low (in modulus) values

of the particle charge. This is why in Fig. 4, which corresponds to

the surface charge value given in Table 1 (Qs � �2.5 � 10�15 C),

the electrophoretic mobility sign does not change for the consid-

ered h2 � h1 values.

Fig. 5b shows that the conductivity increment corresponding to

h2 � h1 = 0 attains a minimum for uncharged particles and in-

creases with the particle charge as the surface conductivity in-

creases. At the minimum, the conductivity increment coincides

with the expected value DK � �1.5226 while, for increasing values

of the difference h2 � h1, the conductivity increment decreases in

view of the increase of the effective particle size (see comment

of Fig. 2).

A less evident feature shown in Fig. 5b is the shift to negative

particle charge values of the minima of the different curves with

increasing h2 � h1 values. The origin of this behavior is that for

h2 � h1 > 0, the equilibrium potential of an uncharged particle is

positive, as can be seen in Fig. 5 in [6]. Therefore, under these con-

ditions, the surface conductivity does not attain its minimum value

since it is due both to the counterions in the a + h1 < r < a + h2 layer

and to the two ion types in the diffuse double layer r > a + h2.

Decreasing the particle charge decreases the potential at

r = a + h2 so that the surface conductivity of the diffuse layer de-

creases while the conductivity of the counterion layer increases

as it gets more populated. The conductivity increment minimum

is attained somewhere close to the condition that the surface con-

ductivity of the diffuse double layer vanishes, which corresponds

to the charge reversal condition, Eq. (7). The particle charge values

corresponding to this condition are represented by vertical seg-

ments in Fig. 5b. For even lower particle charge values both the

counterion layer and the diffuse layer conductivities increase so

that the conductivity increment also increases.

Fig. 6a and b represents the electrophoretic mobility and the

conductivity increment as functions of the electrolyte concentra-

tion and their dependence on the difference h2 � h1. As can be seen,

these magnitudes only depend on this difference for high electro-

lyte concentrations so that the default value of 100 mol/m3 used

in this work, Table 1, lies right in the middle of the range where

this dependence occurs.

The h2 � h1 = 0 mobility curve shows the well-known behavior

[24]: Debye–Hückel limit at low electrolyte concentrations and

Smoluchowsky value for the opposite limit. For high electrolyte

concentrations, the mobility decreases (in modulus) with the dif-

ference h2 � h1 in agreement with Fig. 4, then vanishes, and finally

becomes positive, just as in Fig. 5a. The huge increase of the mobil-

ity with the difference h2 � h1 at very high electrolyte concentra-

tions is due to the corresponding increase of the surface

potential. Under normal conditions and keeping constant the

charge of the particle, the modulus of the surface potential always

decreases with increasing electrolyte concentration, due to the de-

crease of the Debye screening length. However, in the considered

case and with h2 � h1 > 0, an increase of the electrolyte concentra-

tion necessarily leads to charge reversal and, from there on, to an

increase of the surface potential caused by the increasing number

of cations in the counterion layer (see Fig. 3 in Ref. [6]).

The h2 � h1 = 0 conductivity increment curve shows the ex-

pected dependence on the electrolyte concentration at a fixed par-

ticle charge. At low concentrations the conductivity increment

increases, because the surface conductivity remains essentially

constant while the electrolyte solution conductivity decreases. This

increases the dipole coefficient value that tends to the theoretical

maximum d = 1/4 (valid under the thin double layer approxima-

tion). However, in the considered case of a relatively low surface

charge, Table 1, a large surface potential is only attained at very

low concentrations for which the thin double layer approximation

breaks down. Correspondingly, the dipole coefficient should sur-

pass the above-noted value in view of the larger size of the effec-

tive particle that includes its thick double layer (this expected

limiting behavior lies outside the boundaries of Fig. 6b).

For increasing concentrations the electrolyte solution conduc-

tivity increases so that the conductivity increment decreases
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Fig. 5. Dimensionless electrophoretic mobility (a) and conductivity increment (b)

as functions of the particle charge and their dependence on the difference h2 � h1.

The remaining parameters are given in Table 1. The vertical segments represent the

charge values calculated using Eq. (7); see text.
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together with the surface potential and the double layer thickness,

tending to a limiting value close to �3/2, as already discussed.

Finally, when the double layer thickness decreases down to values

that are comparable to the difference h2 � h1, the conductivity

increment becomes a function of this parameter. As discussed in

Fig. 2b, DK decreases with increasing h2 � h1 as the equivalent par-

ticle becomes larger. However, this qualitative behavior drastically

changes at very high concentrations when the conductivity incre-

ment starts to increase with the difference h2 � h1. As noted above,

this occurs after charge reversal takes place so that the cation den-

sity in the counterion layer rapidly grows, leading to a fast increase

of the surface conductivity.

4. Conclusion

We present an extension into the steady-state domain of a pre-

vious work that modifies the standard electrokinetic model by tak-

ing into account the finite ion size and considering that the

minimum approach distance of ions to the particle surface need

not be equal to their effective radius in the bulk solution. For sake

of simplicity, our calculations correspond to the case of just two

ion species, equal counterion and co-ion effective size in the bulk

solution, and a larger minimum approach distance to the particle

surface for co-ions than for counterions.

We examine the response of this model under the action of an

applied DC electric field and calculate the conductivity increment

and the electrophoretic mobility. We show that the sign of the con-

centration polarization, as determined by the sign of the particle

charge, remains unchanged, even when charge reversal takes place.

Furthermore, under these same conditions, the sign of the electro-

phoretic mobility does not change either, except for specially

favorable circumstances: very low particle charge or high electro-

lyte concentration.

Our main qualitative conclusion is that purely ‘‘physical’’ mech-

anisms (difference between minimum approach distances) suffice

to produce both charge reversal and change of the sign of the elec-

trophoretic mobility. However, observation of this second phe-

nomenon is not a good indication of the occurrence of the first

since charge reversal may well occur without a change of the elec-

trophoretic mobility sign.
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Fig. 6. Dimensionless electrophoretic mobility (a) and conductivity increment (b)

as functions of the electrolyte concentration and their dependence on the difference

h2 � h1. The remaining parameters are given in Table 1.
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