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In many cell-signaling pathways, information is transmitted by the
diffusion of messenger molecules. Diffusion coefficients charac-
terize the messenger’s spatial range and the characteristic times of
signal propagation. Inside cells, particles usually diffuse in the
presence of immobile binding sites (or traps). It is well known that
binding to traps results in an effective diffusion coefficient that is
smaller than the free coefficient in media free of traps. To measure
effective diffusion coefficients in cells, ‘‘tagged’’ particles are
often used. Radioactive calcium was used in a giant squid axon
and in cytosolic extracts of Xenopus laevis oocytes. Fluorescence
recovery after photobleaching yields diffusion coefficients from
observations of the distribution of fluorescently labeled proteins.
In the absence of traps, free diffusion coefficients give both the
rate at which single-particle mean square displacements increase
and the rate at which information in the form of inhomogeneities
in particle concentration spread out with time. We show here
that, in the presence of traps, information diffuses faster than
single particles. Thus, messages diffuse faster than messengers.
Tagged-particle experiments give the single-particle diffusion co-
efficients and, thus, can underestimate the rate of diffusive signal
propagation.

binding � effective diffusion � fluorescence recovery after
photobleaching � tagged particles � traps

I t is well known that binding to traps results in an effective
diffusion coefficient that is smaller than the free coefficient in

media free of traps (1). To measure effective diffusion coeffi-
cients in cells, ‘‘tagged’’ particles are often used. Radioactive
calcium was used in a giant squid axon (2) and in cytosolic
extracts of Xenopus laevis oocytes (3). Fluorescence recovery
after photobleaching (FRAP) yields diffusion coefficients from
observations of the distribution of fluorescently labeled proteins
(4–10). In the absence of traps, free diffusion coefficients give
both the rate at which single-particle mean square displacements
increase and the rate at which information in the form of
inhomogeneities in particle concentration spread out with time.
We show here that, in the presence of traps, information diffuses
faster than single particles and that messages diffuse faster than
messengers. Tagged-particle experiments give the single-particle
diffusion coefficients and, thus, can underestimate the rate of
diffusive signal propagation.

To illustrate these effects, we consider the simplest model that
incorporates traps and freely diffusing particles. The free par-
ticles, Pf, bind to an immobile substrate, S, resulting in bound
particles, Pb, according to the simple reaction scheme

Pf � SL|;
kon

koff

Pb, [1]

with dissociation constant, KD � koff/kon.
We illustrate the differences between single-particle diffusion

and diffusion of inhomogeneities with a sequence of numerical
simulations of the appropriate reaction–diffusion equations for
all four classes of particles: tagged and untagged bound (Pb

t and
Pb

u, respectively) and free (Pf
t and Pf

u, respectively).

Results
For specificity we use pseudo-on (kon Seq) and off rates and
diffusion coefficient for GFP-tagged glucocorticoid receptors
in the nuclei of mouse adenocarcinoma cells (10). The first
simulation (see Methods) (Fig. 1A) mimics experiments (2, 3)
in which radioactive calcium (45Ca2�) is added to an essentially
one-dimensional medium. In the simulation, a bolus of tagged
particles is added to the leftmost 1.1 �m of the medium in
which identical but untagged particles are already in equilib-
rium with the traps. The equilibrium concentration of free
(bound) particles prior to the addition of the bolus is denoted
Pbeq. Fig. 1 shows the concentration profiles at t � 0.1 s after
evolution from initial concentrations (Pf

u, Pb
u, Pf

t, Pb
t ) � (Pfeq,

Pbeq, 0.2Pfeq, 0) for x � 1.1 �m and (Pf
u, Pb

u, Pf
t, Pb

t ) � (Pfeq, Pbeq,
0, 0) for x � 1.1 �m. The deviation of the particle concentra-
tions from Pfeq of total free (thick solid line), total tagged (light
solid line), tagged free (dotted line), and untagged free
particles (dashed line) are plotted as fractions of Pfeq. The
spread of the untagged particles is clearly greater than that of
the tagged particles. In Fig. 1B, the deviation from background
of free particles (Pf

t � Pf
u � Pfeq) is shown as a solid line

representing what a calcium-sensitive electrode would record
at the MP, a measurement point some distance away from the
point at which the bolus is added (IP). In the same graph, the
total tagged particle concentration, Pf

t � Pb
t is also plotted as

a dotted line representing the radioactivity observed at the
MP. Clearly, the total free-particle concentration is growing
much faster there than the tagged particle concentration (the
radioactivity). As proven in Methods and illustrated in Fig. 1B,
the time it takes for the total free particle concentration at the
MP to reach the same threshold value above Pfeq is shorter. The
reason is that, as tagged particles diffuse, they compete with
the untagged ones for traps. The net effect is that there is a
preferential unbinding of untagged particles and binding of
tagged ones, because the tagged ones are diffusing into a
region with no tagged particles. These additional untagged
particles that are released throughout the medium result in the
threshold value being reached faster at the MP. The fact that
all tagged particles observed at the MP travel the entire
distance from IP to MP, in contrast, implies that the effective
diffusion coefficient for the population of tagged particles is
given by the single-particle effective diffusion coefficient. It
follows that the time it takes for inhomogeneities to diffuse
throughout the medium is much shorter than the single-
particle diffusion time. The experimental observable is the
total tagged-particle concentration Pf

t � Pb
t , whereas the

quantity of interest for cell signaling is the free-particle
deviation from background: Pf

t � Pf
u � Pfeq. As illustrated in
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Fig. 1 A, the total tagged population spreads at the same rate
as the free tagged particles, much slower than the spread of
inhomogeneities.

In Fig. 1C, we plot the results of two three-dimensional
simulations (see Methods). The first represents a FRAP-like
simulation (solid line, left axis), and the second represents a
particle-deficit simulation (dotted line, right axis). Both sim-
ulations were performed in a sphere of radius 5 �m. In the
FRAP-like experiment, the initial conditions were (Pf

t, Pb
t , Pf

u,
Pb

u) � (0, 0, Pfeq, Pbeq) for r � 1.1 �m and (Pf
t, Pb

t , Pf
u, Pb

u) � (Pfeq,
Pbeq, 0, 0) for r � 1.1 �m. In the particle-deficit simulation,
there were no tagged particles and the initial conditions were
(Pf, Pb) � (0.8Pfeq, Pbeq) for r � 1.1 �m and (Pf, Pb) � (Pfeq,
Pbeq) for r � 1.1 �m. The plots show the concentrations as a
percentage of the final equilibrium concentrations at t � 0.1
s. At this time, Pf in the particle-deficit simulation is spatially
uniform to within 3% of its final value, whereas the FRAP-like
simulation still shows deviations of 80% from its final equi-
librium value. Fig. 1D shows the integrated recovery curves for
the particle-deficit (dashed line) and FRAP-like (solid line)
simulations. The t1/2 is 0.022 s for the particle-recovery sim-
ulation and 0.097 s for the f luorescence recovery in the
FRAP-like simulation. For this geometry, the measured dif-
fusion coefficients (Dmeas) can be obtained from t1/2 by Dmeas �
Ro

2�(9.98t1/2), where Ro � 1.1 �m is the radius of the perturbed
region. The coefficients thus obtained compare well with the
ones deduced in Methods (see Eqs. 2 and 3).

Visual comparison of the widths of the concentration peaks
and troughs in Fig. 1 A and B reveals that the effective diffusion
coefficient obtained in the FRAP-like simulation is identical to
the tagged-particle effective diffusion coefficient obtained be-
fore, which is proven in Methods and illustrated in Fig. 2.
Fluorescence in FRAP experiments spreads at the same rate as
a bolus of tagged particles that is added to a background of
untagged particles and traps in equilibrium. Therefore, it spreads
at a slower rate than a local inhomogeneity of the unlabeled
particle concentration, Pf

u. Furthermore, our simulations show
that the difference in the rate of spread occurs even before the
spreading becomes diffusive (which always occurs in the long
time limit in an infinite domain).

In Fig. 2, the mean square displacement (divided by twice the
space dimension) is plotted as a function of t for various
quantities in the three simulations discussed. The slopes of these
curves are the effective diffusion coefficients, and they agree
with Eqs. 2 and 3.

We repeated the simulations of Fig. 1 A and B changing koff

and kon but keeping KD and all other parameters constant. We
observe similar results, but for later times as koff decreases. In
particular, for values of koff and kon that are 100 times smaller
than those used in Fig. 1 A and B, Pf

t � Pf
u � Pfeq is 1.4 times

larger than Pb
t � Pf

t at MP, and t � 3 s. The ratio of mean square
displacements is 1.75 already at t � 1 s.

As shown in Methods, the spread of tagged particles is
determined by the same effective diffusion coefficient

Dt �
Df

1 �
Seq

KD

, [2]

in all the experiments discussed here. Seq�KD is the ratio between
the mean time a particle stays bound and the mean time between
successive trappings (11). Dt is also the effective diffusion
coefficient of a single particle in the medium. The spread of a
bolus of untagged particles, however, is determined by the
coefficient

Du �
Df

1 �
Seq

KD

Seq

ST

, [3]

Fig. 1. Simulated diffusion of particles in the presence of traps. (A) One-
dimensional simulation of the spread of tagged and untagged particles,
denoted by superscripts t and u, respectively, in an experiment in which a bolus
of tagged particles (such as radioactive calcium) is released at t � 0, raising the
concentration of free particles by 20% in the leftmost 1.1 �m. The four curves
are Pf

u � Pfeq (dashed), Pf
t (dotted), Pf

u � Pf
t � Pfeq (thick solid), and Pb

t � Pf
t

(thin solid) at t � 0.1 s. MP is the measurement point from which the signals
shown in B were obtained. (B) Time course of particle concentrations at MP.
The dotted line denotes the total tagged-particle concentration, Pb

t � Pf
t, and

the solid line denotes total free particle concentration above background, Pf
t

� Pf
u � Pfeq. (C) Two three-dimensional simulations in a 5-�m sphere. First,

a FRAP-like simulation is shown in which all particles in a sphere of radius 1.1
�m were untagged at t � 0, whereas the particles in the rest of the 5-�m
sphere remained tagged. The plot shows the recovery of tagged particles, Pf

t

� Pb
t at t � 0.1 s (solid line, left scale). A ‘‘particle deficit experiment’’ is also

shown in which the free particle concentration was reduced to Pf � 0.8Pfeq in
the 1.1-�m sphere at t � 0. The plot shows the free particle recovery at t �

0.1 s (dotted line, right scale). Note that the concentration is almost fully
recovered in the particle deficit case but not in the FRAP-like case. (D) Percent
recovery as a function of time for the FRAP-like (solid line) and particle deficit
(dashed line) simulation (see Methods).

Fig. 2. Effective diffusion coefficients. (A) (� x2 � � � x0
2 �)�(2d)vst (where d is

the space dimension: d � 1 in the tagged-particle bolus simulation discussed
in Fig. 1A, and d � 3 in the FRAP and particle deficit experiments discussed
in Fig. 1C). The four lines shown are for Pf

u � Pf
t (dashed) and Pf

t (dashed–
dotted) in the tagged particle bolus simulation, Pf

u in the particle-deficit
simulation (dotted), and Pf

t in the FRAP simulation (solid). The slopes of these
lines give the effective diffusion coefficients. (B) Dt�Du as a function of Seq�KD.
The dotted line corresponds to Seq�ST � 0.9, the dashed line corresponds to
Seq�ST � 0.3, and the solid line corresponds to Seq�ST � 0.1. For large Seq�KD,
the ratio approaches its asymptotic value: Seq�ST. The black dot corresponds to
the parameters used in all simulations in this report.
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which coincides with the one obtained in the rapid buffering
approximation (12). In this case, the ratio of bound to free times,
Seq/KD, is rescaled by a factor that includes all the particles that
can become unbound during the diffusive process. The solid,
dashed, and dotted lines in Fig. 2B show the ratio of Dt�Du as
a function of Seq�KD for Seq�ST � 0.1, 0.3, and 0.9, respectively.
The difference is largest for large Seq�KD and small Seq�ST.

Discussion
These results have ramifications for the interpretation of data
taken by using FRAP (4–10); other related methods, such as
f luorescence loss in photobleaching (FLIP) or f luorescence
correlation spectroscopy (FCS); and methods that monitor the
spread of radioactivity (2, 3). Assuming that the spread of
tagged and untagged particles proceeds at the same rate can
result in potentially incorrect inferences about in vivo biolog-
ical processes. In the case of messengers, diffusion coefficient
measurements serve to estimate how long it takes for a local
increment of the messenger concentration at point A to reach
another at point B. If there are already trapped messenger
molecules between A and B, the time it takes for the signal
to arrive at B can be much shorter than the time it takes for
the input molecules to traverse the intervening distance. If the
traps are nearly unoccupied (Seq � ST as represented by the
dotted curve in Fig. 2B) or if they are almost completely
occupied (Seq � {Pbeq�Pfeq} KD �� KD as represented by the
curves near the left side of Fig. 2B), the difference disappears
and Dt � Du. In these cases, the tagged particle measurement
gives an accurate assessment of the rate at which inhomoge-
neities smear out (Dt � Du �� Df in the former case and Dt �
Du � Df in the latter case). The distinction between collective
(Du) and single-particle (Dt) diffusion is especially important
in the case for which, at equilibrium, most of the particles are
bound to traps and for which most of the traps are full. In this
case, tagged particles will compete with untagged ones for the
traps. The net preferential unbinding of untagged particles
then results in Dt �� Du. This effect pertains whenever
Seq�KD � 1 and Seq�ST �� 1 and the spatial spread of the
particles can be measured in experiment, as in the ‘‘full model’’
and ‘‘effective-diffusion’’ regimes defined in ref. 10. There are
two other limiting regimes defined in ref. 10 that correspond
to different relations between the reactive and diffusive times.
In the so-called ‘‘reaction-dominant’’ regime, diffusion coef-
ficients can not be obtained from experimentation. In the
‘‘pure-diffusion’’ regime, Dt � Du � Df. Nevertheless, there are
differences in the dynamics of FRAP-like experiments and the
evolution of perturbations of untagged particles in these two
cases as well. As may be concluded from Eqs. 12–15, because
of the net preferential unbinding of untagged particles, the
time scales with which small perturbations to equilibrium
evolve and the time scales of FRAP experiments are different
when ST�Seq is large, regardless of the spatial extent of the
perturbation.

The condition ST�Seq �� 1 is encountered in the case of
calcium signals, because large amounts of calcium ions get bound
to buffers inside cells upon their entry in the cytosol. Effective
diffusion coefficients can be used in theoretical estimates of the
speed of intercellular and intracellular calcium waves (13). They
can also be used more generally to determine the spatial range
over which local calcium signals spread (14, 15). Inferences based
on Dt rather than Du can lead to erroneous conclusions. Whether
Dt and Du coincide or differ for proteins that are studied by using
FRAP or related techniques needs to be assessed on a case-by-
case basis. In any case, FRAP experiments provide information
on koff, kon Seq, and Dt, from which Df can be inferred. However,
unless kon and Seq can be measured independently, it is not
possible to infer Du or the time scale on which perturbations of
the native system evolve when ST�Seq �� 1. This time scale and

Du are the quantities that characterize the dynamics of signal
propagation, as opposed to Dt, koff, and kon Seq, which describe
the behavior of single or tagged molecules. The dynamics of
inhomogeneities, rather than of single molecules, will determine
statistical quantities, such as mean response times.

In the past few years, direct observation of single molecules
has begun to provide another window into the cell and
single-molecule diffusion coefficients have been constructed
from what is tantamount to direct observation of the molecules
(16, 17). In principle, measurements that resolve trajectories of
(many) single molecules can provide complete information
and thus yield kon, koff, ST, Seq, Df, Dt, and Du. When there are
differences between diffusion coefficients of inhomogeneities
and single molecules, we expect them to appear as differences
between the rates of diffusion of inhomogeneities in statistical
quantities, such as correlations, and of single particles. With
current technology, only a few particles can be tracked at
a time. Thus, such complete statistics are currently not
available (18).

Methods
We use the same letters to represent the species and the
concentration of that species (e.g., Pf � [Pf]). We assume that
the traps are immobile and distributed uniformly in space.
These assumptions are typical of FRAP analyses (10). We
denote the total substrate (or trap) concentration by ST, and
the equilibrium concentrations of S, Pb, and Pf by Seq, Pbeq, and
Pfeq. We used the pseudo-on and off rates reported in ref. 10
for the glucocorticoid receptor: Seqkon � 500�s and koff �
86.4�s. For comparison between the various simulations, we
use these same binding rates and diffusion coefficients in the
simulations reported in Fig. 1 A rather than parameter values
that would be appropriate for the binding of calcium. The total
binding site concentration ST and equilibrium concentration of
unoccupied sites Seq were not reported. We used Seq � 1 mM
and ST � 10 mM, which is not a priori unreasonable for
nonspecific binding to DNA for example. We chose the ratio
Seq�ST � 0.1 to illustrate the difference between diffusion of
tagged and untagged particles. The illustrative examples in this
manuscript were obtained via numerical simulations of Eq. 4
in one space dimension (tagged particle bolus simulation
shown in Fig. 1 A) and three space dimensions (FRAP and
free-particle deficit simulations shown in Fig. 1B) domain,
using first order explicit time-stepping, second order centered
differencing for the Laplacian and Neumann boundary con-
ditions. The domain in the three-dimensional simulations was
a sphere of radius R � 5 �m and in the one-dimensional
simulations a line segment of length 5 �m. The space grid
spacing was 0.01 �m, and the time step was 1 �s. The results
were quantitatively robust under space and time mesh refine-
ment. The free particle diffusion coefficient used was Df � 9.2
�m2�s and the other parameters were Pbeq � 9 mM, ST � 10
mM, Seq � 1 mM, KD � 0.1728 mM, and Pfeq � 1.5552 mM.

Analytical Derivation of Effective Diffusion Coefficients. Under the
assumption that the total concentration of traps, ST, is uniform,
the time evolution of the concentrations is given by

�
�Pf

i

�t
� Df	

2Pf
i � konPf

i� ST � �
j

Pb
j � � koffPb

i

�Pb
i

� t
� konPf

i� ST � �
j

Pb
j � � koffPb

i
, [4]

where the superscript i refers to whether the species is tagged
(i � t) or untagged (i � u). For the case in which a small bolus
of tagged particles is initially added to a background of
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untagged particles and traps in equilibrium, we consider the
initial condition: Pf

u(x, 0) � Pfeq, Pb
u(x, 0) � STPfeq�(Pfeq � KD),

Pb
t (x, 0) � 0, and Pf

t(x, 0) � 
(x), where 
(x) is a function of
compact support to represent the fact that the bolus is added
locally in space. If the added bolus is small or if the spatial
domain is large enough, the asymptotic state will be approx-
imately equal to the initial equilibrium configuration. It is then
reasonable to describe the dynamics in terms of an expansion
around the equilibrium configuration. To this end, we define
the variables:

� � kofft � � 	koff

Df
x 	 ��� �


���




fu � Pf
u � P feq f t � Pf

t

bu � Pb
u �

STP feq

P feq � KD
bt � Pb

t

, [5]

where 
 is a small quantity that represents the deviation with
respect to equilibrium. We define the vectors u† � (uu; ut)† � ( fu

bu ft bt) and �† � (�u; �t)† � (0 0 � 0) and write the evolution
equations as


 �u
��

� A�u � B�u�

u�� , 0� � 
���� ,
[6]

where B is quadratic in u and A is a linear operator, A 

� Au W
0 At � , with

Ai � � 	2 � ai hi

ai �hi� W � � 0 c
0 �c� [7]

au � at �
ST

P feq � KD
�

Seq

KD
hu � 1 �

P feq

KD
�

ST

Seq

c �
P feq

KD
ht � 1.

[8]

We can solve Eq. 6 expanding the solution in powers of 
,
u � �i�0

� 
iui. For the 
0 order we obtain u0 � 0. For the 
1

order we obtain the system


�u1

��
� A�u1

u1�� , 0� � ���� ,
[9]

the solution of which can be expressed in Fourier space as: û1(q,
�) � eÂ(q)�. �̂(q), where q is the conjugate variable to � and we
have used hats to denote Fourier transforms. Given that the
block form of Â translates into a similar form for the exponential,
the solution of Eq. 9 can be written as

�ûu

ût� � � eÂu�q�� Ẑ���
0 eÂ t�q��� �� �̂u

�̂t� , [10]

where Ẑ(�) is a 2 � 2 matrix (19). Our conclusions are inde-
pendent of the particular form of Ẑ: the matrices Au(q) and At(q)
encode the asymptotic spatiotemporal dynamics of the untagged
and tagged concentrations, respectively. From Eq. 7 we deduce
that these matrices can be written as

Âi � ��q2�ai hi

ai �hi� ,

from which we obtain that their slowest eigenvalues (ruling the
asymptotic dynamics) correspond to small q and satisfy � �

�q2hi�(ai � hi). Thus, the dimensionless effective diffusion
coefficients are

Di �
1

1 �
ai

hi

. [11]

Restoring the units and replacing the corresponding values of ai and
hi according to Eq. 8 we find the results presented in Eqs. 2 and 3.

The above analysis was for experiments in which a bolus of
tagged particles was added as done in refs. 2 and 3. The case of
FRAP (10), although conceptually quite different, can be
treated similarly by writing down all five evolution equations
(tagged and untagged particles and complexes and substrate
concentration) and noting that, at t � 0 Pf

u � Pf
t, Pb

u � Pb
t and

S � ST � Pb
u � Pb

t are spatially uniform and at equilibrium. So
that from Eq. 4 we deduce that Pf

u � Pf
t � Pfeq, Pb

u � Pb
t � Pbeq,

and S � ST � Pbeq � Seq for all time. Thus, the solution of the
five nonlinear coupled equations can be obtained from

�Pf
t

�t
� Df	

2Pf
t � konPf

t Seq � koffPb
t [12]

�Pb
t

�t
� konPf

t Seq � koffPb
t , [13]

which can be written in dimensionless form as �u��t � Atu with
At defined as before. Thus, the effective diffusion coefficient
obtained in this case coincides with that of the tagged particles
in the case of the added bolus.

Eqs. 12 and 13 are similar to those that describe the evolution
of a small perturbation [(�Pf, �Pb) � (Pf � Pfeq, Pb � Pbeq)] from
equilibrium in the case for which there are no tags. The
linearized evolution equations in this case are

��Pf

�t
� Df	

2�Pf � konSeq�Pf �
ST

Seq
koff�Pb [14]

��Pb

�t
� konSeq�Pf �

ST

Seq
koff�Pb . [15]

Note that the only differences between Eqs. 12 and 13 and Eqs.
14 and 15 are that koff is rescaled by ST�Seq in the latter. Thus,
when ST�Seq �� 1, perturbations of the native system evolve
differently from FRAP. Not only are the effective diffusion
coefficients different in the two cases, but also in the time scale
on which equilibrium is approached if ST�Seq is large. Note that
Eqs. 14 and 15 can be written in dimensionless form as �u��t �
Auu, with Au defined as before. Thus, the effective diffusion
coefficient obtained in this case coincides with that of the
untagged particles in the case of the added bolus.

Recovery Curves. The recovery curves shown in Fig. 1D are given
by the integral over the perturbed sphere of the difference
between the current and initial total particle concentrations
divided by the integral of the difference between the final and
initial total particle concentrations: 1�V �((Pf � Pb)(r, t) �
(Pf � Pb)t�0)dV�((Pf � Pb)t�� � (Pf � Pb)t�0), where V is the
volume of the perturbed sphere.

J.E.P. thanks W. J. Bruno, A. Cohen, B. Goldstein, and R. P. Leon for
useful conversations. This work was supported by National Institutes
of Health Bioengineering Research Partnership Grant R01GM65830-
01, Laboratory-Directed Research and Development Contract X1E8
from Los Alamos National Laboratory, Agencia Nacional de Promo-
ción Cientı́fica y Tecnológica (Argentina) Proyecto de Investigación
Cientı́fica y Tecnológica 03-08133, and Universidad de Buenos Aires
Grant X099.

Pando et al. PNAS � April 4, 2006 � vol. 103 � no. 14 � 5341

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
BI

O
PH

YS
IC

S



1. Crank, J. (1975) The Mathematics of Diffusion (Clarendon�Oxford Univ. Press,
Oxford).

2. Hodgkin, A. L. & Keynes, R. D. (1957) J. Physiol. (London) 138, 253–281.
3. Allbritton, N. L., Meyer, T. & Stryer, L. (1992) Science 258, 1812–1815.
4. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. (1976)

Biophys. J. 16, 1055–1069.
5. Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L. & Webb, W. W. (1976)

Biophys. J. 16, 1315–1329.
6. Axelrod, D., Ravdin, P., Koppel, D. E., Schlessinger, J., Webb, W. W., Elson,

E. L. & Podelski, T. R. (1976) Proc. Natl. Acad. Sci. USA 73, 4594–
4598.

7. Schlessinger, J., Koppel, D. E., Axelrod, D., Jacobson, K., Webb, W. W. &
Elson, E. L. (1976) Proc. Natl. Acad. Sci. USA 73, 2409–2413.

8. Patterson, G. H. & Lippincott-Schwartz, J. (2002) Science 297, 1873–1877.
9. Lippincott-Schwartz, J. & Patterson, G. H. (2003) Science 300, 87–91.

10. Sprague, B. L., Pego, R. L., Stavreva, D. A. & McNally, J. G. (2004) Biophys.
J. 86, 3473–3495.

11. Strier, D. E., Chernomoretz, A. & Dawson, S. P. (2002) Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 65, 046233–046314.

12. Wagner, J. & Keizer, J. (1994) Biophys. J. 67, 447–456.
13. Dawson, S. P., Keizer, J. & Pearson, J. E. (1999) Proc. Natl. Acad. Sci. USA 96,

6060–6063.
14. Augustine, G. J., Santamaria, F. & Tanaka, K. (2003) Neuron 40, 331–346.
15. Neher, E. (1998) Neuron 20, 389–399.
16. Vrljic, M., Nishimura, S. Y., Brasselet, S., Moerner, W. E. & McConnell, H. M.

(2002) Biophys. J. 83, 2681–2692.
17. Deich, J., Judd, E. M., McAdams, H. H. & Moerner, W. E. (2004) Proc. Natl.

Acad. Sci. USA 101, 15921–15926.
18. Moerner, W. E. (2003) Trends Anal. Chem. 22, 544–548.
19. Najfeld, I. & Havel, T. F. (1995) Adv. Appl. Math. 16, 321–375.

5342 � www.pnas.org�cgi�doi�10.1073�pnas.0509576103 Pando et al.


